Title	Synthesis of isomeric 5α-androstane-3, 15, 17β-triols
Sub Title	
Author	松井, 道夫(Matsui, Michio) 絹山, 優子(Kinuyama, Yuko)
Publisher	共立薬科大学
Publication year	1976
Jtitle	共立薬科大学研究年報 (The annual report of the Kyoritsu College of
	Pharmacy). No.21 (1976.) ,p.104- 105
JaLC DOI	
Abstract	
Notes	抄録
Genre	Technical Report
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=AN00062898-00000021- 0104

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Synthesis of isomeric 5 α -androstane-3, 15, 17 β -triols*

松井道夫, 絹山優子 MICHIO MATSUI and YUKO KINUYAMA

In a paper dealing with the biliary metabolites of testosterone sulphate in the rat, we reported the production of considerable quantities of disulphates of 5α -androstane- 3α , 17β -diol and polar hydroxylated steroids in the female. Gustafsson and Ingelman-Sundberg recently described the 15β -hydroxylation of the 3, 17-disulphates of 5α -androstane- 3α , 17β -diol and the corresponding 3β -epimer in female rat liver microsomes. These results strongly suggest the occurrence of 15β -hydroxylated steroids in biliary metabolites. As authentic standards, 5α -androstane-3, 15β -friols were prepared by incubation of 15α - and 15β -hydroxyandrost-4-ene-3, 17β -dione with rat liver microsomes, and the respective trimethylsilyl ethers were subjected to glc-mass spectrometric analysis. Of the four isomeric 3, 15, 17β -triols, 5α -androstane- 3β , 15α , 17β -triol (15) has been prepared by Nussim and his co-workers. We now describe the synthesis of 5α -androstane- 3α , 15β , 17β -triol(8), -3β , 15β , 17β -triol(10), and -3α , 15α , 17β -triol(13).

The 15β -hydroxy-group has been introduced into the steroid nucleus by nucleophilic addition of a benzyl alcohol to a Δ^{15} -17-oxo steroid, followed by catalytic hydrogenolysis, and 15α -hydroxysteroids have been prepared by hydroboration of Δ^{14} steroids. We have applied these reactions to the synthesis of the 5α -androstane-3, $15, 17\beta$ -triols.

 3α -Acetoxy-16 α -bromo-5 α -androstan-17-one (1) was acetalised with ethylene glycol; dehydrobromination of the bromo-acetal (2) with potassium *t*-butoxide in refluxing xylene then gave the unexpected 3β -epimerisation product, 3β -hydroxy- 5α -androst-15-en-17-one (3) (after hydrolysis of the acetal with toluene-*p*-sulphonic acid).

The structure (3) was confirmed by catalytic hydrogenation to give 3β -hydroxy- 5α androstan-17-one (4), identical with an authentic sample. However, mild dehydrobromination of the bromo-acetal (2) with potassium *t*-butoxide in dimethyl sulphoxide at 37°C and subsequent deacetalisation provided a route to 3α -hydroxy- 5α -androst-15en-17-one (5), catalytic hydrogenation of the 15, 16-double bond affording 3α -hydroxy- 5α -androstan-17-one (6). Base-catalysed addition of benzyl alcohol to the Δ^{15} - 3α -ol (5) followed by hydrogenolysis over palladium-charcoal gave 3α , 15β -dihydroxy- 5α androstan-17-one (7), which was converted into the 3α , 15β , 17β -triol (8) with sodium borohydride. Similarly, condensation of the Δ^{15} - 3β -ol (3) with benzyl alcohol and hydrogenolysis yielded 3β , 15β -dihydroxy- 5α -androstan-17-one (9), which was reduced

^{*} 本報告はJ. Chem. Soc. Perkin I, 1429 (1976) に発表

with sodium borohydride to the 3β , 15β , 17β -triol (10).

 3α -Hydroxy- 5α -androst-14-en-17-one (11), prepared by acid-catalysed epimerisation of the Δ^{15} - 3α -ol (5), was reduced with sodium borohydride to give 5α -androst-14ene- 3α , 17β -diol (12). Hydroboration followed by oxidation with alkaline hydrogen peroxide then afforded the 3α , 15α , 17β -triol (3). The 3β , 15α , 17β -triol (15) was also prepared from 5α -androst-14-ene- 3β , 17β -diol (14) by the hydroboration method.

The spectral properties of the isomeric 3,15,17 β -triols are markedly affected by the configuration of the C-15 hydroxy-group. Molecular rotation analysis indicated that the 15 α -ols [(13) and (15)] were more dextrorotatory than the 15 β -epimers [(8) and (10)], in accord with other epimeric 15-hydroxy-steroids. The ¹H n. m. r. data showed a large downfield shift of the 13-methyl signal of the 15 β -ols due to pseudo-1,3-diaxial deshielding by the 15 β -hydroxy-group. The mass spectrometric fragmentations provided strong evidence for the configuration of the 15-hydroxygroup. Prominent ions at m/e 107 and 264 are characteristic of 15 α -ols, whereas the mass spectra of the 15 β -ols are dominated by fragments of m/e 107, 217, and 290. Generally the 15 α -hydroxy-group confers greater polarity than does the 15 β -hydroxygroup. Tlc showed that the 15 β -ols were more mobile than the 15 α -ols. Glc of the trimethylsilyl ether derivatives on 0.5% CHDMS (or 1.5% SE-30) gave retention times (relative to 5 α -cholestane) of 0.34(0.70), 0.43 (0.71), 0.55 (0.90), and 0.68(0.99) for the 3 α , 15 β , 17 β -triol (8), the 3 α , 15 α , 17 β -triol (13), the 3 β , 15 β , 17 β -triol (10), and the 3 β , 15 α , 17 β -triol (15), respectively.