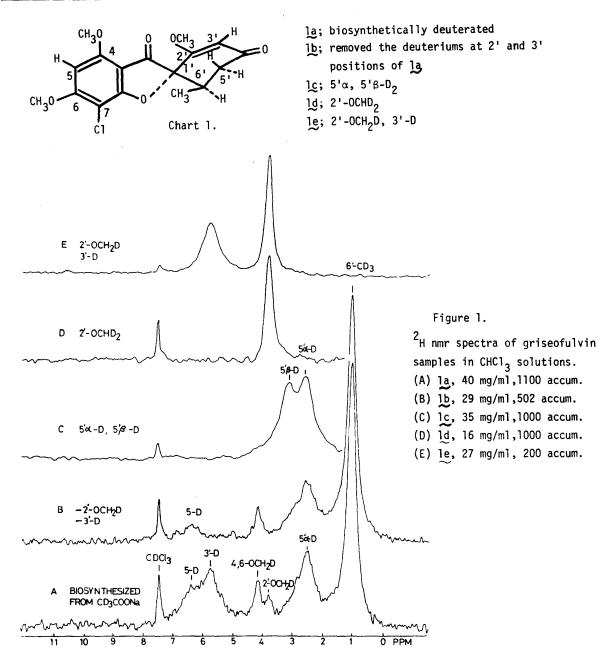
Title	A novel biosynthetic study of griseofulvin by ²H nuclear magnetic resonance : determination of deuterium incorporation from [2-²H₃]-acetate by penicillium urticae
Sub Title	
Author	佐藤, 良博(Sato, Yoshihiro)
	小田, 泰子(Oda, Taiko)
	斎藤, 肇(Saito, Hajime)
Publisher	共立薬科大学
Publication year	1976
Jtitle	共立薬科大学研究年報 (The annual report of the Kyoritsu College of
	Pharmacy). No.21 (1976.) ,p.99- 101
JaLC DOI	
Abstract	
Notes	抄録
Genre	Technical Report
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=AN00062898-00000021- 0099

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

A NOVEL BIOSYNTHETIC STUDY OF GRISEOFULVIN BY ²H NUCLEAR MAGNETIC RESONANCE: DETERMINATION OF DEUTERIUM INCORPORATION FROM [2-²H₈]-ACETATE BY *PENICILLIUM URTICAE* *


佐藤良博,小田泰子,斎藤 肇

Yoshihiro Sato, Taiko Oda, and Hazime Saitō

In the elucidation of the biosynthetic pathways, the use of ¹³C nmr combined with ¹³C-label-precursors has been common practice to locate the enriched site and determine the skeleton-formation. This method, however, does not provide an unambiguous information on biosynthetic pathways involving hydrogen. For this purpose, the use of ²H nmr in cass of ²H-labeled precursors seems to have potential utility for the location of deuterium incorporation, together with mass-spectrometric analysis. Although very few works have been done on this subject partly because of fear of lower sensitivity and wider line-width of deuterium signal, recent developments of the pulsed Fourier transform nmr method have enabled us to study various types of ²H nmr to chemical and biological problems. We now wish to demonstrate that direct evidence of deuterium incorporation and its stereochemical course on biosynthesis of griseofulvin are obtained from ²H nmr when $(2-²H_3)$ -acetate is used as a tracer for the biosynthesis, which is in good agreement with the previous studies using (2-³H, ¹⁴C)-acetate.

²H nmr spectra were recorded by a JEOL PFT-100/EC-100 pulsed Fourier transform spectrometer operating at 15.28 MHz with proton-noise decoupling. All samples of chloroform solution were contained in 10 mm o. d. sample tubes. Field-frequency control was performed on the internal signal of C_6F_6 , which was added by amounts of a few drops in the chloroform solution. The biosynthetically deuterated griseofulvin (1a) was prepared from sodium $[2^{-2}H_3]$ -acetate by *Penicillium urticae* as previously reported. In order to perform unambiguous assignment of ²H signals, a series of selectively deuterated griseofulvin samples were prepared (Chart 1). In Figure 1A is shown a ²H nmr spectrum of biosynthetically deuterated griseofulvin (1a) in CHC1₃ solution (4 w/%). The lowermost sharp signal arises from CDC1₃ occuring in CHC1₃ of natural abundance (0.02%). The assignment of ²H nmr signals is straightforward to that of ¹H nmr, since chemical-shift displacement due to isotope effect are usually negligible. In this communication, however, the peak-assignments were made with the aid of ²H signals of selectively deuterated griseofulvin samples described above. First, the peaks of 2'-OCH₂D and 5-D are assigned by comparing ²H nmr spectrum of la with that of lb (Figure 1B), in which deuteriums are removed

^{*} 本報告は Tetrahedron Letters No. 31, pp 2695-2698 (1976) に発表

at 2'-methoxyl and 3'-position. The assignment of 2'-OCH₂D signal is also confirmed by employing [2'-OCH₂D, 3'-D]-griseofulvin (1e, Figure 1E) and [2'-OCHD₂]-griseofulvin (1d, Figure 1D) as the reference samples. In comparison with ²H nmr of 1c (Figure 1C), deuterium at 5'-position is confirmed to have been incorporated exclusively at α configuration. This result is in agreement with the previous studies on [2-³H, ¹⁴C]-acetate tracer. Further, ²H T₁ values show that deuteriums incorporated at methyl or methoxyl groups where internal rotation will be allowed in addiion to overall molecular tumbling are found to give larges T₁ values (86, 106 and 104 msec for 6'-CD₃, 2'-OCH₂D and 4, 6-OCH₂D, respectively) compared with 5' α -D and

No. 21 (1976)

(45 and 46 msec, respectively).

In contrast to the case of ¹³C nmr, nuclear Overhauser enhancement by protondecoupling is negligible for ²H nuclei where the quadrupole relaxation mechanism is dominant. Accordingly, integrated peak-intensities are proportional to the extent of deuterium-incorporation by biosynthesis. The relative ²H peak-intensities of la are : 44% (6'-CD₃), 23% (5' α -D) 3.3% (2'-OCH₂D), 6.3% (4, 6-OCH₂D) and 24%(3'-D and 5-D). The comparison of the peak-intensities between 6'-CD₃ and 5' α -D strongly suggests that 6' position might be CHD_2 instead of CD_3 . This would be easily proved if doubling of the ²H signal due to geminal ²H-¹H spin coupling were observed. Unfortunately, no such a fine structure was observed in the proton-coupled ²H spectrum recorded under the condition of turning-off proton-decoupler. It is expected that this situation arises when peak-splittings due to ²H-¹H spin-couplings, (the splitting of which being 1/6 of corresponding ${}^{1}H^{-1}H$ couplings) are buried within relatively broader line-width. Employing $1/T_1$ as a theoretical limit of a line-width free from various broadening factors such as magnetic inhomogeneity and unresolved ²H-¹H spin-couplings, it is predicted that no fine structure could be observed unless otherwise $\pi T_1 J_{DH} \gg 1$. Here J_{DH} stands for ²H spin coupling constant. In our present case, $\pi T_1 J_{DH} \sim 0.5$ is obtained from the values of $T_1 \sim 100$ mesc and $J_{DH} \sim 1.7$ Hz. This value predicts that proton-decoupling experiment will alter spectral pattern to some extent. In fact, the peak heights of 2'-OCH₂D and 4. 6-OCH₂D are found to be increased by amounts of 27% and 21%, respectively, when compared with those Therefore, the enhanced peak-height of 6'-methyl by of proton-coupled spectrum. amount of 17% suggests that the deuterium-incorporation at 6'-position is apparently like CHD₂. Further, it is of interest to note that 9.6% of deuterium is incorporated at unexpected methoxyl groups $(4, 6- \text{ and } 2'-\text{OCH}_2\text{D})$. Such an analysis could not readily be performed by other physical techniques.

In conclusion, it is proved that ²H nmr is very powerful nondestructive method to study biosynthetic pathways involving hydrogen.