慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	A reinterpretation of the Fisher－Friedman definition of complementarity
Sub Title	
Author	辻村，江太郎（Tsujimura，Kotaro） Tsuzuki，Sakiko
Publisher	Keio Economic Observatory（Sangyo Kenkyujo），Keio University
Publication year	1998
Jtitle	Keio Economic Observatory occasional paper．E No． 22 （1998．6）
JaLC DOI	
Abstract	The Fisher－Freidman definition classifies commodities as substitutable of complementary depending on the global shape of indifference maps．It thus requires the specification of the global mathematical properties of any model used to illustrate this definition．We utilized the simple model of a direct utility function of quadratic homogeneous form．As shown in Sections II－V，the substitution effect－－theAllen elasticity of substitution－is always non－negative with this specification．Therefore，by the Hicks－Allen－Shultz definition，this model applies only to competing commodities and not to complementary commodities，a conclusion that is independent of the number of commodities．
Notes	
Genre	Technical Report
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝AA10818580－00000022－0 001

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act

Occasional $\mathbf{P}_{\text {aper }}$

June, 1998

A Reinterpretation of the Fisher-Friedman Definition of Complementarity* by

Kotaro Tsujimura and Sakiko Tsuzuki

KEIO ECONOMIC OBSERVATORY (SANGYO KENKYUJO)

KEIO UNIVERSITY

Keio Economic Observatory Occasional Paper

The Occasional Papers of the Keio Economic Observatory (Economics section of Sangyo Kenkyujo at Keio University) present research which has been conducted by members of the observatory.

Papers are published nonperiodically. There are two series: One is written in Japanese (J. Series) and the other is written in English (E. Series). Some papers in KEO Occasional Paper Series may be reproduced again in revised form in the Keio Economic Observatory Review which is published periodically by Sangyo Kenkyujo.

Editors of KEO Occasional Paper: Kanji Yoshioka, Kazusuke Tsujimura and Hitoshi Hayami.

Publisher:
Sangyo Kenkyujo
Keio University
Mita 2-15-45, Minato-ku
Tokyo, 108-8345, Japan
Tel: 03-3453-4511 (ext.2323)
Fax: 03-3453-5640

Any person who wishes to obtain this paper or other back numbers of this series should contact the office of Sangyo Kenkyujo.

A Reinterpretation of the Fisher-Friedman Definition

of Complementarity*

Kotaro Tsujimura and Sakiko Tsuzuki
Jun. 1998

Contents
I. Introduction -- It's not the Satiation but the Proportion
II. Duality
III. Specified Definition of Complementarity
IV. Intuitive Elasitcity of Substitution
V. The Slutsky Equation
VI. The Degree of Complementarity
VII. Independent Commodity
VIII. Off-Budget Complementarity and Engel's Law
IX. Summary

Footnotes
References

I. Introduction--It's not the Satiation but the Proportion

Milton Friedman's definition of complementarity is best known through a quotation in Henry Schultz's seminal work, Theory and Measurement of Demand (1938).' Unfortunately, Schultz mistakenly classified Friedman's definition as a variation of that of Johnson-Allen, and Friedman's insightful approach has largely been lost to subsequent generations of scholars. Referring back to Friedman's original paper "The Fitting of Indifference Curves as a Method of Deriving Statistical Demand Functions" (Dec.,1933), ${ }^{2}$ it becomes apparent that Shultz's summary deletes the following three extremely important statements from Friedman's original definition.

Friedman I: " Fisher took, I think, the first step in the direction of a precise definition of completing and competing commodities when he clarified the meaning of absolutely completing and absolutely competing commodities. ...These definitions are entirely independent of the assumpton that utility is measurable.
There still remains the problem of defining the intermediate cases. I suggest that ..."3

In other words, rather than the Johnson-Allen approach, Friedman attempted to complete Irving Fisher's definition of complementarity by bridging the gap between the two poles of perfect complements and perfect subsitutes, creating a definition continuous across commodities.

Irving Fisher himself had his own conception of the intermediate cases. He wrote, in his Mathematical Investigations in the Theory of Value and Prices (1892) that
"If the articles are completing (fig 22), a change in price will not cause the tangent line to very greatly alter the proportion of the consumption of the articles \cdots; if substitutes (fig 20), a slight relative change in price will cause an enormous change in the proportion used. ${ }^{" 4}$

Fisher used a family of confocal ellipses to portray the indifference maps, if we may speak loosely, in the figures referred to above. The ellipses in the figure for competing commodities have a common major axis inclined downward to the right, while the ellipses for complementary commodities have a common major axis inclined upward to the right. However, it is extremely difficult to assign any economic meaning to the slope of the major axis, and it was to overcome this problem that Friedman most likely intro-
duced the concept of "satiation curves" in his 1933 paper. These "satiation curves", which crystallized Fisher's basic concepts, made economic sense and appeared to be a step forward. Unfortunately, Friedman also inherited from Fisher the concept of absolute satiation, with the common center of the elliptical indifference curves denoting the "point of total satiaton".

This unattractive concept of total satiation in fact has nothing to do with the essence of the Fisher-Friedman definition of complementarity. Total satiation is a concept extrinsic not intrinsic to their approach. In our view, it is not the concept of "satiation" but that of "the limit of proportion" is what is really relevant to the FF definition. Choosing a hyperbolic shape for the indifference curves rather than an elliptical shape eliminates the concept of satiation in one stroke but keeps the essence of the FF definition unchanged. With hyperbolically shaped indifference curves, the concept of satiation is replaced by that of the limit of proportion, allowing us to reconstruct the Fisher-Friedman definition. Assuming both prices and quantities are non-negative, Fisher's definition can be restated as follows. In the case of complementary commodities, while no limit of proportion exists between prices, there exist both lower and upper limits of proportion between quantities of commodities, i.e.
(I.1.1) $0 \leq p_{i} / p_{0} \leq \infty, 0<\left(q_{j} / q_{i}\right)_{\min } \leq q_{j} / q_{i} \leq\left(q_{j} / q_{i}\right)_{\max }<\infty ; i, j=1, \cdots, n, i \neq j$.

On the other hand, in the case of competing commodities, there exist both lower and upper limits of proportion between prices but no limit of proportion between quantities of commodities.
(I.1.2) $0<\left(p_{i} / p_{j}\right)_{\min } \leq p_{i} / p_{j} \leq\left(p_{i} / p_{j}\right)_{\max }<\infty, 0 \leq q_{j} / q_{i} \leq \infty$.

Further, following Friedman, we may introduce the relationship between the price ratio p_{i} / p_{j} and the quantity ratio q_{j} / q_{i} as follows: For complementary commodities, the lower and upper limits of proportion between quantities $\left(q_{j} / q_{i}\right)_{\min }$ and $\left(q_{j} / q_{i}\right)_{\max }$ correspond to the extreme situation of relative prices $\left(p_{i} / p_{j}\right) \rightarrow 0$ and $\left(p_{i} / p_{j}\right) \rightarrow \infty$ respectively. In short,
(I.2.1) $\lim _{\left(p_{i} /\left(p_{j}\right) \rightarrow 0\right.} \frac{q_{j}}{q_{i}}=\left(\frac{q_{j}}{q_{i}}\right)_{\text {vin }} ; \lim _{\left(p_{i} / p_{j}\right) \rightarrow \infty} \frac{q_{j}}{q_{i}}=\left(\frac{q_{j}}{q_{i}}\right)_{\max }$

For competing commodities, the lower and upper limits of proportion between prices $\left(p_{i} / p_{j}\right)_{\min }$ and $\left(p_{i} / p_{j}\right)_{\max }$ correspond to the extreme situation of quantity ratios $\left(q_{j} / q_{i}\right) \rightarrow 0$ and $\left(q_{j} / q_{i}\right) \rightarrow \infty$ respectively. That is,
(1.2.2) $\lim _{\left(q_{j} / q_{i}\right) \rightarrow 0} \frac{p_{i}}{p_{j}}=\left(\frac{p_{i}}{p_{j}}\right)_{\min }^{;} \lim _{\left(q_{j} / q_{i}\right) \rightarrow \infty} \frac{p_{i}}{p_{j}}=\left(\frac{p_{i}}{p_{j}}\right)_{\text {max }}$

Hence, there is a remarkable and appealing symmetry in the reversal of the roles of prices and quantities between the definitions of complementarity and substitutability.

Friedman himself was extremely clear about what the above definition implied about the cross price effects on demand between commodities. He concluded that

Friedman II: "If the other goods are closely related and the relationship is one of competition, a rise in the price of the other goods will result in the demand schedule for the given commodity being raised; but if the closely related goods are complementary a rise in the price of one of them will result in the demand schedule being lowered. ${ }^{5}$

Thus, the Fisher-Friedman definition has implied since its inception positive cross price effects between competing commodities and negative cross price effects between complementary commodities.

Friedman also had a very clear idea about separability, apparent from the third quote below.

Friedman III: "If the two commodities are truly independent of the other commodities, the same set of indifference curves will be obtained no matter at what level the quantities of the other commodities are fixed." ${ }^{\text {" }}$

Hence, Friedman indicates that the concept of either complementary commodities or competing commodities should be applied within separable commodity groups, with separability defined as the independence of marginal rates of substitution between commodities in a group and quantities of commodities outside the group.

Fig. 1 Indefference Maps: Visual Image of
the Fisher-Friedman Definition of complementarity Reinterpreted

Limits of Proportion between
Quantities of Complementary Commodities

II. Duality

Equations (1.2.1) of the previous section for complementary commodities assume a function of the type $\left(q_{j} / q_{i}\right)=f\left(p_{i} / p_{j}\right)$ where $\left(p_{i} / p_{j}\right)$ plays the role of independent variables and $\left(q_{j} / q_{i}\right)$ the role of dependent variables. Conversely, equations (I.2.2) for competing commodities imply a function $\left(p_{i} / p_{j}\right)=g\left(q_{j} / q_{i}\right)$ where $\left(q_{j} / q_{i}\right)$ are the independent variables and $\left(p_{i} / p_{f}\right)$ are the dependent variables. This reversal between prices and quantities as both dependent and independent variables immediatly suggests that the Fisher-Friedman definition of complementary and cometing commodities is very closely associated with the dual expression of the direct utility function $u(q)$ and the indirect utility function $v(p) .{ }^{7}$

Assume for a separable group of n commodities a direct utility function of quadratic homogeneous form.
(II.1) $u=\sum_{i} \sum_{j} u_{i j} q_{i} q_{j} ; i, j=1, \cdots, n, u_{i j}=u_{j}$.

Then, the direct marginal utility is
(II.2) $\frac{\partial u}{\partial q_{i}}=2 \sum_{j} u_{i j} q_{j}$.

Here, we define the direct prime form of the relative marginal utility (PFORMU) ${ }^{8}$ as
(II. 3) $u_{i}=\frac{1}{2} \frac{\partial u_{1}}{\partial q_{i}}=\sum_{j} u_{i j} q_{i}$
and using this notation we have, by Euler's theorem for homogeneous functions,
(II. 1) $u=\sum_{i} u_{i} q_{i}$.

The direct marginal rate of substitution is
(II. 4) $\frac{u_{i}}{u_{j}}=\frac{\sum_{k} u_{i k} q_{k}}{\sum_{k} u_{j k} q_{k}}$.
and we have the direct equilibrium equation
(II.5) $\frac{p_{i}}{p_{j}}=\frac{u_{i}}{u_{j}}=\frac{\sum_{k} u_{i k} q_{k}}{\sum_{k} u_{j k} q_{k}}$.

From $u_{i}=p_{1} \lambda$ and the budget equation $\sum_{i} p_{1} q_{1}=m$ we deduce
(II.6) $\left[\begin{array}{cccc}u_{11} & \cdots & u_{1 n} & -p_{1} \\ \vdots & \cdots & \vdots & \vdots \\ u_{n 1} & \cdots & u_{n n} & -p_{n} \\ p_{1} & \cdots & p_{n} & 0\end{array}\right]\left[\begin{array}{c}q_{1} \\ \vdots \\ q_{n} \\ \lambda\end{array}\right]=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ m\end{array}\right]$
and define the direct determinant of consumer demand D as,
(II.7) $D=\left|\begin{array}{cccc}u_{11} & \cdots & u_{1 n} & -p_{1} \\ \vdots & \cdots & \vdots & \vdots \\ u_{n 1} & \cdots & u_{n n} & -p_{n} \\ p_{1} & \cdots & p_{n} & 0\end{array}\right|, U=\left|\begin{array}{ccc}u_{11} & \cdots & u_{1 n} \\ \vdots & \cdots & \vdots \\ u_{n 1} & \cdots & u_{n n}\end{array}\right|$.

Writing the cofactor of the $(n+1, j)$ element of D as $D_{n+1, j}$, and the cofactor of $u_{i j}$ in U
as $u_{i j}^{*}$, we have
(II.8) $D_{n+1 . j}=\sum_{k} u_{j k}^{*} p_{k}, D_{n+1, n+1}=U$, and $D=\sum_{j} p_{j} D_{n+1 . j}$.

The direct demand equations are
(II.9) $q_{j}=\frac{D_{n+1, j}}{D} m, \lambda=\frac{U}{D} m$.

It must be noted, here, that D is a quadratic homogeneous form of p_{i}
(II.10) $D=\sum_{j} p_{j} D_{n+1 . j}=\sum_{j} \sum_{k} u_{j k}^{*} p_{j} p_{k}$.

Inserting equations (II.8) and (II.9) into the direct utility function (II.1), we derive the indirect utility function
(II.1 $\left.1^{*}\right) u(q)=v(p)=U m^{2} / D$.

If we assume the income \boldsymbol{m} to be a constant, the indirect utility function $v(p)$ is homogeneous of degree (-2) with respect to prices p_{i}, in contrast to the second degree homogeneity of the direct utility function $u(q)$ with respect to q_{i}. From (II. 1^{*}) the indirect marginal utility can be expressed as
(II.2*) $\frac{\partial v}{\partial p_{i}}=\left(\frac{-U m^{2}}{D^{2}}\right) \frac{\partial D}{\partial p_{i}}, \frac{\partial}{\partial p_{j}}=\left(\frac{-U m^{2}}{D^{2}}\right) \frac{\partial)}{\partial p_{j}}$.

Canceling the common factor $\left(-U m^{2} / D^{2}\right)$, we obtain the indirect PFORMU
(II.3*) $v_{j}=\frac{1}{2} \frac{\partial D}{\hat{p}_{j}}=D_{n+1 . j}=\sum_{k} u_{j k}^{*} p_{k}$.

The indirect marginal rate of substitution is
(II.4*) $\frac{\partial}{\partial_{i}} / \frac{\partial}{\partial_{j}}=v_{i} / v_{t}=\sum_{k} u_{i k}^{*} p_{k} / \sum_{k} u_{j k}^{*} p_{k}$.

The indirect utility function (II. 1^{*}) also implies that
(II.11) $\frac{\partial}{\partial n}=2 \frac{U}{D} m=2 \lambda$.

We also have as Roy's identity
(II.12) $q_{t}=-\frac{\partial}{\partial p_{t}} / \frac{\partial}{\partial n}$.

Inserting (II.2 $\mathbf{2}^{*}$, (II. 3^{*}) and (II.11) into equation (II.12) we obtain
(II.13) $q_{t}=\frac{D_{n+1, t}}{D} m$
which is coincident with the direct demand function (II.9). Hence, we have the indirect equilibrium equation
(II.5*) $\frac{q_{j}}{q_{i}}=\frac{D_{n+1, j}}{D_{n+1, i}}=\frac{\sum_{k} u_{j k}^{*} p_{k}}{\sum_{k} u_{i k}^{*} p_{k}}=\frac{v_{j}}{v_{i}}$
which is the counterpart of equation (II.5) of the direct model. From $v_{i} / q_{i}=\lambda^{*}$, $v_{i}-q_{i} \lambda^{*}=o$ and $\sum_{i} p_{i} q_{i}=m$ the indirect model of consumer demand is written as
(II. 6^{*}) $\left[\begin{array}{cccc}u_{11}^{*} & \cdots & u_{1 n}^{*} & -q_{1} \\ \vdots & \cdots & \vdots & \vdots \\ u_{n 1}^{*} & \cdots & u_{m n}^{*} & -q_{n} \\ q_{1} & \cdots & q_{n} & 0\end{array}\right]\left[\begin{array}{c}p_{1} \\ \vdots \\ p_{n} \\ \lambda^{*}\end{array}\right]=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ m\end{array}\right]$,
and the indirect determinant of consumer demand becomes
(II.7*) $D^{*}=\left|\begin{array}{cccc}u_{11}^{*} & \cdots & u_{1,}^{*} & -q_{1} \\ \vdots & \cdots & \vdots & \vdots \\ u_{n 1}^{*} & \cdots & u_{m n}^{*} & -q_{n} \\ q_{1} & \cdots & q_{n} & 0\end{array}\right|, \quad U^{*}=\left|\begin{array}{ccc}u_{11}^{*} & \cdots & u_{1 n}^{*} \\ \vdots & \cdots & \vdots \\ u_{n 1}^{*} & \cdots & u_{m n}^{*}\end{array}\right|$

Writing the cofactor of the $(n+1, j)$ element of D^{*} as $D_{n+1, j}^{*}$, and the cofactor of $u_{i j}^{*}$ in U^{*} as $u_{i j}^{*}$, we have
$\left(\mathrm{II} .8^{*}\right) D_{n+1, j}^{*}=\sum_{k} u_{j k}^{*} q_{k}, D_{n+1, n+1}^{*}=U^{*}$ and $I^{*}=\sum_{j} q_{j} D_{n+1, j}^{*}=\sum_{j} \sum_{k} u_{j k}^{*} q_{j} q_{k}$.

Hence, the indirect demand equations are
(II.9) $p_{j}=\frac{D_{n+1, j}^{*}}{D^{*}} \cdot m$ and $\lambda^{*}=\frac{U^{*}}{D^{*}} m$.

Equation (II. 8^{*}) and (II. 9^{*}) include cofactors $u_{i j}^{* *}$ of elements $u_{i j}^{*}$ of the adjugate determinant U^{*} of U. Now, making use of Cauchy's theorem ${ }^{9}$ on the value of the adjugate determinant that
(II.14) adj $U=U^{*}=U^{n-1}=U U^{n-2}$
and the definition that
(II.15) $U=\sum_{j=1}^{m} u_{i j} u_{i j}^{*}$ and $U^{*}=\sum_{j=1}^{n} u_{i j}^{*} u_{i j}^{*}$,
we obtain $U^{*}=\sum_{j=1}^{n} u_{i j}^{*} u_{i j}^{* *}=U U^{n-2}=U^{n-2} \sum_{j=1}^{n} u_{i j} u_{i j}^{*}$ which can be rewritten as
(II.16) $\sum_{j=1}^{n} u_{i j}^{*}\left(u_{i j}^{* *}-U^{n-2} u_{i j}^{*}\right)=0$.

In order for equation (II.16) to hold at any arbitrary value of $u_{i j}^{*}$ but zero we must have
(II.17) $u_{i j}^{\bullet}=u_{i j} U^{n-2}$,
as a corollary to the Cauchy's theorem above. Inserting (II,17) into equation (II. 8^{*}) we obtain
(II. 8^{*}.1) $D_{n+1, j}^{*}=\sum_{k} u_{j k}^{*} q_{k}=U^{n-2} \sum_{k} u_{j k} q_{k}$ and
(II. 8^{*}.2) $D^{*}=\sum_{j} \sum_{k} u_{j k} q_{j} q_{k}=U^{n-2} \sum_{j} \sum_{k} u_{j k} q_{j} q_{k}$.

Inserting (II. $8^{*} .1$) and (II. $8^{*} .2$) into equation (II. 9^{*}) gives
(11.9..1) $p_{j}=\frac{D_{n+1, j}^{*}}{D^{*}} m=\frac{\sum_{k} u_{j k} q_{k}}{\sum_{j} \sum_{k} u_{j k} q_{j} q_{k}} m$ and
(II. 9*.2) $\lambda^{*}=\frac{U^{*}}{D^{*}} m=\frac{\sum_{k} u_{j k} u_{j k}^{*}}{\sum_{j} \sum_{k} u_{j k} q_{j} q_{k}} m$
where, by equation (II.1), the denominator coincides with the direct utility function $u(q)$. By equations (II.3) and (II.7) the numerator of (II.9**) coincides with the direct PFORMU u_{j}, and the numerator of (II. $9^{*} .2$) coincides with U of equation (II.7). Thus we can rewrite the indirect demand functions (II. $9^{*} .1$) and (II. $9^{*} .2$) as
(II.9*)' $p_{j}=\frac{u_{j}}{u} m, \lambda^{*}=\frac{U}{u} m$.

Comparing the direct demand functions (II.9) with the indirect demand functions (II. 9^{*}) we observe that the parameters $u_{j k}^{*}$ and variables p_{j} of the former correspond to the parameters $u_{j k}$ and variables q_{j} of the latter. Thus, they constitute strictly symmetrical factor-reversal forms.

III. Specified Definition of Complementarity

In the case of the two-commodity model the direct equilibrium equation (II.5) of the previous section becomes,
(III.1) $\frac{p_{1}}{p_{2}}=\frac{u_{11} q_{1}+u_{12} q_{2}}{u_{21} q_{1}+u_{22} q_{2}}$

If we apply the FF definition of competing commodities of the form of (1.2.2) of Section I to this equation, we get on the q_{1}-axis where $q_{2}=0, q_{1}>0$,
(III.2.1) $\left(p_{1} / p_{2}\right)_{\min }=\lim _{q_{2} \rightarrow 0} \frac{u_{1} q_{1}+u_{12} q_{2}}{u_{21} q_{1}+u_{22} q_{2}}=u_{11} / u_{21}$,
and on the q_{2}-axis where $q_{1}=0, q_{2}>0$ we have
(III.2.2) $\left(p_{1} / p_{2}\right)_{\max }=\lim _{q_{1} \rightarrow 0} \frac{u_{11} q_{1}+u_{12} q_{2}}{u_{21} q_{1}+u_{22} q_{2}}=u_{12} / u_{22}$.

Since the price ratio must always be non-negative, $\operatorname{sgn} u_{t i}=\operatorname{sgn} u_{i j}$ holds in general. Further, since the marginal utility must be non-negative, the sign of both $u_{i j}$ and $u_{i l}$ must be positive.

Conditions (III.2.1) and (III.2.2) imply
(III.3.1) $u_{11} / u_{21} \leq u_{12} / u_{22}$ i.e. $u_{11} u_{22} \leq u_{12}^{2}$ and
(III.3.2) $u_{11} / u_{21} \leq p_{1} / p_{2} \leq u_{12} / u_{22}$
in other words $0 \leq u_{21} p_{1}-u_{11} p_{2}, 0 \leq u_{12} p_{2}-u_{22} p_{1}$.

For three competing commodities we have three direct equilibrium equations corresponding to $p_{1} / p_{2}, p_{1} / p_{3}$ and p_{2} / p_{3}. Let us take the first one for example,
(III.4.1) $\frac{p_{1}}{p_{2}}=\frac{u_{11} q_{1}+u_{12} q_{2}+u_{13} q_{3}}{u_{21} q_{1}+u_{22} q_{2}+u_{23} q_{3}}$.

On the q_{1}-axis where $q_{1}>0, q_{2}=q_{3}=0$, we obtain from (III.4.1),
(III.5.1) $\left(p_{1} / p_{2}\right)_{\min }=u_{11} / u_{21}$.

On the q_{2}-axis where $q_{2}>0, q_{1}=q_{3}=0$, we obtain from (III.4.1),
(III.5.2) $\left(p_{1} / p_{2}\right)_{\max }=u_{12} / u_{22}$.

On the q_{3}-axis where $q_{3}>0, q_{1}=q_{2}=0$, we obtain
(III.5.3) $\left(p_{1} / p_{2}\right)_{m e d}=u_{13} / u_{23}$.

Inserting these results into
(III.6) $\left(p_{1} / p_{2}\right)_{\text {min }} \leq\left(p_{1} / p_{2}\right)_{\text {med }} \leq\left(p_{1} / p_{2}\right)_{\text {max }}$,
we obtain the inequalities,
(III.7) $u_{11} / u_{21} \leq u_{13} / u_{23} \leq u_{12} / u_{22}$.

These inequalities can be generalized to the case of $n(\geq 2)$ competing commodities, and we obtain the following definition of competing commodities:
(III.8) $u_{i j} u_{i j} \leq u_{i j} u_{i j} \leq u_{i j}^{2} ; i, j,=1, \cdots, n, i \neq j$,
in general. Perfectly competing commodities are defined as
(III.9) $\left(p_{i} / p_{j}\right)_{\min }=\left(p_{i} / p_{j}\right)_{\max }$
which implies that
(III.10) $u_{i i} u_{i j}=u_{i i} u_{j k}=u_{i j} u_{j k}=u_{i j}^{2} ; i, j, k=1, \cdots, n, i \neq j, i \neq k, j \neq k$.

This suggests that the opposite extreme of the weakest case of competing commodities may be defined as
(III.11) $u_{i j}=u_{i j} \rightarrow 0,0<u_{i j}^{2}$.

In the case of two complementary commodities the indirect equilibrium equation (II. 5^{*}) of the previous section is written as
(III.1) $\frac{q_{2}}{q_{1}}=\frac{u_{21}^{*} p_{1}+u_{u_{2}^{*}}^{*} p_{2}}{u_{11}^{*} p_{1}+u_{12}^{*} p_{2}}$

Applying the definition of complementarity in Section I to the above equation, we obtain for the case of $p_{1}=0$ and $p_{2}>0$
(III.2.1*) $\left(q_{2} / q_{1}\right)_{\text {min }}=\lim _{p_{1} \rightarrow 0} \frac{u_{21}^{*} p_{1}+u_{22}^{*} p_{2}}{u_{11}^{*} p_{1}+u_{12}^{*} p_{2}}=u_{22}^{*} / u_{12}^{*}$,
and for the case of $p_{1}>0$ and $p_{2}=0$
(III.2.2 $)\left(q_{2} / q_{1}\right)_{\max }=\lim _{p_{2} \rightarrow 0} \frac{u_{21}^{*} p_{1}+u_{22}^{*} p_{2}}{u_{1}^{*} p_{1}+u_{12}^{*} p_{2}}=u_{21}^{*} / u_{11}^{*}$.

Thus we obtain the inequalities
(III.3.1*) $u_{22}^{*} / u_{12}^{*} \leq u_{21}^{*} / u_{11}^{*}$ i.e. $u_{11}^{*} u_{22}^{*} \leq u_{12}^{*}$,
(III.3.2 2^{*}) $u_{22}^{*} / u_{12}^{*} \leq q_{2} / q_{1} \leq u_{21}^{*} / u_{11}^{*}$.

For three complementary commodities we have three indirect equilibrium equations corresponding to $q_{2} / q_{1}, q_{3} / q_{1}$ and q_{3} / q_{2}. Taking for example the first equation
(III.4.1*) $\frac{q_{2}}{q_{1}}=\frac{u_{21}^{*} p_{1}+u_{2}^{*} p_{2}+u_{23}^{*} p_{3}}{u_{11}^{*} p_{1}+u_{12}^{*} p_{2}+u_{13}^{*} p_{3}}$,
we obtain for the case of $p_{1}=0, p_{2}>0, p_{3}=0$
(III. 5.1 $\left.1^{*}\right)\left(q_{2} / q_{1}\right)_{\min }=u_{22}^{*} / u_{12}^{*}$.

For the case of $p_{1}>0, p_{2}=0, p_{3}=0$ we obtain
(III.5.2*) $\left(q_{2} / q_{1}\right)_{\max }=u_{21}^{*} / u_{11}^{*}$,
and for the case of $p_{1}=p_{2}=0, p_{3}>0$
(III.5.3*) $\left(q_{2} / q_{1}\right)_{\text {med }}=u_{23}^{*} / u_{13}^{*}$.

Inserting these results into
(III.6) $\left(q_{2} / q_{1}\right)_{\min } \leq\left(q_{2} / q_{1}\right)_{\text {med }} \leq\left(q_{2} / q_{1}\right)_{\max }$,
we obtain the inequalities,
(III.7*) $u_{22}^{*} / u_{12}^{*} \leq u_{23}^{*} / u_{13}^{*} \leq u_{21}^{*} / u_{11}^{*}$

Quite analogous to the case of competing commodities, in this case of complementary commodities the inequalities (III. 7^{*}) can be generalized for a group of $n(\geq 2)$ commodities, providing the following definition of complementarity.
(III. $\left.8^{*}\right) u_{i j}^{*} u_{j j}^{*} \leq u_{i j}^{*} u_{i k}^{*} \leq u_{i j}^{*} u_{j k}^{*} \leq u_{i j}^{*^{2}}, i, j, k=1, \cdots, n ; i \neq j, i \neq k, j \neq k$.

Perfectly complementary commodities are defined as
(III.9*) $\left(q_{j} / q_{i}\right)_{\min }=\left(q_{j} / q_{i}\right)_{\max }$
which implies that in this case
(III. $\left.10^{*}\right) u_{i j}^{*} u_{j j}^{*}=u_{i j}^{*^{2}}$.

This suggests that the opposite extreme of the weakest case of complementary commodities to be defined as
(III.11") $u_{i j}^{*} u_{i j}^{*} \rightarrow 0,0<u_{i j}^{*^{2}}$.

IV. Intuitive Elasticity of Substitution

We have the direct equilibrium equation (II.5) in Section II
(IV.1) $\frac{p_{i}}{p_{j}}=\frac{u_{i}}{u_{j}}=\frac{\sum_{h} u_{i h} q_{h}}{\sum_{h}^{h} u_{j h} q_{h}}, h=1, \cdots, n$.

Dividing both the numerator and the denominator of above equation by q_{i}, we obtain
(IV.2) $\frac{p_{i}}{p_{j}}=\frac{u_{i}}{u_{j}}=\frac{u_{i} / q_{i}}{u_{j} / q_{i}}=\frac{u_{i j}\left(q_{j} / q_{i}\right)+\sum_{k \neq j} u_{i k}\left(q_{k} / q_{i}\right)}{u_{j i}\left(q_{j} / q_{i}\right)+\sum_{k \neq j} u_{j k}\left(q_{k} / q_{i}\right)}$

Thus
(IV.3) $\frac{d\left(u_{i} / q_{i}\right)}{\left.\partial q_{j} / q_{i}\right)}=u_{i i}, \frac{\partial\left(u_{j} / q_{i}\right)}{d\left(q_{j} / q_{i}\right)}=u_{i j}$.

From (IV.1) and (IV.2), we deduce that
(IV.4) $\frac{\partial\left(p_{i} / p_{j}\right)}{d\left(q_{j} / q_{i}\right)}=\frac{\delta\left(\frac{u_{i}}{q_{i}} / \frac{u_{j}}{q_{i}}\right)}{d\left(q_{i} / q_{i}\right)}=\frac{q_{i}}{u_{j}^{2}}\left\{u_{j} u_{i j}-u_{i} u_{j j}\right\}$.

With a little manipulation the above equation for the indirect intuitive elasticity of substitution between competing commodities becomes
(IV.5) $\frac{d\left(p_{i} / p_{j}\right)\left(q_{j} / q_{i}\right)}{d\left(q_{j} / q_{i}\right)\left(p_{i} / p_{j}\right)}=\frac{\left(u_{i j} u_{j}-u_{i j} u_{i}\right) q_{j}}{u_{i} u_{j}}$.

The reciprocal of this indirect intuitive elasticity of substitution provides the ordinary form of the direct intuitive elasticity of substitution σ between competing commodities
(IV.6) $\sigma_{i j}=\frac{\left.d q_{j} / q_{i}\right)\left(p_{i} / p_{j}\right)}{d\left(p_{i} / p_{j}\right)\left(q_{j} / q_{i}\right)}=\frac{u_{i} u_{j}}{\left(u_{i j} u_{j}-u_{i j} u_{i}\right) q_{j}}$

Now, we rewrite PFORMU (II.3) as
(IV.7) $u_{i}=u_{i j} q_{j}+\sum_{k \neq j} u_{i k} q_{k}, u_{j}=u_{j j} q_{j}+\sum_{k \neq j} u_{j k} q_{k}$,
and inserting this into (IV.6) we obtain
(IV.8) $\sigma_{i j}=\frac{\left(u_{i j} \sum_{k \neq j} u_{i k} q_{k}+u_{i j} \sum_{k \neq j} u_{i k} q_{k}\right) q_{j}+\left(\sum_{k \neq j} u_{i k} q_{k}\right)\left(\sum_{k \neq j} u_{j k} q_{k}\right)+u_{i j} u_{j i} q_{j}^{2}}{\left(u_{i j} \sum_{k \neq j} u_{j k} q_{k}-u_{i j} \sum_{k \neq j} u_{i k} q_{k}\right) q_{j}}$

Comparing each first term only we find that the numerator is always larger than the denominator. Furthermore, as we saw in Section III, the Fisher-Friedman definition of cmpeting commodities requires that the inequalities (III.8) $u_{u 1} u_{i j} \leq u_{u 1} u_{i j} \leq u_{i j}^{2}$ must always hold. This implies that the denominator of (IV.8) is positive. Therefore, the intuitive elasticity of substitution between competing commodities σ (equation (IV.8)) is always positive and larger than unity.

In the case of perfectly competing commodities, we saw in Section III that the condition of (III.10) $u_{i i} u_{i j}=u_{i i} u_{i j}=u_{i j}^{2}$ is imposed. Since the denominator of equation (IV.8) becomes zero, the intuitive elasticity of substitution $\sigma_{i j}$ must be infinite
(IV.9) $\sigma_{i j}=\infty$
no matter how many are the number of commodities. Conversely, in the weakest case of competing commodities, the magnitude of the intuitive elasticity of substitution is not independent of the number of commodities n. Inserting the condition (IIL.11) $u_{i i}=u_{j i} \rightarrow 0$ of Section III into equation (IV.8), we obtain

$$
\begin{equation*}
\sigma_{i j}=\left(u_{i j} q_{j}+\sum_{k * i . j} u_{i k} q_{k}\right) / u_{i j} q_{j} \tag{IV.10}
\end{equation*}
$$

Thus, when $n=2$ we have $\sigma=u_{12}^{2} q_{1} q_{2} / u_{12}^{2} q_{1} q_{2}=1$. When $n=3$, $\sigma=\left(u_{12} q_{2}+u_{13} q_{3}\right) / u_{12} q_{2}$ and in the simplest case of $u_{12}=u_{13}, q_{2}=q_{3}$, we have $\sigma=2$. When $n=4, \sigma=\left(u_{12} q_{2}+u_{13} q_{3}+u_{14} q_{4}\right) / u_{12} q_{2}$, and in the simplest case of $u_{12}=u_{13}=u_{14}$ and $q_{2}=q_{3}=q_{4}$, we have $\sigma=3$; etc. . These examples suggest that the intuitive elasticity of substitution σ tends to have values positively correlated with the number of commodities n in the weakest cases of competing goods and in simplest for n becomes
(IV.11) $\sigma=n-1$.

Hence for a given number of commodities n, the probable range of the magnitude of
the intuitive elasticity of substitution is
(IV.12) $n-1 \leq \sigma \leq \infty$.

Thus, the lower bound for the value of σ for competing commodities is not constant at $\sigma=1$ but rises as the number of commodities increases.

More generally, assuming a certain single value of $\beta \equiv u_{i} / u_{i j}, 0 \leq \beta \leq 1$, throughout every possible combinations of competitive commodities in a separable group, we have
(IV.13) $\sigma=\frac{n}{1-\beta}-1$,
at the initial state of $q_{1}=\cdots=q_{n}$. This suggests that, generally speaking, the elasticity of substitution between competitive commodities σ tends to increase with the number of commodities n as well as with the degree of competitiveness β.

For complementary commodities, we have the indirect equilibrium equation in Section II,
(II.5*) $\frac{q_{j}}{q_{i}}=\frac{v_{j}}{v_{i}}=\frac{\sum_{h} u_{j h}^{*} p_{h}}{\sum_{h} u_{i h}^{*} p_{l}^{*}}, h=1, \cdots, n$.

Dividing both the numerator and the denominator of this equation by p_{j}, we obtain
(IV.1 $\left.1^{*}\right) \frac{q_{j}}{q_{i}}=\frac{v_{j}}{v_{i}}=\frac{v_{j} / p_{j}}{v_{i} / p_{j}}=\frac{u_{j i}^{*}\left(p_{i} / p_{j}\right)+\sum_{k=i} u_{j k}^{*}\left(p_{k} / p_{j}\right)}{u_{i i}^{*}\left(p_{i} / p_{j}\right)+\sum_{k=i} u_{i k}^{*}\left(p_{k} / p_{j}\right)}$.

Differentiating this gives
(IV.2*) $\frac{d\left(v_{j} / p_{j}\right)}{d\left(p_{i} / p_{j}\right)}=u_{j i}^{*}, \frac{\left.d v_{i} / p_{j}\right)}{\left.d p_{i} / p_{j}\right)}=u_{i i}^{*}$.

From (IV.1") and (IV.2*), we deduce that
(IV.3*) $\frac{d\left(q_{j} / q_{i}\right)}{d\left(p_{i} / p_{j}\right)}=\frac{\left.\dot{\left(\frac{v_{j}}{p_{j}} / \frac{v_{i}}{p_{j}}\right.}\right)}{d\left(p_{i} / p_{j}\right)}=\frac{p_{j}}{v_{i}^{2}}\left\{v_{i} u_{j i}^{*}-v_{j} u_{i t}^{*}\right\}$.

Next, we define the intuitive elasticity of substitution for complementary commodities as
(IV.5*) $\sigma_{i j}^{*}=\frac{d\left(q_{j} / q_{i}\right)}{d\left(p_{i} / p_{j}\right)} \cdot \frac{\left(p_{i} / p_{j}\right)}{\left(q_{j} / q_{i}\right)}=\frac{d\left(q_{j} / q_{i}\right)}{d\left(p_{i} / p_{j}\right)} \cdot \frac{\left(p_{i} / p_{j}\right)}{\left(v_{j} / v_{i}\right)}$.

Inserting (IV. 3^{*}) into (IV. 5^{*}), we obtain
(IV.6") $\sigma_{i j}^{*}=\frac{\left(v_{i} u_{i j}^{*}-v_{j} u_{i j}^{*}\right) p_{i}}{v_{i} v_{j}}$.

Now, we rewrite the PFORMU (II. 3^{*}) as
(IV. $\left.7^{*}\right) v_{i}=u_{i l}^{*} p_{i}+\sum_{k=i} u_{i k}^{*} p_{k}, v_{j}=u_{j i}^{*} p_{i}+\sum_{k \neq i} u_{j k}^{*} p_{k}$.

Inserting (IV.7*) into (IV.6*) we obtain
(IV.8*) $\sigma_{i j}^{*}=\frac{\left(u_{j i}^{*} \sum_{k \neq i} u_{i k}^{*} p_{k}-u_{i i}^{*} \sum_{k \neq i} u_{j k}^{*} p_{k}\right) p_{i}}{\left(u_{i j}^{*} \sum_{k \neq i} u_{i k}^{*} p_{k}+u_{i i}^{*} \sum_{k=1} u_{j k}^{*} p_{k}\right) p_{i}+\left(\sum_{k=1} u_{j k}^{*} p_{k}\right)\left(\sum_{k=1} u_{i k}^{*} p_{k}\right)+u_{j i}^{*} u_{i k}^{*} p_{i}^{2}}$.

Comparing each first term of the numerator and of the denominator we immediately note that the former is always smaller than the latter. At the same time, our restatement of the Fisher-Friedman definition of complementary commodities in Section III gives the inequalities
(III. 8^{*}) $u_{i i}^{*} u_{i j}^{*} \leq u_{i j}^{*} u_{i j}^{*} \leq u_{i j}^{*^{2}}$ for $i, j=1, \cdots, n . \quad i \neq j$
which must always hold. Hence the numerator of equation (IV. 8^{*}) is non-negative. Thus, the intuitive elasticity of substitution for complementary commodities $\sigma_{i j}^{*}$ is al-
ways less than unity and non-negative.

If the commodities are perfectly complementary, the numerator of (IV. 8^{*}) must be zero, because of the condition (III.10*) $u_{i i}^{*} u_{j j}^{*}=u_{i j}^{*} u_{i j}^{*}=u_{i j}^{*^{2}}, i, j=1, \cdots, n ; i \neq j$. That is, we have
(IV.9*) $\sigma_{i j}^{*}=0$
for perfectly complementary commodities, irrespective of the number of commodities. However, in the weakest case of complementarity, the magnitude of σ is correlated with the number of commodities n. Inserting the definition of weakest complementarity ((III.11)) $u_{i i}^{*} \rightarrow 0,0<u_{i j}^{2^{2}}, i, j=1, \cdots, n ; i \neq j$) into equation (IV. 8^{*}) we obtain
(IV.10*) $\sigma_{i j}^{*}=u_{j i}^{*} /\left(u_{j i}^{*} p_{i}+\sum_{k+1 . j} u_{j k}^{*} p_{k}\right)$.

Therefore, we have, when $n=2, \quad \sigma^{*}=u_{21}^{*} p_{1} / u_{21}^{*} p_{1}=1$. When $n=3$, $\sigma^{*}=u_{21}^{*} p_{1} /\left(u_{21}^{*} p_{1}+u_{23}^{*} p_{3}\right)$, and in the simplest case of $u_{21}^{*} p_{1}=u_{23}^{*} p_{3}$ we have $\sigma^{*}=1 / 2$. When $n=4, \quad \sigma^{*}=u_{21}^{*} p_{1} /\left(u_{21}^{*} p_{1}+u_{23}^{*} p_{3}+u_{24}^{*} p_{4}\right)$ and in the simplest case of $\dot{u_{21}} p_{1}=\dot{u_{23}} p_{3}=\dot{u_{24}} p_{4}$ we have $\sigma^{*}=1 / 3$; etc. . Hence the intuitive elasticity of substitution σ^{*} for commodities at the weakest level of complementarity is inversely correlated with the number of commodities n. The simplest case would be represented as
(IV.11*) $\sigma=\frac{1}{n-1}$

For a given number of commodities n the probable range of the magnitude of the intuitive elasticity of substitution between complementary commodities would be
(IV.12*) $0 \leq \sigma^{*} \leq 1 /(n-1)$.

In this manner, the upper bound of σ^{*} at the weakest level of complementarity is not fixed at the level of $\sigma^{*}=1$ but falls toward zero as the number of commodities increases.

In the same fashion as in the case of competitive commodities above, for n complemen-
tary commodities, with $0 \leq \beta \equiv u_{i i}^{*} / u_{i j}^{*} \leq 1$, at the initial state of $p_{1}=\cdots=p_{n}$, we obtain a more general form,
(IV.13*) $\sigma^{*}=\frac{1-\beta}{n+\beta-1}$.

This implies that σ^{*} is a decreasing function not only of the number of complementary commodities n but of the degree of complementarity σ^{*}.

V. The Slutsky Equation

To derive the Slutsky equation for complementary commodities we make use of the direct demand equation (II.9) of Section II
(II.9) $q_{j}=\frac{D_{n+1, j}}{D}-m$.

Differentiating and manipulating the above, we obtain
(V.1) $\frac{\partial_{q_{j}}}{\partial n}=\frac{D_{n+1, j}}{D}$ and $\frac{q_{j}}{m}=\frac{D_{n+1, j}}{D}$.
which give the income elasticity of demand
(V.2) $\frac{\partial q_{j}}{\partial n} / \frac{q_{j}}{m}=1$,
as a natural consequence of the homothetic preference field. On the other hand, we derive the (direct) Slutsky equation in the usual fashion, using (II.8), (II.9) etc. to obtain

$$
\begin{equation*}
\frac{\partial q_{j}}{\partial_{i}}=\frac{m \cdot D_{m+1, i} D_{n+1, j}}{D^{2}}\left\{\frac{u_{j i} D-D_{n+1, j} D_{n+1, j}}{D_{n+1, i} D_{n+1, j}}-1\right\}=\frac{q_{1} q_{j}}{m}\left\{\sigma_{A}^{*}-\text { income elasticity }\right\} \tag{V.3}
\end{equation*}
$$

where σ_{A}^{*} stands for the (direct) Allen-Uzawa partial elasticity of substitution ${ }^{10}$ between complementary commodities. That is
(V.4) $\sigma_{A}^{*}=\frac{u_{j, i}^{*} D-D_{n+1,1} D_{n+1 . j}}{D_{n+1, i} D_{n+1, j}}$,
where the denominator is the same as that of the intuitive elasticity of substitution between complementary commodities σ^{*} (IV. 8^{*}) obtained in the previous section. Inserting (II.8) into (V.4) we rewrite the numerator of σ_{A}^{*} as

$$
\begin{gather*}
u_{j i}^{*} D-D_{n+1, i} D_{n+1, j}=\{I\}+\{I I\}+\{I I I\}+\{I V\} ; \\
\{I\}=p_{i}\left\{\left(u_{i i}^{*} \sum_{k \neq i} u_{i k}^{*}-u_{i i}^{*} \sum_{k * i} u_{j k}^{*}\right) p_{k}\right\}>0, \\
\{I I\}=p_{j}\left\{\sum_{k \neq i . j}\left(u_{i j}^{*} u_{j k}^{*}-u_{i j}^{*} u_{i k}^{*}\right) p_{k}\right\}>0, \tag{V.5}\\
\{I I I\}=\left\{\sum_{k \neq i . j}\left(u_{i j}^{*} u_{k k}^{*}-u_{i k}^{*} u_{j k}^{*}\right) p_{k}^{2}\right\}<0, \\
\{I V\}=\left\{\sum_{g, h * i, j ; g * h}\left(u_{i j}^{*} u_{k k^{*}}^{*}-u_{i g}^{*} u_{j h}^{*}\right) p_{g} p_{h h}\right\} 0 .
\end{gather*}
$$

The Fisher-Friedman definition of complementarity specified in Section III requires that the following inequalities hold
(III.8) $u_{i i} u_{j j} \leq u_{i i} u_{i j} \leq u_{i j}^{2}, i, j=1, \cdots, n, i \neq j$.

Therefore, $\{I\}$ must be strongly positive compared to the other brackets. $\{I I\}$ must be positive on the one hand and $\{I I I\}$ must be negative but the absolute value of these terms is of the same order of magnitude. $\{I V\}$ may be either positive or negative. However, even if the summation of $\{I I\},\{I I I\}$ and $\{I V\}$ is negative, it is extremly unlike to offset the positive value of $\{I\}$. we may safely conclude that the numerator of $\sigma_{A}^{*}(\mathrm{~V} .4)$ is non-negative, in general. we know on the other hand that the denominator of $\sigma_{A}^{*}(\mathrm{~V} .4)$ is positive. we can write it in a simillar fashion as

$$
\begin{aligned}
& D_{n+1, i} \cdot D_{n+1, J}=\{I\}^{\prime}+\{I I\}^{\prime}+\{I I\}^{\prime}+\{I V\}^{\prime} ; \\
& \{I\}^{\prime}=p_{i}\left\{\left(u_{i j}^{*} \sum_{k \neq i} u_{j k}^{*}+u_{i i}^{*} \sum_{k \neq i} u_{j k}^{*}\right) p_{k}\right\}, \\
& \{I I\}^{\prime}=p_{j}\left\{\sum_{k \in i, j}\left(u_{i j}^{*} u_{j k}^{*}+u_{i j}^{*} u_{i k}^{*}\right) p_{k}\right\}, \\
& \{I I I\}^{\prime}=\left\{\sum_{k \neq 1 . j} u_{t k}^{*} u_{j k}^{*} p_{k}^{2}\right\}, \\
& \{I V\}^{\prime}=\left\{\sum_{g, h z i . j: g=l_{1}}\left(u_{i k}^{*} u_{j h}^{*}+u_{i, t}^{*} u_{j g}^{*}\right) p_{g} p_{h}\right\} \text {. }
\end{aligned}
$$

Comparing $\{I\}^{\prime} \sim\{I V\}^{\prime}$ with $\{I\} \sim\{I V\}$, we confirm that the denominator of σ_{A}^{*} is always larger than the numerator. Therefore the Allen-Uzawa partial elasticity of substitution between complementary commodities is non-negative and not larger than unity, i.e.
(V.7) $0 \leq \sigma_{A}^{*} \leq 1$.

Comparing the Allen-Uzawa partial elasticty of substitution $\sigma_{A}^{*}(\mathrm{~V} .4)$ with the intuitive elasticity of substitution $\sigma^{*}\left(\mathrm{IV} .8^{\circ}\right)$, we find that the former is more sophisticated than the latter having the supplementary terms $\{I I\},\{I I\}$ and $\{I V\}$ in the numerator when $n>2$. In the case of two-commodity complementarity, σ_{A}^{*} and σ^{*} are equal.
(V.8) $\sigma^{*}=\frac{\left(u_{12}^{*}-u_{11}^{*} u_{22}^{*}\right) p_{1} p_{2}}{\left(u_{11}^{*} p_{1}+u_{12}^{*} p_{2}\right)\left(u_{21}^{*} p_{1}+u_{22}^{*} p_{2}\right)}=\sigma_{A}^{*}$

For three-commodity complementarity, however, the numerator of σ_{A}^{*} is not the same as that of σ^{*}.
(V.9) the numerator of $\sigma^{*}=\left(u_{12}^{*}-u_{11}^{*} u_{22}^{*}\right) p_{1} p_{2}+\left(u_{12}^{*} u_{13}^{*}-u_{23}^{*} u_{11}^{*}\right) p_{1} p_{3}$;

$$
\text { the numerator of } \sigma_{A}^{*}=\left(u_{12}^{*}-u_{11}^{*} u_{22}^{*}\right) p_{1} p_{2}+\left(u_{12}^{*} u_{13}^{*}-u_{23}^{*} u_{11}^{*}\right) p_{1} p_{3}
$$

$$
+\left(u_{12}^{*} u_{23}^{*}-u_{13}^{*} u_{22}^{*}\right) p_{2} p_{3}-\left(u_{13}^{*} u_{23}^{*}-u_{12}^{*} u_{33}^{*}\right) p_{3}^{2} .
$$

In the case of perfect complementarity, the Fisher-Friedman definition assumes that
(III.10*) $u_{i j} u_{i j}=u_{i j} u_{i j}=u_{i j}^{2}, i, j=1, \cdots, n, i \neq j$.

Hence, the numerator of the Allen-Uzawa partial elasticity of substitution σ_{A}^{*} becomes zero regardless of the number of commodities n, as well as does the intuitive elasticity of substitution σ^{*}. Thus, we have
(V.10) $\sigma_{A}^{*}=\sigma^{*}=0$,
for perfect complementarity. On the other hand, in the weakest instance of complementarity, if we assume the simplest case of
(III.11 $\left.{ }^{*}\right) u_{i i}^{*} \rightarrow 0,0<u_{i j}^{*}=u_{i k}^{*} ; i, j, k=1, \cdots, n, i \neq j, i \neq k, j \neq k$, and $p_{1}=\cdots=p_{n}$
we obtain from equations (V.8) and (V.9) $\sigma_{A}^{*}=u_{12}^{*}{ }^{2} p_{1} p_{2} / u_{12}^{*} u_{21}^{*} p_{1} p_{2}=1$ for $n=2$ and $\sigma_{A}^{*}=\frac{u_{12}^{*}{ }^{2} p_{1} p_{2}+u_{12}^{*} u_{13}^{*} p_{1} p_{3}+u_{12}^{*} u_{23}^{*} p_{2} p_{3}-u_{13}^{*} u_{23}^{*} p_{3}^{2}}{\left(u_{12}^{*} p_{2}+u_{13}^{*} p_{3}\right)\left(u_{21}^{*} p_{1}+u_{23}^{*} p_{3}\right)}=2 u_{12}^{*}{ }^{2} p_{1}^{2} / 4 u_{12}^{*}{ }^{2} p_{1}^{2}=1 / 2$ for $n=3$.
In the same fashion, we obtain, for $n=4, \sigma_{A}^{*}=1 / 3$ and can confirm that, in the simplest case assumed above for the weakest instance of complementarity, we have the general form of
(V.11) $\sigma_{A}^{*}=\frac{1}{n-1}$.

This of course is equal to the value of the intuitive elasticity of substitution σ^{*} between complementary commodities (IV.11*). These equivalence of values of σ_{A}^{*} and σ^{*} at the two extreme cases of perfect and weakest complementarity strongly suggest that even though the value of the Allen-Uzawa partial elasticity of substitution σ_{A}^{*} may differ to some extent from that of the intuitive elasticity of substitution σ^{*} because of the supplementary terms of $\{I I\},\{I I I\}$ and $\{I V\}$ in the numerator of the former, the range of magnitude of σ_{A}^{*} (V.7) is exactly the same as that of σ^{*}.

Assuming that the value of the Allen-Uzawa partial elasticity of substituton between complementary commodities σ_{A}^{*} stays within the range of $0 \leq \sigma_{A}^{*} \leq 1$, we can conclude that the inequality
(V.12) $\frac{\partial q_{j}}{\partial p_{1}}=\frac{q_{i} q_{j}}{m}\left\{\sigma_{A}^{*}-1\right\} \leq 0$
always holds for complementary commodities. Additionally, we can obtain the following equation for the cross-price elasticity of demand for complementary commodities,

$$
\begin{equation*}
\eta_{i j}^{*}=\frac{\hat{q}_{j}}{\partial_{i}} \cdot \frac{p_{i}}{q_{j}}=\frac{p_{i} q_{i}}{m}\left\{\sigma_{A}^{*}-1\right\} \leq 0 \tag{V.13}
\end{equation*}
$$

Thus, the Fisher-Friedman definition suggests that the cross-price effect between complementary commodities must be negative in most cases, even though the elasticity of substitution σ^{*} itself is positive.

In order to deduce the Slutsky equation for competing commodities we make use of the indirect demand equation derived in Section II,
(II.9*) $p_{i}=\frac{D_{n+1, i}^{*}}{D^{*}} m=\frac{u_{i}}{u} m$.

Differentiating the above indirect demand equation, and arranging terms, we obtain the indirect Slutsky equation
(V.14) $\frac{\partial p_{i}}{\partial q_{j}}=\frac{p_{i} p_{j}}{m}\left\{\frac{u_{i j} D^{*}-D_{n+1, i}^{*} i_{m+1, j}^{*}}{D_{n+1, i}^{*} D_{n+1, j}^{*}}-1\right\}$.

Here, the first term in brackets in the right-hand side of the indirect Slutsky equation is equivalent to the indirect Allen-Uzawa partial elasticity of substitution between competing commodities. Quite analogous to the relation between the indirect and direct intuitive elasticities of substitution for competing commodities observed in the previous section, the reciprocal of the indirect Allen-Uzawa partial elasticity of substitution is equal to the direct Allen-Uzawa partial elasticity of substitution between competing commodities. The validity of this analogy is confirmed by the fact that, in the case of the two-commodity model, the form of the Allen-Uzawa partial elasticity of substitution equals that of the intuitive elasticity of substitution. Thus, we have
(V.15) $\sigma_{A}=\frac{D_{n+1, i}^{*} D_{n+1, j}^{*}}{u_{i j} D^{*}-D_{n+1, i}^{*} D_{n+1, j}^{*}}=\frac{u_{i} u_{j}}{u_{i j} u-u_{i} u_{j}}=\sigma$,
for the (direct) Allen-Uzawa partial elasticity of substitution between competing commodities. Inserting (II. 8^{*}) of Section II we get for the numerator,

$$
\begin{aligned}
& u_{i} u_{j}=\left(\sum_{j} u_{i j} q_{j}\right)\left(\sum_{k} u_{j k} q_{k}\right)=\{I\}+\{I I\}+\{I I I\}+\{I V\}: \\
& \{I\}=q_{i}\left\{\left(u_{i j} \sum_{k \neq i} u_{j k}+u_{i i} \sum_{k * i} u_{j k}\right) q_{k}\right\},
\end{aligned}
$$

$$
\begin{align*}
& \{I I\}=q_{j}\left\{\sum_{k * i, j}\left(u_{i j} u_{j k}+u_{i j} u_{i k}\right) q_{k}\right\}, \tag{V.16}\\
& \{I I I\}=\left\{\sum_{k * i, j} u_{i k} u_{j k} q_{k}^{2}\right\}, \\
& \{I V\}=\left\{\sum_{g, h w_{i, j, g} \neq i l}\left(u_{i g} u_{j h}+u_{i l h} u_{j k}\right) q_{g} q_{h}\right\} .
\end{align*}
$$

Thus, it is obvious that the numerator of the Allen-Uzawa partial elasticity of substitution σ_{A} for competing commodities is always positive. Similarly, we obtain for the denominator of σ_{A} of (V.15)

$$
\begin{align*}
& u u_{i j}-u_{i} u_{j}=\{I\}^{\prime}+\{I I\}^{\prime}+\{I I\}^{\prime}+\{I V\}^{\prime} . \\
& \{I\}^{\prime}=q_{i}\left\{\left(u_{i j} \sum_{k \neq i} u_{i k}-u_{i i} \sum_{k * i} u_{j k}\right) q_{k}\right\}, \\
& \{I I\}^{\prime}=q_{j}\left\{\sum_{k * i, j}\left(u_{i j} u_{j k}-u_{i j} u_{i k}\right) q_{k}\right\}, \tag{V.17}\\
& \{I I I\}^{\prime}=\left\{\sum_{k \neq l_{j}}\left(u_{i j} u_{k k}-u_{l k} u_{j k}\right) q_{k}^{2}\right\}, \\
& \{I V\}^{\prime}=\left\{\sum_{g, h \neq i, j ; g \neq h}\left(u_{i /} u_{g h}-u_{i g} u_{j h}\right) q_{g} q_{h}\right\} .
\end{align*}
$$

Applying the rule of the Fisher-Friedman definition of competitive commodities in Section III,

$$
\begin{equation*}
u_{i l} u_{i j} \leq u_{i j} u_{i j} \leq u_{i j}^{2}, \quad i, j=1, \cdots, n ; i \neq j, \tag{III.8}
\end{equation*}
$$

we find that $\{I\}^{\prime} \gg 0,\{I I\}^{\prime}>0,\{I I\}^{\prime}<0,\{I V\}^{\prime} \doteq 0$ and $\left|\{I I\}^{\prime}\right| \doteq\left|\{I I I\}^{\prime}\right|$. Thus, we conclude it is highly probable that the value of the denominator of σ_{A} is nonnegative. Noting that the numerator (V.16) is always larger than the denominator (V.17), it is clear that the Allen-Uzawa partial elasticity of substitution σ_{A} for competing commodities always takes a positive value not less than unity, i.e.
(V.18) $1 \leq \sigma_{A}$.

In the case of perfectly competing goods where $u_{i i} u_{i j}=u_{i j} u_{i j}=u_{i j}^{2}$ holds, the denominator (V.17) becomes zero while the numerator is positive. Hence the Allen-Uzawa partial elasticity of substitution σ_{A} is infinite, no matter how many are the number of commodities n. On the other hand, if we take the simplest case for the most weakly competing goods where $u_{i i} \rightarrow 0,0<u_{i j}=u_{i k}, i, j, k=1, \cdots, n, i \neq j, i \neq k, j \neq k$ and $q_{1}=\cdots=q_{n}$ hold, we have from (V.15), (V.16) and (V.17), $\sigma_{A}=1$ for $n=2, \sigma_{A}=2$ for $n=3$, and in general
$(\mathrm{V} .19) \sigma_{A}=n-1$.

These results are exactly the same as those for the intuitive elasticity of substitution for competing commodities obtained in the previous section, and support the validity of the definition of the Allen-Uzawa partial elasticity of substitution for competing cmmodities σ_{A} given by (V.15).

If we replace the Allen-Uzawa partial elasticity of substitution for complementary commodities σ_{A}^{*} with the one for competing commodities σ_{A}, obtained from the indirect model above, equation (V.13) gives
(V.13*) $\eta_{i j}=\frac{\partial q_{j}}{\partial_{i}} \frac{p_{i}}{q_{j}}=\frac{p_{i} q_{i}}{m}\left\{\sigma_{A}-1\right\} \geq 0$.

Because of the general range of (V.18), the sign of the bracketed term in (V.13*) must alway be non-negative, and positive in most cases. Generally speaking, the cross-price elasticity of demand $\eta_{i j}$ for competing commodities is always positive.

VI. The Degree of Complementarity

As we noted in Section I, Friedman intended to bridge the gap between Fisher's two poles of perfectly complementary and perfectly substitutable commodities by defining the intermediate cases. To accomplish this goal, we require some measure to express rigorously and continuously the degree of complementarity and substitutablility between commodities. Let us begin by illustrating the problem through the simple example of the two commodity model. In Section III, we specified the definition of two competing commodities with the following inequalities involving the limits of proportion between prices.
(III.3) $u_{11} / u_{21} \leq p_{1} / p_{2} \leq u_{12} / u_{22} ; u_{11} u_{22} \leq u_{12}^{2}$.

We further defined perfectly competing commodities as $u_{11} u_{22}=u_{12}^{2}$ and the weakest case of competing commodities as $u_{11}=u_{22}=0$. Hence, the degree of substitutability between the two commodities is defined as
(VI.1) $u_{11} u_{22}=\beta^{2} u_{12}^{2}, 0 \leq \beta \leq 1$,
where $\beta=1$ represents the case of perfectly competing goods and $\beta=0$ represents the case of the most weakly competing goods. In the case of the two commodity model, the intuitive elasticity of substitution σ and the Allen-Uzawa partial elasticity of substitution σ_{A} are equivalent and can be written as
(VI.2) $\sigma_{i j}=\sigma_{A i j}=\frac{\left(u_{11} q_{1}+u_{12} q_{2}\right)\left(u_{21} q_{1}+u_{22} q_{2}\right)}{\left(u_{12}^{2}-u_{11} u_{22}\right) q_{1} q_{2}}$.

For simplicity, assume a normalized model where $u_{11}=u_{22}=u_{t i}, u_{12}=u_{21}=u_{i j}$, and $p_{1}=p_{2}$ corresponds to $q_{1}=q_{2}=q_{i}$. This implies (from VI.1) that $u_{i t}^{2}=\beta^{2} u_{i j}^{2}$ which, when inserted in (VI.2), gives
(VI.3) $\sigma_{i j}=\sigma_{A i j}=\frac{u_{i j}^{2} q_{i}^{2}\left\{1+\beta^{2}+2 \beta\right\}}{u_{i j}^{2} q_{i}^{2}\left(1-\beta^{2}\right)}=\frac{1+\beta}{1-\beta}$.

We use (VI.3) to generate Table 1 showing the correspondence between the degree of
substitutability β and the magnitude of the elasticity of substitution between two competing commodities. This table implies that the cross-price elasticity of demand between competing commodities $\eta_{i j}\left(\mathrm{~V} .13^{*}\right)$ is non-negative.

Table 1. Degree of Substitutability β

	weakest				medium		
	0	0.1	0.3	0.5	0.7	0.9	1
β	0	1.2	1.9	3	5.7	19	∞

In Section III we specified the case of complementarity between two commodities as follows, based upon the limits of proportion between quantities.
(III.3') $u_{22}^{*} / u_{12}^{*} \leq q_{2} / q_{1} \leq u_{21}^{*} / u_{11}^{*}, u_{11}^{*} u_{22}^{*} \leq u_{12}^{*}$
where $u_{11}^{*} u_{22}^{*}=u_{12}^{*}{ }^{2}$ corresponds to perfect complementarity and $u_{11}^{*}=u_{22}^{*}=0$ corresponds to the case of weakest complementarity. Defining the degree of complementarity β between the two commodities as
(VI.4) $u_{11}^{*} u_{22}^{*}=\beta^{2} u_{12}^{*}{ }^{2}, 0 \leq \beta \leq 1$,
$\beta=1$ represents perfect complementarity while $\beta=0$ represents the weakest case of complementarity. We have also previously obtained the following equation for both the intuitive elasticity of substitution σ^{*} and the Allen-Uzawa partial elasticity of substitution σ_{A}^{*}.
(V1.5) $\sigma_{i j}^{*}=\sigma_{A i j}^{*}=\frac{\left(u_{12}^{2}-u_{11}^{*} u_{22}^{*}\right) p_{1} p_{2}}{\left(u_{11}^{*} p_{1}+u_{12}^{*} p_{2}\right)\left(u_{21}^{*} p_{1}+u_{22}^{*} p_{2}\right)}$.

Again assume a normalized model where $u_{11}^{*}=u_{22}^{*}=u_{i 1}^{*}, u_{12}^{*}=u_{21}^{*}=u_{i j}^{*}$ and $q_{1}=q_{2}$ corresponds to $p_{1}=p_{2}=p_{i}$. Thus, $u_{i t}^{*}=\beta u_{i j}^{*}$ and
(VI.6) $\sigma_{i j}^{*}=\sigma_{A i j}^{*}=\frac{u_{i j}^{2^{2}} p_{i}^{2}\left(1-\beta^{2}\right)}{u_{i j}^{*^{2}} p_{i}^{*}\left\{1+\beta^{2}+2 \beta^{*}\right\}}=\frac{1-\beta^{*}}{1+\beta^{*}}$.

From the above we obtain a table showing the correspondence between the degree of
complementarity β^{*} and the value of the elasticity of substitution ($\sigma^{*}=\sigma_{A}^{*}$) for two complementary commodities.

Table 2. Degree of Complementarity β
$\left[\begin{array}{c|ccccccc|}\hline \beta^{2} & 0 & 0.1 & 0.3 & 0.5 & 0.7 & 0.9 & 1 \\ \hline \sigma_{i j}^{*}=\sigma_{A i j}^{*} & 1 & 0.82 & 0.54 & 0.33 & 0.18 & 0.05 & 0\end{array}\right]$

Table 2 implies that the cross price elasticity of demand $\eta_{i j}^{*}$ must be non-positive (also by equation (V.13)). Since the own elasticity of substitution has a value of the same magnitude but with a sign opposite to that of the cross elasticity of substitution shown in Tables 1 and 2, the Fisher-Friedman definition implies that the own price elasticity of demand for competing commodities has a large negative value while that for complementary commodities has some negative value absolutely less than unity.

The constant elasticity of substitution (CES) function ${ }^{11}$ provides values for the elasticity of substitution ranging from $0 \leq \sigma \leq \infty$ and includes $\sigma=1$ as the special case of the Cobb-Douglas form. Hence, it is not the values of the elasticity of substitution that mark the FF definition as unique. Rather, the distinct feature of our extension of the FF definition is in the variation of the elasticity of substitution with relative prices. This is illustrated in Tables 3 and 4 for particular degrees of substitutability $\left(\beta=u_{i t} / u_{i j}=0.5\right)$ and complementarity $\left(\beta=u_{k}^{*} / u_{i j}^{*}=0.5\right)$.
Inserting the direct demand function (II.9) into equation (VI.2) we obtain the elasticity of substitution between two competing commodities.
(VI.7) $\sigma_{12}=\frac{\left(u_{12}^{2}-u_{11} u_{22}\right) p_{1} p_{2}}{\left(u_{22} p_{1}-u_{12} p_{2}\right)\left(u_{11} p_{2}-u_{12} p_{1}\right)}$

Making use of $\beta=u_{i j} / u_{12}$ and $u_{11}=u_{22}=u_{i i}$, this can be rewritten as
(VI.8) $\sigma_{12}=\frac{\left(1-\beta^{2}\right) \frac{p_{1}}{p_{2}}}{\left(\beta \frac{p_{1}}{p_{2}}-1\right)\left(\beta-\frac{p_{1}}{p_{2}}\right)}$
where by definition the restriction $u_{i i} / u_{12} \leq p_{1} / p_{2} \leq u_{12} / u_{i 1}$ (i.e. $\beta \leq p_{1} / p_{2} \leq 1 / \beta$) is im-
posed. Assuming that $\beta=0.5$, we obtain the results summarized in Table 3.

Table 3. Relative Prices \& Competing σ at $\beta=0.5$

p_{1} / p_{2}	0.5	0.51	0.55	0.6	0.8	1.0	1.25	1.67	1.82	1.96	2.0
σ_{12}	∞	51.32	11.38	6.43	3.33	3.00	3.33	6.43	11.38	51.32	∞

Here the elasticity of substitution σ_{12} between competing commodities is lowest at the center of the normalized indifference map and rises symmetrically toward the lower and upper limits of proportion between prices where it approaches infinity.

The elasticity of substitution between two complementary cmmodities is given by equation (VI.5). Inserling $u_{i 1}^{*} / u_{12}^{*}=\beta^{*}$ into this we obtain
(VI.9) $\sigma_{12}^{*}=\frac{\left(1-\beta^{2}\right) \frac{p_{1}}{p_{2}}}{\left(\beta^{*} \frac{p_{1}}{p_{2}}+1\right)\left(\beta+\frac{p_{1}}{p_{2}}\right)}$
where by definition the restriction $\beta \leq q_{2} / q_{1} \leq 1 / \beta$ (corresponding to $0 \leq p_{1} / p_{2} \leq \infty$) is imposed. If we assume that $\beta=0.5$, the variation in the value of the elasticity of substitution σ_{12}^{*} with changes in relative prices p_{1} / p_{2} is:

Table 4. Relative Prices \& Complementary σ^{*} at $\beta^{*}=0.5$
$\left[\begin{array}{c|ccccccccc|}\hline p_{1} / p_{2} & 0 & 0.1 & 0.2 & 0.5 & 1.0 & 2.0 & 5.0 & 10.0 & \infty \\ \hline \sigma_{12}^{*} & 0 & 0.12 & 0.20 & 0.30 & 0.33 & 0.30 & 0.20 & 0.12 & 0\end{array}\right]$

Here the value of σ_{12}^{*} is highest at the center of the normalized preference field and decreases toward zero as the quantities approach both their lower and upper limits of proportion

Under our revised Fisher-Friedman definition, it is noteworthy that the elasticity of substitution $\sigma_{i j}$ of competing commodities approaches infinity at the limits of proportion between prices while the elasticity of substitution $\sigma_{i j}^{*}$ of complementary commodities approaches zero at the limits of proporton between quantities. This holds for any particular degree of substitutability β or complementarity β excepting the cases of $\beta=0$ or $\beta=0$.

Finally, making use of equations (IV.13) or (IV.13) ${ }^{*}$ obtained in Section IV, we can illustrate the two dimensional determination of the value of the elasticity of substitution by the number of commodities n and the degree of competitiveness β (or of complementarity β^{*}). For a group of competitive commodities, we have, e.g.

Table 5. Two Dimensional Determination of σ

β	2	4	6	8	10	∞
0	1	3	5	7	9	∞
$1 / 2$	3	7	11	15	19	\cdot
$2 / 3$	5	11	17	23	29	\cdot
$3 / 4$	7	15	23	31	39	\cdot
$4 / 5$	9	19	29	39	49	\cdot
1	∞	\cdot	\cdot	\cdot	\cdot	∞

It may be of some interest to observe the correspondence between effects of n and those of β on σ, in this table, especially from view point of the theory of the industrial organization.

VII. Independent Commodities

In Tables 1 and 2 of the previous section we observed that for a two commodity model the value of the elasticity of substitution $\sigma=\sigma_{A}$ ranged from ∞ to 1 in the case of competing goods and that the value of the elasticity of substitution $\sigma^{*}=\sigma_{A}^{*}$ ranged between 0 and 1 in the case of complementary goods. Therefore, the two series σ and σ^{*} appear to constitute a unified continuous series from $\sigma=0$ for perfect complementarity $(\beta=1)$ to $\sigma^{*}=\infty$ for the case of perfectly competing goods $(\beta=1)$. The point of overlap between the two series, $\sigma=1=\sigma^{*}(\beta=0=\beta)$ suggests that we can reinterpret both the weakest case of competing goods ($\beta=0$) and the weakest case of complementary goods $(\beta=0)$ as the state of independent commodities. Since $u_{11}=u_{22}=0$ and $u_{11}^{*}=u_{22}^{*}=0$ hold at this point , the indirect PFORMU defined by (II. 3^{*}) becomes
(VII.1) $v_{1}=u_{12}^{*} p_{2}, \quad v_{2}=u_{21}^{*} p_{1}$,
and the direct PFORMU can be written as
(VII.2) $u_{1}=u_{12} q_{2}, u_{2}=u_{21} q_{1}$.

These specifications initially appear counter-intuitive, given that the relative marginal utility of both commodity 1 and commodity 2 depends not on its own price or quantity but on the price or quantity of the other commodity. This dilemma can be overcome as follows. Using the direct and indirect marginal rates of substitution given by (VII.2) and (VIl.3) we obtain
(VII.3) $\frac{u_{1}}{u_{2}}=\frac{q_{2}}{q_{1}}, \frac{v_{1}}{v_{2}}=\frac{p_{2}}{p_{1}}$.

We can now redefine the direct and indirect relative marginal utilities as
(VII.4)

$$
u_{\mathrm{t}}=\frac{1}{q_{1}}, u_{2}=\frac{1}{q_{2}} ; \quad v_{1}=\frac{1}{p_{1}}, v_{2}=\frac{1}{p_{2}} .
$$

The marginal utility of each commodity is now a function of its own quantity or price, and this specification can be made slightly more sophisticated by defining the direct form of the relative marginal utility for each independent commodity as
(VII.5) $u_{i}=\frac{a_{i}}{q_{i}}$.

This type of PFORMU corresponds to a Cobb-Douglas utility function of the form
(VII.6) $u=\sum_{k} a_{k} \ln q_{k} ;$ or, $u=\prod_{k} q_{k}^{a_{k}}, k=1, \cdots, n$.

In other words, we are now assuming a utility function of a different form from that assumed throughout this paper. While this might initially seem unacceptable, in fact it is not. Even though we have assumed a quadratic homogeneous utility function for the direct model of complementary commodities (and its dual for competing commodities), only in the case of the two commodity model is there any overlap (at $\beta=0=\beta, \sigma=1=\sigma^{*}$). As noted previously (from (IV.11), (IV.11*), (V.11), and (V.19)), in cases where $n>2$, the value of the elasticity of substitution $\left(\sigma\right.$ or $\left.\sigma_{A}\right)$ between the most weakly competing goods increases with the number of commodities n in that separable group. Conversely, the value of the elasticity of substitution between the
most weakly complementary commodities decreases with the number of commodities n in that separable group. Therefore, when there are more than two commodities, the value of σ or σ_{A} in the most weakly competing case must be larger than unity and the value of σ^{*} or σ_{A}^{*} must be less than unity in the weakest case of complementarity. In other words, when $n>2$, the two extremes of $(\beta=0, \sigma>1)$ and $\left(\beta=0, \sigma^{*}<1\right)$, for competing and complementary commodities do not share any common values. There exists a gap between the state of the weakest complementarity and that of the most weakly competing goods. Thus the state of independence between commodities is distinct from that of the most weakly complementary or competing commodities. Because the state of independent commodities is not in general on the midpoint of a continuous series between perfect complementarity and perfect substitutability, independent commodities can and should be defined separately from our extended Fisher-Friedman definition. Thus, the Cobb-Douglas specification ${ }^{12}$ of (VII.5) and (VII.6) is compatible with our definition of complementary and competing commodities outlined in Section II and III.

VIII. Off-budget Complementarity and Engel's law

A tropical climate is complementary to air conditioners but competes with room heaters. Roads are highly complementary to automobiles. These examples illustrate some of the many cases where the natural condition of a country or its social capital is complementary to or competes with commodities purchased by consumers. Since these factors are not included in the budget of the consumer, we will follow standard practice by denoting these relationships as off-budget complementarity. Such off-budget complementarity obviously has a singnificant impact on consumer behavior in many cases.

Off-budget complementarity is not limited to a nation's attributes but also extends to the physical condition of the consumer himself. For example, healthy teeth are needed to bite into a fresh apple. Indeed, one of the oldest examples of this type of off-budget cmplementarity is found in Paul's first letter to the Corinthians where he quotes "Food is meant for the stomach and the stomach for food" (Corinthians I: 6)

In certain instances, it is necessary to introduce these factors of off-budget complementarity into the utility functions of consumers, including for example the climate in utility functions used to describe demand for air conditioners. The most common example of this necessity in the analysis of household consumption is the case of Engel's Law.

When comparing expenditure on food from household to household, we must consider not only the household budget but also the number of people (stomachs) in each household.

For simplicity, assume a two commodity model which consists of total food consumption q_{1} and the total consumption of other commodities q_{2}. To denote the off-budget complementarity between the consumption of food q_{1} and family size N, we introduce the latter into the PFORMU of the former specified as an independent commodity and obtain
(VIII. 1) $u_{1}=\frac{a_{1}}{q_{1}-b_{1} N} ; a_{1}>0, b_{1}>0,\left(q_{1}-b_{1} N\right)>0$.

Partially differentiating this gives
(VIII.2) $\frac{\partial u_{1}}{\partial N}=\frac{a_{1}}{\left(q_{1}-b_{1} N\right)^{2}} b_{1}->0$.

The positive sign of $\partial t_{1} / \partial N$ implies complementarity between q_{1} and N. This KleinRubin type ${ }^{13}$ PFORMU is of course consistent with a demand function which expresses Engel's law.

Introducing off-budget complementarity into our extended FF definition for separable groups of complementary and competing commodities would complicate the analysis considerably. Fortunately, the need to do so should seldom arise. The complementarity between pancakes, maple syrup and butter is not affected by household size and the substitutability between pancakes and cereal is also separable from the number of persons in a household. Moreover, the complementarity between autos and gasoline is nearly independent of the highway system, and the substitutability between types of heaters (kerosene versus electric) is separable from the surrounding climate. Thus, offbudget complementarity is largely irrelevant to the analysis of the complementarity or substitutability of individual commodities. It is important in the case of composite commodity groups where independent groups can be formed through aggregating individual commodities, but analysis would follow the above example for total food consumption and family size.

In short, our extended Fisher-Friedman definition of complementarity is consistent with the empirical fact of Engel's law even though it assumes a homothetic preference field for each separable group of complementary or competing commodities. However, we leave for future work the development of a precise theory of the preference tree based on our extended Fisher-Friedman definition.

IX. Summary

The Fisher-Friedman definition classifies commodities as substitutable or complementary depending on the global shape of indifference maps. It thus requires the specification of the global mathematical properties of any model used to illustrate this definition. We utilized the simple model of a direct utility function of quadratic homogeneous form. As shown in Sections II-V, the substitution effect-the Allen elasticity of substitu-tion-is always non-negative with this specification. Therefore, by the Hicks-AllenShultz definition ${ }^{14}$, this model applies only to competing commodities and not to complementary commodities, a conclusion that is independent of the number of commodities.

Our extended FF definition is more flexible and more realistic. Fisher initially focused on the difference in magnitude in the elasticities of substitution between competing and complementary commodities while Friedman noted that the sign of the cross price elasticities must be positive for competing commodities and negative for complementary commodities. We specified Fisher's criterion as $\sigma_{i j} 1$, and Friedman's as $\eta_{i j}=\frac{p_{i} p_{j}}{m}\left\{\sigma_{i j}-1\right\} \quad 0$, specifications that are consistent with one another. By so doing we derived an extended Fisher-Friedman definition capable of classifying commodities within each separable group as substitutable or complementary no matter how large the number of commodities in each group. Unlike the HAS definition, the Fisher-Friedman defiition specified here can classify tea and lemon to be complementary and at the same time tea and coffee to be substitutable.

The late Professor Stigler once noted that "(the Hicks-Allen definition) cannot be applied introspectively to classify commodities \cdots, so they offer no avenue to the utilization of introspection \cdots. As a result, such criteria can be applied concretely only if one has full knowledge of the demand functions. ...The chief reason for presenting criteria in terms of utility, I suspect, is that, when familiar names are given to unknown possi-
bilities, an illusion of definiteness of results is frequently conferred" ${ }^{15}$. Our reconstructed Fisher-Friedman definition of complementarity can provide the useful a priori information in advance of any empirical research. So, it may meet Stigler's requirement, we hope.

Footnotes

※. This research was conducted at the Economic Observatory of Keio University. We are indebted to colleagues there for suggestions and comments, particularly M . Kuroda, J. Vestal, and K. Yoshioka. We are also heavily indebted to Professors H. S. Houthakker and Dale Jorgenson for their extreamly valuable comments given at an early stage of our research on the present subject. The usual caveat about any remaining errors applies.

1. Starting our research we took Samuelson's comprehensive survey article on the theory of complementarity to be standard-setting. See Samuelson [15]-(II).
2. We owe thanks to Professor Milton Friedman who very kindly gave us a xerox copy of his unpublished paper of December 1933, at our request in July 1982.
3. See p. 13 of Friedman [6].
4. See p. 73 of Fisher [5].
5. See p. 44 of Friedman [6].
6. See p. 46 of Friedman [6]. Concerning the concept of separability, see Leontief [13], Goldman and Uzawa [8], and Geary and Morishima [7]. Friedman may be the earliest in setting and using the concept although not the specific terminology.
7. We have extensively borrowed Houthakker's terminology in presenting our dual model. See Houthakker [11]-(I), (II) .
8. The concept of PFORMU comes from Samuelson [15]-(II), pp.95-99.
9. For more on Cauchy's theorem, see Aitken [1], p. 81 and p. 92.
10. See Uzawa [20], Mcfadden [14], Nadiri [15], and pp.340-343 and pp.503-505 of Allen [2].
11. See Arrow, Chenery, Minhas, and Solow [3].
12. This remindes us the transcendental logarithmic function which includes the CobbDouglas form as a special case. However, we have not investigated in detail yet. See Christensen, Jorgenson and Lau [4]-(I), (II).
13. See Klein and Rubin [12], Stone [18], Tsujimura [19], and Tsujimura and Sato [21].
14. See Hickes [9], [10], Allen [2]-(I), and Schultz [16]
15. See pp.134-35 of Stigler [17]; and Samuelson [16]-(II).

References

[1] Aitken, A.C., Determinants and Matrices, New York, Oliver and Boyd, 1939.
[2] Allen, R.G.D., (I) "A Comparison Between Different Definitions of Complementary and Competitive Goods", Econometrica, April 1934, 2(2), pp.168-75.
(II) Mathematical Analysis for Economists, London, Macmillan, 1938.
[3] Arrow, Chenery, Minhas, and Solow, "Capital-labor subsitution and economic efficiency", Review of Economics and Statistics, 63, August 1961, pp.225-50.
[4] Christensen, L.R., Jorgenson, D.W., and Lau, L.J., (I) "Transcendental logarithmic production function frontiers", Review of Economics and Statistics, 55, February 1973, pp.29-45. (II) "Transcendental logarithmic utility functions", American Economic Review, 65, 1975, pp.367-83.
[5] Fisher, I., Mathematical Investigations in the Theory of Value and Prices, New Haven, Yale University Press reproduction, 1925, of Yale Dissertation appearing in Transactions of the Connecticut Academy of Arts and Science, July 1892.
[6] Friedman, M., "The Fitting of Indifference Curves as a Methods of Deriving Statistical Demand Functions", Unpublished manuscript, December 1933.
[7] Geary, F.T. and Morishima, M., "Demand and Supply under Separability", Theory of Demand, edit. Morishima et. al. Oxford, Clarendon Press, 1973, pp.87-129.
[8] Goldman, S.M. and Uzawa, H., "A note on separability in demand analysis". Econometrica, 32, 1964, pp.387-98.
[9] Hicks, J.R. and Allen, R.G.D., "A Reconsideration of the Theory of Value", Parts I and II, Economica, Feb. and May 1934.
[10] Hicks, J.R., Value and Capital, Oxford, Clarendon Press, 1939.
[11] Houthakker, H.S., (I) "Compensated changes in quantities and qualities consumed", Review of Economic Studies, 19, 1951-2, pp.155-64. (II) "Additive
preferences", Econometrica, 28, 1960. pp.224-56.
[12] Klein, L.R. and Rubin, H., "A constant-utility index of the cost of living", Review of Economic Studies, 15, 1984.
[13] Leontief, W.W., "Introduction to a theory of the internal structure of functional relationships", Econometrica, 4, 1948, pp.39-59.
[14] McFadden, D., "Constant elasticity of substitution production function". Review of Economic Studies, 29, 1962, pp.291-9.
[15] Nadiri, M.I., 1982, "Producers Theory". In K.J. Arrow and M.D. Intrigator(des), Handbook of Mathematical Economics, Vol. II, Amsterdam, North-Holland, pp.441-444.
[16] Samuelson, P.A., (I) Foundations of Economic Analysis, Cambridge, Mass.. Harvard University Press, 1943. (II) "Complementarity-An Essay on the 40th Anniversary of the Hicks-Allen Revolution in Demand Theory", Journal of Economic Literature, Vol.XII, No.4, 1974.
[17] Schultz, H., The Theory and Measurement of Demand, Chicago, University of Chicago Press, 1938.
[18] Stigler, G.J., Essays in the history of economics, Chicago and London, University of Chicago Press, 1965.
[19] Stone, R., "Linear expenditure systems and demand analysis: an application to the pattern of British demand", Economic Journal, 64, 1954.
[20] Tsujimura, K.; "Family Budget Data and the Market Analysis", Bulletin of the International Statistical Institute, Vol.XXXVIII, Part III, 1961.
[21] Kotaro Tsujimura and Tamotsu Sato, "Irreversibility of Consumer Behavior in Terms of Numerical Preference Fields", The Review of Economics and Statistics, Vol. XLVI, No.3, August 1964.
[22] Uzawa, H., "Production function with constant elasticities of substitution", Re-
view of Economic Studies, 29, 1962, pp.291-9.

Recent List of Keio Economic Observatory Occasional Paper

Japanese Language series：
1992年－
J．No． 23 営幹雄
「航空輸送産業の大気污染物質排出量の推計
——産業連関表を用いた環境対策研究プロジェクト—」」46P．
J．No． 24 松野一彦
「離散的選択：家計労働供給のモデルと計測」 58 P 。
J．No． 25 卓見均
「異動発生源による大気污染物質量の推定——自動耳の場合—」 32P．
J．No． 26 吉岡完治，外岡豐，早見均，池时明由1，菅幹雄「環境分析のための産業連関表の作成」64P。
J．No． 27 黒田昌裕，新保一成
$\left\ulcorner\mathrm{CO}_{2}\right.$ 排出量安定化と経済成長」34P。
1993年
J．No． 28 早見均
「労働時間効率と生産者行動の分析」129P．
J．No． 29 辻村江太郎，續幸子
「3財消費モデルにおける亚格効果について」10P。
J．No． 30 佐々波楊子，黒时昌裕，吉岡完治，馬成三，浦日秀次郎，菊池純－－「中国沿海地区経済開発の波及効果
— 习成 4 年度現地調査の概要及び資料等一… 48 P 。
J．No． 31 松野一彦
「二，変量離散的選択による非核世：帯員の労働供給モデルと測定」 53P．
J．No． 32 吉岡完治，早見均，池田明由，菅幹雄
「省エネ住宅の環境負荷に対するシミュレーション分析
——環境分析用産業連関表の応月1——」 32 P 。
1994年
J．No． 33 岩㫙暁一，藤原浩一，砂田洋志，飯田仲衛，吉田淳
「板寄せ法における模索過程の分析」31P。
J．No． 34 篠崎美貴，趙晋平，吉凧完治
「日中購買力平価の測定——日中産業連関表実質化のために——」 23P。
J．No． 35 佐々波楊子，馬成三，吉岡完治，桜本光，浦时秀次郎，河合啓希，黄于青
「中国沿海開放とその波及効果」 27 P 。

J．No． 36 篠崎美貴，池旪明由，吉岡完治
「環境分析用産業連関表•森林セクターデータの解説」 28 P 。
J．No． 37 早見均
「看護労働の供給パターン
——資格取得者の供給行動と既婚女子労働との比較——」32P．

English Language Series ：

1989年
E．No． 11 Inagawa，N．，
＂Economies of Scale，Technology，and Intra－Industry Trade＂ 20P．
1991年．
E．No． 12 Obi，K．，
＂Household＇s Labor Supply Function in Terms of Numerical Income－Leisure Preference Field＂28P．
1992年
E．No． 13 Matsuno，K．，
＂Bayesian Estimation of Discrete Choice Models ：Labor Supply of Multiple Household Members＂37P．
1994年
E．No． 14 Obi，K．，
＂An Equilibrium Model of Continually Heterogeneous Labor Market＂30P．
E．No． 15 Obi，K．，
＂Measurement of The Distribution of Reservation Wage Using Household Data：Price of Labor From Preference Maps for In－ come and Leisure＂30P．
1995年
E．No． 16 Robert Evans，Jr．，
＂United States Labor Market Regulation＂17P．
E．No． 17 Robert Evans，Jr．，
＂The Role of Fairness and Unity of Treatment in Japanese Labor Markets＂31P．
E.No. 18 Hayami, H., Ikeda, A., Suga, M., Wong, Y.C. and Yoshioka, K.
"The CO_{2} Emission Score Table for the Compilation of Household Accounts" 19P.
E.No. 19 Hayami, H., Wong, Y.C. and Yoshilka, K.
"Application of the Input-Output Approach in Environment Analysis in LCA" 21P.
E.No. 20 Hayami, H., Ikeda, A., Suga, M., Wong, Y.C. and Yoshioka, K.
"A Simulation Analysis of the Environmental Effects of Energy Saving Housing" 21P.
E. No. 21 Fujiwara, K., Hayami, H., Ikeda, A., Suga, M., Wong, Y. C. and Yoshioka, K.
"Recommending the Use of Blast Furnace Cement to Reduce CO_{2} Emission" 13P.

