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Bayesian Estimation of Discrete Choice Models: 

 Labor Supply of Multiple Household Members 

              by 

           Kazuhiko Matsuno

1. Introduction

   The aim of this paper is to estimate models for labor supply prob-

ability of household members by using Bayesian procedures. Our models 

describe the labor supply behavior of multiple household members. Par-

ticularly, we deal with the behavior of households with one, two or three 

non-principal earners (a wife and/or children). The related literature 

mainly studies the labor supply of one non-principal earner. The models 

are of discrete choice or qualitative response type to yield a labor 

supply probability that non-principal earners accept an employment oppor-

tunity. We apply Bayesian estimation methods to the models and carry out 

empirical tests of the models using Japanese data. 

   Douglas law of labor supply shows that the labor participation rate 

of wives are negatively correlated with husband's income. This law has 

been reconfirmed by empirical analyses of household-level surveys . 

Although the analyses are limited to a case of one non-principal earner , 
it may be possible to say that the labor supply of multiple non-principal 

earners is also negatively correlated with husband's income . 

   The situation is, however, complicated when we consider households 

with multiple household members. In fact, it is difficult to define labor 

uparticipation rate at a household level when the household has multiple 

non-principal earners. We may define the rate as a ratio of number of 

participants to that of non-principal earners within a household . We need
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a theoretical basis for the definition. We need a model to describe the 

labor supply behavior of households with multiple non-principal earners. 

For this purpose we provide a general discrete choice model. Three models 

for labor supply are derived from it. 

   In applications of Bayesian methods, a difficult problem is how to 

formulate prior distributions. The diffuse or uniform prior distribution 

is usually employed. In this study we take up Bayesian methods for esti-

mating one model to incorporate the information obtained in the prior 

estimation of other models. We also use maximum likelihood methods for 

comparison. 

   We make some experimental calculations based on the estimated parame-

ters to clarify theoretical implications of the models. We calculate 

elasticities of labor supply probabilities with respect to changes of 

exogenous conditions.

2. Models for Labor Supply of Household Members

   We present models of household labor supply as well as a model of 

discrete choice. The models of labor supply are derived from the discrete 

choice model as its applications. In the later sections we apply Bayesian 

procedures of estimation to the models. For Bayesian procedures we need 

theoretical bases to utilize prior information. And we have to explain 

the structure of the models in detail.

2.1 Models of household labor supply 

   We consider the labor supply of households, members of which 

of an employee principal earner (husband) and M potential earners 

and/or children of age over 16). Our model is concerned with the 

supply behavior of the potential eaners. The principal earner is

consist 

(a wife 

labor 

already
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employed. 

   The utility indicator to express household's income-leisure prefer-

ence is a function of (real) income X and leisure hours A , 

   u=u(X, A). (1) 

The income X is a sum of the principal earner's income I and the poten-

tial earners' possible income. The leisure hours A are a sum of leisure 

hours of potential earners'. The principal earner's income is an exoge-

nous variable. A different utility indicator 

     u=u(I, X1,...,XM, A1,..., AM) 

might have been employed, where the income X., and leisure hours Am of 

the m-th (m=1,...,M) potential earner's are explicitly introduced without 

aggregation. 

   We consider a case where an employment opportunity with a wage rate 

w and work hours h is open to the M potential earners. When the s poten-

tial earners accept the employment opportunity, we have 

   X=I+swh, A =MT-sh, (2) 

where T is total disposable hours of household members (24 hours a day, 

for example). The problem is to describe how many potential earners of 

the household accept the employment opportunity. 

   It should be noted that we assume the work hours are assined and 

fixed by demand side. Labor suppliers can not adjust the work hours at 

their own will. They can only accept or reject the employment opportunity 

with a condition of a fixed wage rate and work hours. So, the model is a 

discrete choice type. The framework of the model is introduced by Obi 

(1983), but his derivation is different from ours. 

   Fig. 1 is a discrete choice set of the household labor supply with M+ 

1 elements in the income-leisure preference field. The figure illustrates 

the household's possible options ~ 's when it has M non-principal earners 

and faces an employment opportunity with a wage rate w and work hours h. 

The option at the point ~1 means that no earner accepts the employment
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opportunity 

etc.

. The point ~2 means that one earner accepts the opportunity,

Fig. 1 Discrete Choice 

  A. (leisure hours)

MT

Set for M Potential Earner Household

MT-h

MT-2h

NT-Nh

~, (0 person)

I
~ 2 (1 person)

  - (2 persons)

0

. 

' M+i (M persons)

                           X(household income) I(principal eaner's income)

   We consider a population of the households mentioned above. The 

households face the discrete choice set of Fig. 1. It may occur that 

choices of all the households concentrate on a single option, or that no 

household chooses a particular option. We consider which of the options 

~ ©, ~ M are possibly chosen by the households, and what proportion 

of the population chooses each of the options. 

   We specify the utility indicator of the households as the quadratic 

form in X and A, 

   u=+y1X2+Y2X+Y3XA+y4A+-ysA2 (3) 

    = Y iZ,+Y 2Z2+7 3Z3+Y 4Z4+Y &Z5, (4) 

where y 's are parameters and Z's are defined by Z,= +X2 , Z2=X, etc. The
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indicator is linear in y and Z. The parameter y 4, a constant term of 

the marginal utility of leisure hours, is a stochastic variable to take 

account of the variation of preferences among the households. The other 

parameters are not stochastic. The distribution of Y 4 is represented by 

a density function f, 

    Y4-f(ya)>0, if r<y4<R, (5) 
             =0, otherwise, 

where the interval (r, R) is the range of the distribution. As the func-

tion f can take any form, we will specify, in the later sections of 

empirical analyses, 

   f = Normal(M(6) 

The normality is, however, not yet determined. It is subject to a further 

empirical study. 

2.2 A discrete choice model 

   We provide a discrete choice model in general terms and its proper-

ties summarized as theorems. For the detail, see Matsuno (1984, 1988a). 

   Let J be the number of options in a discrete choice set. If an 

economic agent chooses the j-th option ~ j (j=1,...,J), its utility is 

    uj2YIZlj+Y2Z2j+Y3Z3j+y4Z4j+y5Z5j. (7) 

The quadratic utility indicator (3) is a special case of (7) . Although we 

assume five Z variables, (7) may contain more than five variables. 

   One of the parameters y, 'Y4 for instance, is stochastic and has a 

probability density function f over the range (r, R). The density f des-

cribes the difference in the households' preference. The other 'Y's are 

not stochastic. 

   We define a choice probability of the j-th option as 

   Pj=Pr(uj>ui I jai), j=l,...,J, 

that is, a probability that the j-th option gives the maximum utilility 

and is chosen. Even if we observe households" labor supply behavior under 

                                          -5-



a fairly controlled condition, we find some households participate in the 

labor force while others do not. The difference in their behavior is 
described by the choice probability. The labor force participation rate 

is an observed counterpart of the choice probability. 
   The "threshold" yij is defined by calculating the difference between 

the utilities attained by choice of optionsi and 

   ui-uj=(Z4i-Z4;)(y4 - yi j), (8) 
where 

         Y 1 (Z1 i-ZI ,j)+Y2(Z2i-Z2j)+Y3(Z3i-Z3;)+y 5(Z5i-Z5j) 
    yij = - ~4

,-Z4i - - - - , (8.a) 

   We assume, without loss of generality, an ordering of Z4j variable, 

    Z41>Z42>"' >Z4J-1>Z4J. (9) 

From this assumption and (8), we see that if Y 4>yij for i>j, then ui>uj . 

There are J(J-1)/2 thresholds which determine ordering relations among 

the J utilitites. To find an ordering among the utilities, we have: 

   Theorem 1: The necessary and sufficient condition for all J options 

to be choosen, or for all J choice probabilities to be positive, is 

    R>Y12>Y23>Y34>...>yJ-2J-1>YJ-1J>r. (10) 

   Theorem 2: If all the choice probabilities are positive, they are 

given by 

   P1= S R f (Y 4)dY 4, 
       Y12 

   P2= S Y12f(Y 4)dY 4, (11) 
       Y23 

           YJ-1J    P
J= S f(Y4)dy4. 

r 

   Fig. 2 illustrates the meaning of the theorems. The parameter Y 4 is 

subject to a distribution. Some households have a large value of y 4 and 
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others have a small value of y A. Households with a larger value of y4, 

therefore with a higher preference for leisure, will choose shorter hours 

of work or no market work. Other households with a smaller value of y A 

will choose longer hours of work. The distribution of choices is deter-

mined by the density function f. The households' choices are ordered and 

classfied into J choice groups uniquely by the thresholds satisfying 

the condition of Theorem 1.

Fig. 2 Distirbution of Households' Choices

f(y4)

#*

#=k

##a~ Pi

r YJ-1J

 #* 

 P2
=x=x~

Y23 Y12

           -- y4 

R

    If n1,..., nJ, among n, households choose the 1-st ,..., J-th option 

respectively, then the probalility of this event is the multinomial 

distribution

L = --
   n1 ! n2!

n

... nil
                    ... P,n' P2nz P,nJ. (12)

2.3 Model 1; a case of one potential earner 

   We consider an application of the discrete choice model with J=2 . 
Economic agents in this case are households having a wife as a potential 

earner. The utility indicator of the households is a quadratic form (3) . 
An employment opportunity with a wage a rate w and work hours h is open 

to the wife. The problem is if she accepts or rejects the opportunity .
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The choice set contains two elements, no market work , and market work 

 2. They are represented by points 

   ~ ,= [I, T ] =no market work, 

   ~ 2= [I+wh, T-h] =market work. 

in the preference field of Fig. 1 with M=l. 

   In view of (8.a), we get a threshold 

   Y12=[1, I] W2 h/2 w w(T-h) (h/2)-T Y'=ao'+a,'I, (13) 

          Lw 0 -1 0 
where Y ''=[Y ,, Y 2, Y Y s]. The threshold is linear in the principal 

earner's income I and linear in Y '. 

   From Theorem 1, if 

   R>y,2>r, (14) 

then P,(=Probability of no market work)>0 and P2(=probability of wife's 

market work)>0. Provided that (14) holds, we have from Theorem 2, 

R 
   P,= S f(Y4)dY4, 

      ae +a, *I (15) 

    P2= 1-P,. 

   If we assume normality N(M, a2) for the distribution of y d, the 

condition (14) always holds. Therefore, from Theorems 1 and 2, we con-

clude that 

   P,=1-0 (ao+a,I), 

   P2= (D (a o+a, I) , 

where the function c is the standard normal distribution function, and 

we have, for the reduced form parameters, 

  r ae = ago-,u / 6 = r w2h/2 w w(T-h) -1 (h/2)-T Y , 
    a, a,"/ 6 w 0 -1 0 0 (16) 

with Y'=[Y,/6, 72/cr, 'Ys/6, ,u/6, ys/6]. 

   In the estimation of the model, we classify the households into K
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income classes according to their principal earner's income I . The k-th 

class has the income value Ik. The probabilities P1k and P2k for the k-th 

class households are given by 

    P1k=l-0(ae+aIIk), 

    P2 k=(D (ae+a1 I k) . 

    If the n;k households of the k-th class choose i-th (j=1 ,2) option, 
then the likelihood function for the estimation is 

    L= nk h P1n1k P2n2k        =1 n1 k! n2k! (17) 

by independence assumption about experiments for the K classes . This is 
the likelihood function appearing in the usual probit analysis . The para-
meters ae and a1 will be estimated. 

   Empirical studies show that a1 is negative, or that labor partici-

pation rate of wives is negatively correlated with husband's income. We 
refered to this as Douglas law, see Douglas(1934). 

2.4 Model 2; a case of two potential earners 

   We consider the labor supply behavior of two potential earners, say 
a wife and a child of age over 16. The utility indicator is of form (3). 
The wife and child can accept or reject an employment opportunity offered 
with a condition of a wage rate and labor hours (w, h). There are three 
possible options for the two suppliers, the first being that none of them 
will accept the opportunity, the second that one of them will accept it , 
and the third that two of them will accept it. These are points 

    ~1=[I, 2T ]=market work of no person, 
     2=[I+wh, 2T-h ]=market work of wife or child , 

   ~ 3= [I+2wh, 2T-2h] =market work of wife and child, 
in Fig. 1 with M=2. The discrete choice model with J=3 applies to this 
case. It is noted that for the one person market work option ~ 2, the 
model does not tell whether it is work of wife or work of child . 

                                           -9-



    Thresholds Y12, Y13, Y23 are defined by (8.a), and two of them are 

   Y12=[l, I] w2h/2 w w(2T-h) (h/2)-2T y "v be'+b1'I, (18) 

          L w 0 -1 0 

   Y23=[1, I] 3w2h/2 w w(2T-3h) (3h/2)-2T y "= ce'+c1'I. (19) 

          L w 0 -1 0 
   If we assume the normality of the distribution of ya, we have, from 

Theorem 1 and 2, 

   P1=1 - 4) (b0+b1I)=probability of choosing ~ 1, 

   P2=4) (be+b1I)-4) (c0+c1 I)=probability of choosing ' 2, (20) 

   P3=Cco+c1 I) =probability of choosing ~ 3, 

where 

   be=(be'-,u )/6 , b1=bi "/6 , (21) 

    Ce=(CO'-,u)/6 , c1=C1 '/6 . 

It is noted that we have, from (13), (18) and (19), theoretical restric-

tions a1=b1=c1. 

   The likelihood function for estimating the reduced form parameters b 

and c is 

                nk! n1k n2k n3k     L= -~ - P1k P2k P3k (22) 

, 

       =1 n1k! n2k! n3k! 

where nik is the number of households in the k-th class, choosing the j-

th option and 

   P2k=0 (be+b11 k)- 4) (c0+c11 k ) 

with similar expressions for Pi k and P3k.

2.5 Model 3; a case of three 

   We consider the behavior 

wife and two children of age 

form (3). The households have

potential earners 

of households with M=3 potential earners, a 

over 16. The utility indicator takes the 

 four possible options ~1, ~ 2, E 3 and
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~ 4. The first option ~ , is the one that none of the three suppliers 

accepts the employment opportunity, the second ~ 2 is that one of them 

accepts it, and so on. The options corresponds to points 

   E 1=[I, 3T ]=no market work, 

     2=[I+wh, 3T-h 1=1 person market work, 

   ~ 3= [I+2wh, 3T-2h] =2 person market work, 

   ~ 4=[I+3wh, 3T-3h]=3 person market work. 

in Fig 1 with M=3. 

   We apply the discrete choice model with J=4, of Section 2.2 to this 

case. Thresholds Y12,..., Y34 are defined by (8.a) and are , for instance, 

  Y12 =[l, I] w2h/2 w w(3T-h) (h/2)-3T 1 y "=de'+d,'I, (23) 
               w 0 -1 0 J

Y23 = [ 1, I l 3w2 h/2 w w (3T-3h) (3h/2)-3T 1 y " = e© 
        L w 0 -1 0

+e,
'I

, (24)

  Y34 =[l, I] 5w2h/2 w w(3T-5h) (5h/2)-3T 1 7y' fo'+f,'I. (25) 
                 w 0 -1 0 

   Under the normality assumption for the distribution of the stochastic 

parameter y 4, Theorem 1 and 2 show that 

   P,=l -d) (den+d, I)=probability of choosing E' , , 
   P2=(D (de+d, I)-c (e@+e, I)=probability of choosing C 2, (26) 

   P3=4) (eo+e, I)-4) (fo+f, I)=probability of choosing C 3, 
   P4=(D (f a+f, I) =probability of choosing ~ 4, 

where 

 do= (do'-,u)/6 , di=d,'/6 , 

    ee=(e©'-,u)/6 , e,=e, •/6 , (27) 

    f©=(fe'-,u)/6 , f,=f, •/6 . 

We see that the equality a,=b,=c,=d,=e,=f, holds among the parameters of
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Model 1, 2 and 3. 

   The likelihood function for the estimation in this case is obtained 

from the multinomial distribution, and is 

                    nk! n,~: n2k n3k n4k (
28)      L= -- P, k P2 k Pa k P4 k ,         =1 n,k! n2k! n3k! n4k! 

where Pik is the j-th choice probability of the k-th income class and n;k 

is the number of households choosing the j-th option. The parameters d, e 
and f are estimated. 

2.6 Theoretical restrictions 

   We have developed three models which have reduced form parameters 

with theoretical constraints 

    a,=b,=c,=d,=e,=f,=(wy i-Y 3)/6 . (29) 

Furthermore, we have relations for the constant terms, 

    as=ae, 

    bo=ae+ 6 , , 

   ca=ae+ 8 ,+ 62, (30) 

    do=ae+2 6 , , 

    eo=ae+2 o ,+ 62, 

   fo=ae+2 a ,+28 2, 

where 

   c ,=T(wy3-Ys), (31) 

   62=h(w2Y,-2wY3+Ys). 

I f the quadratic utility indicator (3) is a negative form, then 6 2 is 

negative. These constraints are tested in the later sections.

                         3. Data 

The data used for the measurement is the 1979 cross sectional Family 
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Income and Expenditure Survey_ of Japan. For the earlier study using this 
data and particularly for the details of the data, see Matsuno(1988b). 

Models and estimation methods in the present analysis are different from 

the earlier ones. 

   Data 1 is a set of observations, from the survey, of 16236 households 

with an employee husband and one potential earner (a wife) , with or with-
out children of schooling age. Data 2 is a set of observations of 3203 

households with an employee husband and two potential earners (a wife and 

a child of age over 16). Data 3 is a set of observations of 1211 house-

holds with an employee husband and three potential earners (a wife and 

two children of age over 16). Data 1 is used for the measurement of Model 

1, Data 2 for Model 2 and Data 3 for Model 3. 

   We take the husband's income only from his employment (in the preced-

ing year of the survey) for the observation of principal earner's income 

I. The households are classified into 15 income classes according to this 

observation. The households in the first class have I-value under 50 

( x 0000) yen and in the second class I lies in the interval (50 , 100), 
etc. 

   Whereas FIES records information about employment status , whether 
an employee is a full-time worker or a part-time worker , we do not use 
this information. Potential earners recorded as looking for a job are 

regarded as having no job or choosing no market work.

                4. Maximum Likelihood Estimation 

   We first estimate the parameters by maximum likelihood methods . The 

results will be used for formulating prior distributions in the later 

sections and for comparison with Bayesian estimates .
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4.1 Likelihood function 

   The likelihood functions for Model 1, 2 and 3 are special cases of 

                           nkk n1k n2k nJk 
    L(8 In)= -- - - Pi k P2k , . • PJk , (32)                 =1 n1k! n2k! ... nik! 

where 

    P1k =1 -(D (8 10+8 11Ik), 

   P2k =0 (8 10+8 11Ik) - I (8 20+ 8 21Ik), (33) 

    PJ 1 k =O (8 J-20+ 8 J-21Ik) I (8 J-10+e J-11Ik), 

    PJk =(D (8 J-10+ a J-1 1Ik). 

   Model 1 has J=2 and 

     8 1 e=ae , 8 11=a1 , 

Model 2 has 3=3 and 

     81o=be, 811=b1, 820=ca, 821=C1, 

and Model 3 has J=4 and 

    81o=de , 811=d1, 820=e0, 821=e1, 8a0=f0, 831=f1 . 

4.2 Estimates 

   The estimtes and test statistics by maximum likelihood methods are 

given in Table 1. The sign ^ in Table 1 indicates estimtes by maximum 

likelihood methods. The figures in ( ) are the standard errors of the 

estimates and the figures in [ ] are (asymptotic) t-values . The test 
statistic for the goodness of fit is Pearson's x 2 associated with degree 

of freedom (d.f.) and P-value. 

   For Model 1, the estimate of the coefficient a1 is sufficiently sig-

nificant. The P-value indicates satisfactory fit . The (asymptotic) var-

iances of the estimates of ae and a1 are, respectively , 
   0.00104, 9.3186E-09. (34) 

   For Model 2, the estimates of the coefficients c1 and b1 are both 

significant. The x 2-value for the goodness of fit is not good. The fit 
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is not good particulaly for the lower income classes. And the variances 

of the estimates of ca, c,, bo and b, are, respectively, 

   0.00591, 4.4721E-08, 0.00395, 2.2573E-08. (35) 

              Table 1. Maximum Likelihood Estimates 

    Modell Estimates I x 2 d.f. P-value 

     I I ao'= .090631 a,-=-.0021439 121.244 13 0.073-0.055 

        
1 (.32287E-01) (.96533E-04)1 

        I [2.80701 [-22.2091 1 

       ---------------------------------------------------------------

     2 I be^=1.2297 b,"=-.0025566 140.357 26 0.039-0.031 

        
I (.62814E-01) (.15024E-03)1 

        I [19.577] [-17.017] 1 
             1--------------------------------I 

          
I co'=-.43684 c,^=-.0021006 I 

       
I (.76857E-01) (.21147E-03)I 

       
I P5.68381 P9.9332) 1 

      -------------------------------------------
--------------------

     3 I de-=2.0421 d,'=-.0030841 1 35.417 39 0.653-0 .607 

       
1 (.12381) (.26584E-03)1 

       
I [16.494] [-11.601] 1 

             1--------------------------------I 

         
I ee'= .74319 e, =-.0026020 I 

       
1 (.10254) (.24886E-03)1 

        
1 [7.24791 [-10.455] 1 

             1--------------------------------1 

         
I f©"=-.62730 f,"=-.0020717 I 

       1 (.13601) (.36375E-03)1 

        
1 [-4.6122] [-5.6953] 1 

   Data 3 has a smaller sample size. Therefore , the t-values for Model 3 
are smaller than the former two models. But they still show significant 

results. The x 2 shows good fit. And the variances of the estimates of 

fe, f,, eo, e,, do and d, are, respectively, 
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0.01850, 1.3231E-07, 0. 01051 , 6.1933E-08, 0.01533, 7.0671E-08. (36)

4.3 Test(1) 

   We test the theoretical restrictions (29), 

    a,=b,=c,=d,=e,=f,. 

We have estimates of b,-c,, d,-e, and e,-f, in Fig. 2. 

P-value for testing the hypothesis; b,-c,=0, is 0.00417 

is significant. For Model 3, the hypotheses d,-e,=0 and 

significant, if we test them separately.

For Model 2, The 

. The hypothesis 

 e,-f,=0 are not

       Table 2. Test Statistics for Theoretical Restrictions 

                          Estimates 

                      (b, -c, 00045602 
                         (.00022395) 

                              [-2.0363] 
                               -----------------------

                          (d, -e, )''=-. 00048211 
                         (.00028558) 

                              [-1.6882] 
                               -----------------------

                         (e,-f,)"=-.00053030 
                         (.00035941) 

                             [-1.4755] 

   Wald's test statistic for testing the joint hypothesis; d,-e,=0 and 

e,-f,=0, is 

    x l=6.024169, d.f.=2, P-value=0.0492. (37) 

Therefore, the hypothesis is significant at 5% level . 

   We can get estimats of a,, b, , c, , c, , d, , e, and f, by applying 

maximum likelihood method simultaneously to Model 1, 2 and 3 , and get 
Wald's statistic for the joint hypothesis; a,-b,=0 , b,-c,=0, c,-d,=0,
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d,-e,=0 and 

   x2=17. 

This means

 ei-f,=0. 

649877, d 

the joint

The values are 

.f.=5, P-value=0.0034. 

hypothesis is significant.

(38)

4.4 Test(2) 

    From (30), we can set forth a regression equation 

      be-ao 1 0 1 

      ce-ae 1 1 a , 

      do-ao = 2 0 + error term. 

      ee-ao 2 1 82 

       fe-ao 2 2 

The estimates in Table 1 are substituted as observations 

hand side variables. Applying the least squares method, 

of 8 t and & 2, that is, 

    6,- =1.0137, 62-=-1.4011<0. 

This shows that 6 2 is estimated negative and consistent 

tical restriction mentioned in Section 2.6.

for the 

we get

left

(39)

estimates

with the theore-

5. Bayesian Procedure

5.1 Specification of Prior distributions 

   We consider applications of Bayesian methods for estimating parame-

ters in our models. As shown and tested above, the three models have 

common parameters. Therefore, estimates of one of the models can be used 

as prior information in estimating the other. We apply Bayesian methods 

in the following ways. 

   1) We first estimate Model 1 using Data 1 and maximum likelihood 

methods, and get also the variances of estimates . These statistics may
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be used to specify the hyper-parameters of prior distributions in next 

Bayesian estimation of Model 2. 

   2) The information obtained in 1) is used as prior information about 

the parameters of Model 2. The information is combined with Data 2 by 

Bayesian methods to get posterior distributions of the parameters of 

Model 2. 

   3) The posterior distribution for Model 2 obtained in 2) is combined 

with Data 3 in the next estimation for Model 3 by Bayesian methods. 

   In formulating prior distributions in this study, we assume that 

parameters to be estimated are independently distributed. Furthermore, we 

assume uniform distributions for the constant terms of the thresholds and 

normal distribution for the slope coefficients. The hyper-parameters of 

normal prior distributions are specified in the way explained in 1), 2) 

and 3) above. 

    Bayesian procedures in general take account of stochastic informa-

tion expressed as prior distributions into estimation. In addition, the 

Bayesian methods here also utilize exact information. In the calculation 

for getting Bayesian estimates, we impose exact theoretical restrictions, 

which are given in (29). 

5.2 Evaluation of posterior distributions 

   The models to be estimated are type of qualitative response. Zellner 

and Rossi (1984) consider Bayesian estimttion methods for models of this 

type. Features of their method are: 

   a) The method deals with dichotomous response models. 

   b) The method is based on an experiment without replications. Samples 

are not classified. 

   c) The method mainly employes normal distributions for prior distri-

h)itions. 

   d) They obtain posterior distributions by approximating it by a 
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normal distribution. (They also consider numerical integrations for an 

exact method.) 

We will adopt their method with slight modifications for a) and b) . And 

their method is now summarized. 

   The likelohood functions L(9 10) for the models are of form (32) . 
Here, "0" stands for observations. Denoting a prior distribution by 

7r(9), Bayes' formula gives the posterior distribution 

   7r(9I0)a,c(9)L(9I0). (40) 

This posterior distribution is maximized at the point 9 = 9 - which is 

defined by and obtained by solving the equation 

   alogrr(9I0)/a 9=0. (41) 

   We approximate the posterior distribution by a normal density func-

tion. Expanding the posterior distribution at the point 9 = 9 - by using 

Taylor's formula, we have 

   logzc(9 10)_logir(9-I0) + (9-9-)' alog,r(9`10)/a 9 

               +--(9-9..), , a2log7r (9. 10)] (e-9 _) . (42)                         aeae' 

Since the second term of the right hand side is zero in view of (41) , we 
have 

    log?r(9I0)=1og7r(9-I0) - -(9-9`)'H(9-9 (43) 

where 

    H=-a2log,r(9 Io)/a e a 9'. (44) 

Therefore, the approximated posterior dstribution of 9 is 

    7r(19 10) _ constxexp{-+(9-9")'H(9-9')} , (45) 
which is a normal density function with mean vector 9 " and variance -

covariance matrix H-' . The approximated posterior mean 9 ' is used as an 

Bayesian estimate of 9 and its variance-covariance matrix is H-1. 
   After specifying the prior distributions , we get 9 ° and H-' by 

numerical methods. Actually , we used Newton-Raphson method to get the 
statistics.
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6. Bayesian Estimates

  We 

Table

present Bayesian estimates in this section. They are summarized in 

3.

6.1 Model 2 

   Prior distribution: To get a prior ditribution for Model 2, we esti-

mate Model 1 by maximum likelihood method. The result has been given in 

Table 1 and is regarded as Bayesian estimates with a diffuse prior. The 

result of estimation means that the (posterior) distribution of the 

parameter a, is 

    a, ^-N (a, 6 a 2) =N (-0.0021439, 9.3186E-09). (46) 

This can be used as a prior information for later Bayesian estimations of 

b, and c,. For the prior distributions of b, and c,, we assume that they 

are independently normally distributed, 

    b,^-N(b,', 6 b2), (47) 

    c,- N(c,-, 6.2). 

From the restriction (29), a,= b,=c,, we set forth numerical values 

    b, -= -.0021439, O b2=6 a 2=9.3186E-09, (48.a) 

    c, -= -.0021439, 6 C2=6 a 2=9.3186E-09. (48.b) 

   As for the constant terms b0 and c0, we do not use any information 

obtained at the first stage estimation of Model 1, because we have no 

theoretical basis for that. We assume that be and ce are uniformly and 

independently distributed, that is, 

     (be, ce)=const (49) 

is the prior for be and c0, and we assume independence of all parameters . 

   The product of (47) and (49) with hyper-parameters (48.a,b) is the 

prior for b and c. The prior distribution obtained thus and the likeli-

hood function (32) are combined to give the posterior. Its approximation
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is obtained as the normal density (45). 

                   Table 3 Bayesian Estimates 

                    Model <Procedure> 

Estimates Standard Error t-value Estimates Standard

                   Model 2 
 be"=1.1187 (.38800E-01) [ 28.832] 

 c0 =-.43489 (.41358E-01) [-10.515] 
                   Model 2 

 b0^'=1.1060 (.38024E-01) [ 29.086] 
 ce^'=-.39472 (.39972E-01) [-9.8748] 

------------------------------------

                   Model 3 
 d0-'=1.6799 (.56823E-01) [ 29.565] 

 ee^'=.57355 (.50133E-01) [ 11.441] 
 f e ̂ '=-. 61958 (.61540E-01) [-10.068] 

                   Model 3 
 dew=1.6793 (.55234E-01) [ 30.403] 

 ee-'= .60113 (.50245E-01) [ 11.964] 
 fe^'=-. 57642 (.61524E-01) [-9.3691] 

                   Model 3 
 d0-'=1.7044 (.52546E-01) [ 32.437] 

 ee-'= .60439 (.46669E-01) [ 12.951] 
 f e ̂ '_-.58445 (.59017E-01) [-9.9030] 

                   Model 3 
 de^'=1.7018 (.51527E-01) [ 33.027] 

 ee .62158 (.46872E-01) [ 13.261] 
 fe^'=-.55769 (.59266E-01) [-9.4099] 

   Estimates: The estimates are the 

posterior distribution. Their values 

in Table 3 <1-a>. The variances of c

                                             ----------------------

Co,
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<Procedure> 
Estimates Standard Error t-value 

<1-a> 

b, `=-.0022726 (.80250E-04) [-28.319] 
c,`=-.0021172 (.87800E-04) [-24.114] 

<1-b> 

b, '=-.0022411 (.78579E-04) [-28.521] 
 c, =b,` 

-------------------------------------

<2-a> 

d,`=-.0022499 (.89623E-04) [-25.104] 

e,`=-.0021764 (.88678E-04) [-24.543] 

f,`=-.0021237 (.93292E-04) [-22.764] 

<2-b> 

d,`=-.0022507 (.87011E-04) [-25.867] 

 e, =d, ` 

f, =d,` 
-------------------------------------

 <3-a> 
d, `=-.0023083 (.74720E-04) [-30.893] 
e,`=-.0022573 (.74170E-04) [-30.434] 
f,`=-.0022248 (.76814E-04) [-28.964] 
<3-b> 

d,'=-.0023038 (.73196E-04) [-31.474] 

mean vectors of the approximated 

and standard deviations are given 

a, ci, be and b, are, respectively,



   0.00171, 7.7089E-09, 0.00151, 6.4401E-09. (51) 

Compared to the standard errors of the maximum likelihood estimates in 

Section 4, these values are smaller. 

   Testing: We test the hypothesis; b,-c,=0, which was rejected when we 

used maximum likelihood estimates in Section 4. Based on the Bayesian 

estimtes, we have the distribution of b,-c,, 

   b,-c, ^-N(-.00015539, .00011542"). (52) 

This shows that b,-c, approximately lies in the 1-sigma range from zero. 

Therefore, the hypothesis is not significant. 

   Estimation with exact restriction: Then we estimate the parameters 

under the exact restriction b,=c,, which is shown not significant. The 

prior distribution for the parameters b0, c0 and b,(=c,) is obtained 

again by (47), (48.a) and (49). The posterior distribution is now maxi-

mized under the constraint b,=c,. The estimates and standard deviations 

for b3, b, and c0 are given in Table 3 <1-b>. Their variances are, 

respectively, 

   0.00160, 6.1747E-09, 0.00145. (53) 

The variances are smaller than those given in (51). The approximated 

posterior distribution of b, under the exact restriction is 

   b,(=c,)-'-N(-.0022411, 6.1747E-09). (54) 

6.2 Model 3 

 6.2.1 Estimation (1) 

   Prior distribution: We have given the distribution (46) of a, which 

is obtained by maximum likelihood method using Data 1. This can be used 

for the prior of d,, e, and f, when estimating Model 3, since we have 

restrictions a,=d,=e,=f,. Therefore, we assume 

   d,^-N(-.0021439, 9.3186E-09), 

   e,--(-.0021439, 9.3186E-09), (55) 

   f, N(-.0021439, 9.3186E-09), 
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for the prior of d,, e, and f,. Furthermore, we assume that the constant 

terms of the model are uniformly and independently distributed. We here 

do not take any information contained in Data 2 to formulate the prior of 

the parameters d, e and f. 

    The Bayesian estimates are calculated in the same way as in Section 

6.1. They are given Table 3 <2-a>. We find that the estimates of d,, e, 

and f, take close values each other. The variances of fe, f,, eo, e,, do, 

and d, are, respectively, 

   0.00379, 8.7034E-09, 0.00251, 7.8637E-09, 0.00323, 8.0323E-09. (56) 

The variances are smaller than those of the maximum likelihood estimates . 

   Testing: From the posterior distribution, we have the distribution of 

d,-e, and e,-f,, 

   (d, -e,) ^-N(-0.000073485 0.000122772), (57) 

   (e,-f,) ^-N(-0.000052744 0.000126652). 

This shows that the differences d,-e, and e,-f, are not significantly 

different from zero. 

   Estimation with exact restriction: We can estimates d, e and f with 
exact restrictions d,=e,=f,. The parameters to be estimated are now do, 
e©, f© and d,. The values of hyper-parameters are given in (46) . The pos-
terior distribution is maximized under the constraints di=e,=f, . The 

estimates and the standard deviations are given in Table 3 <2-b>. The 
variacnces of f©, d,(=e,=f,), e0 and do are 

   0.00379, 7.5709E-09, 0.00252, 0.00305. (58) 

It is shown that the variance of d, is smaller than those given in (57) , 
but the variance of e, is not smaller. 

 6.2.2 Estimation (2) 

   The results of Estimation (1) utilize the information o4 Data 1 and 3 

as well as theoretical information or restrictions . But they do not con-

tain the information from Data 2. We consider the estimation which might 
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incorporate the information from Data 1, 2 and 3. 

   Prior distribution: We have given estimates in Table 3 <1-b>, which 

are Bayesian estimates from Data 1 and Data 2. From those estimates or 

from (54), we see that 

   bl (=c1) ̂ -N(-.0022411, 6.1747E-09). (59) 

This can be used as the prior for d1, e, and f1 of Model 3. Furthermore, 

we have theoretical restrictions b,=c,=d1=e,=f1. Therefore, we construct 

the prior for d1, ei and f, as 

   d1-N(-.0022411, 6.1747E-09), 

   ei -N(-.0022411, 6.1747E-09), (60) 

   f1---N(-.0022411, 6.1747E-09). 

We assume that the constant terms of the model are independently and uni-

formly distributed. The prior distribution obtained in this way contains 

all the information in Data 1 and 2. 

   Estimates: In the same way as above, we calculate the estimates. They 

are given in Table 3 <3-a>. The variances of fo, d,, eo, e,, do and f, 

are, respectively, 

   0.00348, 5.9004E-09, 0.00218, 5.5012E-09, 0.00276, 5.5830E-09, (61) 

which are smaller when compared to those given in (56). 

   Testing: To test the hypotheses d,-e,=0 and e,-f,=0, we get, from the 

posterior distribution, that 

   dl-e, ^-N(-0.000051007, 0.000103382), (62) 

   e,-f,--N(-0.000032457, 0.000105622), 

This shows that the hypothese are not significant. 

   Estimation with exact restriction: Provided that the theoretical re-

striction d,=e1=f1 holds, we assume, from Table 3 <1-b> or from (54) , 
   dl(=e,=f,)--N(-.0022411, 6.1747E-09), (63) 

for the prior of d,(=e,=f1). Futhermore, we assume that the constant 

terms do, eo and f0 are independently and uniformly distributed . 

   The Bayesian estimates and their standard deviations under this prior 
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are given in Table 3 <3-b>. The variances of fo, d,(=e,=c,), ee and 

are 

   0.00351, 5.3576E-09, 0.00220, 0.00266. 

The variance of d, is the smallest of all that obtained so far . The 

estimates contain all the observed and the theoretical information .

de

(64)

                 7. Experimental Calculations 

   Based on the estimated parameters, we make calculations concerning 

the non-principal earners' labor supply probabilities to derive theore-

tical implications of the models. 

7.1 Labor supply spectrum 

   From Model 1, theoretical values of the labor supply probability or 

labor participation rate of households with one potential earner are cal-

culated using the estimated parameters. In this case, the maximum likeli-

hood estimates of Section 4 are used for the calculation . The values are 

illustrated in Fig. 3. It is noted that the principal earner's income I 

is scaled vertically in the figure. The probability P2 at the level of 

1=0 is 0.536 and is 0.0101 at I=1125(x 0000 yen/year) . The probability is 

negatively correlated with or a decreasing function of the husband's 

income over the income range. 

   For Model 2, the theoretical restriction bi-c,=0 is not significant . 
Under this restriction, the condition 

  00>y,2>Y23>-oo (65) 

is satisfied at every income level. Since (65) is the necessary and 

sufficient condition (Theorem 1) for P,>0 , P2>0 and P3>0, we may conclude 
that the three options of Model 2 are chosen with positive probabilities 

at every income level. If we adopt the estimated result b, <c, in Table 3 
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<1-a>, we have 

    W>y23>YS 3>Y] 2>-CO (66) 

at income levels above I=(1.1187+.43489)/(-.0021172+.0022726)=9997. For 

households having income higher than 9997, there will be no possibility 

of choosing one-person employment and there will remain two possibilities 

of no-person employment and two-person employment. However, our data do 

not include households with husband's income higher than 9997. So, for 

the data year, we do not have the possibility that any of the options is 

not identically chosen. 

       Fig. 3 Labor Supply Probability of One Potential Earner 

       0.01014 0.53611 
I I-+------------------------------------------------------- +-I 
0 I *I 
75 I * I 
150 1 * I 
225 I * 1 
300 I * I 
3 75 I sx I 
450 I * I 
525 I M P2 I 6
00 I * I 

675 I 
750 I ~x I 
825 I * I 
900 I ax I 
975 1 * I 
1050 I * i 
1125 1* I 

           I-+-----------------------------------------------------------+-I 

   From Model 2, the three probabilities P,, P2 and P3 are calculated 

with the estimates of Table 3 <1-b>. They are given in Fig. 4. The prob-

ability P3 takes small values over the range, and the probability P2 

takes large values. The probability P2+P3 of one or two person employment 

is quite large. P2+P3 and P3 are found to be decreasing functions of 

ii,come I exept for the lower income classes, where P2 is an increasing 

function of I. If income I reaches at the average level, P2 is a decreas-
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ing function of I and takes small value. 

      Fig. 4 Labor Supply Probabilities of Two Potential Earners 

       0.00177 0 .86564  I I -+------------------------------------------ -----------------+-I 
0 I + # *I 
75 I + # * 1 
150 I P3 + + # 
300 I +                               # # 
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5 25 I + # * I 
600 I + # * I 
675 I + #* 1 
750 1 + # * I 
825 1 + #* 1 
900 1 + 2 
975 1 + #* I 
1050 1+ 2 
1125 1 + 2 I I 

           I--------------------------------------------------------------- I 

   Based on the Bayesian estimates of Model 3 in Table 3 <1-a> , the 
hypothesis d,=e,=f, is not significant. Therefore , we see that the in-
equality 

     00>y, 2>Y23>y34>-o0 (67) 

holds at any income class. In view of Theorem 1, the four probabilities 
P,, P2, P3 and P4 are all positive at any income level . We see no income 
range where any of them becomes zero . If we adopt the estimates by the 

maximum likelihood estimation, then the inequality y,2<y23 holds for 

income level above 2584. The probability P3 is zero for the classes with 

income beyond this level. In addition , the inequality y,3<y24 holds for 
households with income above 2655. The probability P2 is zero and the 

probabilities P, and P3 are positive for households with income beyond 

this level. But our data do not include observations of households with 

income of this high level. We may conclude that the four probabilities 

are positive for households within the normal income range . 
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    The theoretical values of the four probabilitites of Model 3 and 

their combinations are calculated and illustrated in Fig. 5, using esti-

mated parameters of Table 3 <3-b>. It is almost certain that at least one 

non-potential earner of lower income households paticipates in the labor 

force. We find that the probability of two-person participation is possi-

bly as large as 50% and that the probability of three-person participa-

tion is small. It is noted that the combinations of probabilities, P4+P3+ 

P2, P4+P3 and P4, are decreasing functions of income I, and that there is 

an income range where the probabilities P3 and P2 are incresing functions 

of I. But, if income I becomes large enough, then P3 and P2 become dec-

reasing functions of I. 

     Fig. 5 Labor Supply Probabilities of Three Potential Earners 

       0.00082 0 .95560 .I I-+------------------- ---------------------- ------------------+-I 
0 I @ # $ + *I 
75 1 # @ $ + * 1 
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900 1 # $+ @ * I 
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1050 I#2 @* I 
1125 1 # 2 @ * I I 

           I-+-----------------------------------------------------------+-I 

7.2 Income elasticity 

   We calculate the elasticity of probabilities with restpect to the 

change of the principal earner's income I. For Model 1, the formula is 

   (a P2/ a I) (I/P2)= 0 (a0+a, I)a, I/P2<0 (68) 

The maximum likelihood estimates are used for the calculation . The calcu-
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lated elasticity 

response 

observed 

The elasticity a 

of I yields

I 
0 
75 
150 
2 25 
300 
3 75 
450 
5 25 
600 6 7

5 
750 
8 25 
900 
9 75 
1050 
1125

   For 

O               O (   (8P ( ) 

   (8P3/ a I) (I/P3)=9~ (cO+CI I)CII/P2<0 

   { a (P2+P3)/ aI} {I/(P2+P3)}=0 (bO+b,I)b,I/(P2+P3)<0 

The estimates in Table 3 <1-b) are used for the calculations. The calcu-

lated elasticities are illustrated in Fig. 7. We see that the elasticity 

of P2 is negative over the range except for lower income classes and that 

it takes large negative values at higher income classes. The observed 

average income is 384.03. The elasticities of P2+Ps, P3 and P2 at this 

income level are respectively -0.5582, -1.4917 and -0.3596. The probabil-

                                 -29-

       is given in Fig. 6. Households with higher income 

greatly when the principal earner's income becomes large. The 

 (weighted) average of the principal earner's income is 332.58. 

sticity at this income level is -0.87829. Therefore, 1% increase 

   0.88% reduction of the labor supply probability. 

Fig. 6 The Income Elasticity of Labor Supply Probability; 

           A Case of One Potntial Earner 
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Model 2, the formulae for calculating the income elasticity are 

2/ a I) (I/P2)={               be~+b, I) b,-                       (cg+c,I)ct}I/P2=?                                          69



ity of two-person participation responses greatly for households with 

two potential eaners. That is, this probability decreases most when the 

income increases. 

       Fig. 7 The Income Elasticities of Labor Supply Probability; 

                 A Case of Two Potential Earners 
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   For Model 3, we have similar formulae to calculate the income elasti-

cities. The calculated values by using the parameters in Table 3 <3-b> 

are illustrated in Fig. 8. The elasticities of P2 for income classes up 

to 525 are positive and their average is positive. That of P3 is positive 

for the two lowest income classes. The observed average income is 401.08. 

The elasticities of P2+P3+P4, P:3+P4, P4, P2 and Pa at this level are , 

respectively, -0.3485, -0.92388, -1.77698, +0.19910, and -0.73461. This 

shows that P4 is most negatively elastic. If the income gets large , then 

P4 decreases substantially and P2 substitutes it.
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Fig. 8 The Income Elasticites of Labor Supply Probability; 

          A Case of Three Potential Earners 
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position of household members 

number of labor force paticipants can be calculated since the 

describe the labor supply in terms of "man". Let rk be the number 

     with one potentail earner, s~, be that of households with 

     earners and tk be that of households with three potential 

in the k-th income class. Then the number of labor force partici-

k in the k-th class is 

rk 

 ~ (a©+a~I k ) 

sk {~ (bO+bllk)-~ (C0+C1 Ik)}+2$k (CO+CI Ik) (70) 

tk {~ (do+d,Ik)- ~ (ee~+e, Ik)}+2tk { ~ (ee+e t lk)-~(fe+f,Ik)} 

                                           +3tk.                                          4) (fo+f I 10 
calculation is based on the estimates of the parameter a by max-

       method, and those of b and c given in Table 3 <1-b> , and 
f d, e, and f given in Table 3 <3-b>. A histogram of distribution 

s plotted with a sign ' in Fig. 9. The observed number of house-

s 20650 and the observed number of potentila earners is 26275 . The
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calculated 

is 31.357%.

total number of participants is 8239 . The participation rate
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  Fig. 9 The Effect of 
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   Then, we consider the effect that the change of household composition 

may cause to the labor supply. For argument purpose, let us assume that 

the size of a household gets smaller. For instance, let us assume that 

a half of households with two potential earners become households with 

one potential earner, and that a half of the households with three poten-

tial earners become those with two potential earners. The situation is 

described by letting rk become rk:+(sk/2), Sk become Sk+(tk/2) and tk: 

become (tk/2). Other things like a distribution of principal earners' 

income are kept the same. 

   Making use of (70) and the same parameters set as above, we can get 

the number of household members who choose to be employed after the 

change of household composition. The number Sk is plotted in Fig. 9 with 

a sign "+". The number of labor force paticipants now is 7158 or a dec-

rease by 1081. The number of households stays the same and is 20650. The
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total number of potential earners is now 24068. Therefore, the labor 

force participation rate is 29.74%, or 1.62 point decrease. 

7.4 Work hours 

   Applying the least squares method to the regression equation (39) 

with the Bayesian estimates for the left hand side variables of it, we 

obtain the estimates of a , and s 2, 

      6 , '=.85323, d 2~=-1.2039. (71) 

With these estimates, we can evaluate the effect of the change in working 

hours to the labor supply probabilities . 

    Fig. 10 The Work Hours Elasticity of Labor Supply Probability: 

                  A Case of One Potential Earner 
       -1 .60156 

I i-+-------------------------------------------------------------
0 I * II 
7 5 I x I I 
150 I * I i 
2 25 I I I 
300 I * I I 
3 75 I * I I 
450 I * P2 I I 
525 I 0 * I I 
675 I a~ I I 
750 I * I I 
8 25 1 * i I 
900 I * I I 
975 I * I I 
1050 I x I I 
1125 1 * I I 

          i-+-----------------------------------------------------------+-I 

   For Model 1, we calculate the elasticity of the probability P2 with 

respect to work hour change. We have 

   (a P2/ a h) (h/P2)= ¢ (ao+a, I) a 2/2P2 
               =- .60195 95 (.0906319-.00214391 k)/P2<0 (72) 

This shows that if work hours get shorter then the labor supply probabi-
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lity of one potential earner household gets larger. The calculated values 

are given in Fig. 10. The elasiticity is -0.74148 at the average income 

level. The 1% decrease in work hours causes 0.74% increase of P2. 

   For Model 2, we have 

   ( a Pa/ 8 h) (h/P3)= O (co+c, I) a 23/2P3<0 

   { a (P2+P3)/ a h} {h/(P2+Ps)}={ 0 (b0+b1I) a 2}/2(P2+Ps)<0 

   ( a P2/ 8 h) (h/P2)={ 0 (b0+b, I) 6 2-3 0 (c0+ci I) a 2) /2P2=? (73) 

for calculating the elasticities. The sign of the third elasticity is not 

uniquely determined. These values are given in Fig. 11. The elasticities 

at the average income level are -3.13001,-0.39038 and +0.19219. That of 

P2 is positive at low and mid income classes. That of P3 is negatively 

large, since the change in work hours effects two-hold to the two poten-

tial earners.

I 
0 
75 
150 
2 25 
300 
3 75 
450 
5 25 
600 6 75 

750 
825 
900 
9 75
1050 
1125

Fig . 11 The Work Hours Elasticity of Labor Supply 

           A Case of Two Potential Earners 
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given in

Model 3, we have 

Fig. 12. At the

similar formulae, which provide the elasticities 

lower income classes, the elasticities of P2 and
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P3 are positive. The probabilities P2+P3+P4, P3+P4 and P4 have negative 

elasticities. The elasticities of P2+Pa+P4, P3+P4, P4, P2 and P3 at the 

average income level are -0.22703, -1.80559, -5.78813, 1.27534 and 

-0 .92202. P4 is most elastic for the change in work hours, since the 

change of work hours affects three-hold to the three suppliers. It is 

noted that P2 has a positive elasticity over the fairly wide range. 

   Fig. 12 The Work Hours Elasticity of Labor Supply Probabilities; 

                A Case of Three Potential Earners 

      -10 .29961 0.0 2.41313 
I I--------------------------------------------------------------- I 
0 I # + *1 $ @ 1 
75 I # + *1 $ @ 1 
150 

# + 21 @ 2 I P4 # + $ @ I 
300 I # + $*1 @ 1 375 I # P3+P4+ 

$ $ *1 @ I 5 # + @ 
525 I # + $ * I @ 1 
600 1 # + $ * 1 @ P2 1 
675 1 # + $ I @ 1 
750 1 # + $ P3 * I @ 1 
825 I # +$ * I@ 1 
900 I # + $ * @ 1 
975 I # + $ * @I i 
1050 I # +$ ~z @ 1 I 
1125 I # +$ -- P2+P3+P4 ~x @ I I            1-+---------------------------- ----------------+----------+-I 

   We have a formula (70) to calculate Sk. We then calculate the total 

number of labor participants S by summing Sk. Multiplying S by work hours 

h, we have the total amount of labor sypply x =Sh in terms of man-hours . 
By (70), we calculate the elasticity of total amount of labor supply with 

respect to work hours change. The reduction of work hours may have two 

effects to x. The one is, of course, a negative effect to h and the 

other may be a positive effect to the labor supply probabilities . Overall 
effect is calculated using the Bayesian estimates and is 

 (a x/ a h) (h/ x)=. 21412. (74) 
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That is, 1% decrease in work hours causes 0.214% decrease of the total 

labor supply. 

   We have indirectly estimated the parameter (52 to find the effect of 

work hour reduction by making use of the three models. It is not possible 

to estimate C T2 only by using one of the models and cross section data. 

Generally a set of cross section data over some time periods is necessary 

to estimate S 2.

7.5 Wage rate 

   We can not deal with effects of wage rate change without estimating 

the parameters V in the utility function or without estimating marginal 

utility of income. For this matter too, we have to have sets of cross 

section data over many time points.

8. Concluding remark 

   We have estimated Model 1, Model 2 and Model 3 by maximum likelihood 

methods and tested the theoretical restrictions based on maximum likeli-

hood estimates. The theoretical restrictions turned out to be signifi-

cant. When we uesed Bayesian estimates to test the restrictions , they are 

not significant, although we did not use exact Bayesian methods of hy-

pothesis testing with Bayes factors. 

   When classical statistical methods were used, we tested the theore-

tical restrictions without using prior information. On the other hand , 

when we used Bayesian methods, we utilized prior information about the 

parameters and got different conclusion. For instance, in estimating bi 

and cl and testing the equality, we utilized prior information about b, 

and cl, which was obatained from prior estimation of a, with a larger 

set of samples. This might be a cause of the different conclusion . 

   By building the three models within a systematic or autonomous frame-

work, we derived the theoretical restrictions for the parameters . This
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was the basis for using Bayesian procedure for formulating prior distri-

butions. Or else, the prior distribution had no basis to be incorporated 

in Bayesian estimates. It should be noted that autonomous model building 

clarifies relations among parameters in a model and relations among par-

ameters in different models. This kind of information is hoped to provide 

theoretical bases for using prior information by Bayesian procedures.
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