慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	An econometric analysis of the labor supply of married females in Japan ：a model of the choice betweenpart－time and full－time employment opportunities
Sub Title	
Author	樋口，美雄（Higuchi，Yoshio） Matsuno，Kazuhiko
Publisher	Keio Economic Observatory（Sangyo Kenkyujo），Keio University
Publication year	1985
Jtitle	Keio Economic Observatory occasional paper．E No． 3 （1985．5）
JaLC DOI	
Abstract	The purposes of this study are to construct a labor supplymodel for wives of employee households facing part－time and fulltimeemployment opportunities，and to carry an empirical test usingJapanese micro data files of the Basic Survey of EmploymentStructure for the two years 1974 and 1977．The study ischaracterized by three points：（1）We focus our attention primarilyon the labor supply behavior of married females to whom severalemployment opportunities are open．（2） Our model describessupplier＇s behavior exhibited in the decision to accept or rejectemployment opportunities．（3）Employment opportunities areclassified according to their working hours，such as full－time workand part－time work．
Notes	
Genre	Technical Report
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝AA10818580－00000003－0 001

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

$\mathrm{K}_{\text {но }} \mathbf{E}_{\text {conomic }} \mathrm{O}_{\text {вssrantory }}$

$\mathrm{O}_{\text {ccastonal }} \mathrm{P}_{\text {aper }}$

$$
\text { May } \quad 1985
$$

An Econometric Analysis of the Labor Supply of Married Females in Japan : A Model of the Choice between Part-time and Full-time Employment Oppotunities
by

Yoshio Higuchi

and

Kazuhiko Matsuno

$\mathrm{K}_{\text {но }} \mathrm{E}_{\text {сомоміс }} \mathrm{O}_{\text {вssrvatoory }}$

Occalional Paper

May 1985

An Econometric Analysis of the Labor Supply of Married Females in Japan : A Model of the Choice between Part-time and Full-time Employment Oppotunities
by

Yoshio Higuchi
and

Kazuhiko Matsuno

An Econometric Analysis of the Labor Supply of
 Married Females in Japan : A Model of the Choice between Part-time and Full-time Employment Oppotunities

Keio University	Yoshio Higuchi
Chuo University Kazuhiko Matsuno	

1.

Introduction
The purposes of this study are to construct a labor supply model for wires of emplogee households facing part-tine and fulltime employnent opportunities, and to carry an emirical test using Japanese micro data files of the Basic Survey of Epployent Structure for the two gears 1974 and 1977. The study is characterized by three points: (1) We focus our attention primarily on the labor supply behavior of married females to whomeral emplogeent opportunities are open. (2) Our model descibes suppliet's beharior exhibited in the decision to accept or reject emplogent opportunities. (3)Employent opportunities are classified according to their working hours, such as full-tine work and part-tive work.
(1) In most industrialized countries, for example the U.S. U.K. and France, a rapid increase in vomen's labor force participation ratio has been observed since the $1960^{\prime} s$. Compared with those countries, howerer, a peculiarity appeared in Japan in the U-shaped trend of the aggregate women labor force participation rate during the gears from 1960 to 1980. In Table 1 , we see that the women's participation ratio has actually declined during the gears 1960 through 1975. The declining trend then changed into an increasing trend after 1976, and the increasing women's labor force participation rate is still prevalent in Japan at this time.

This difference between Japan and the other industrialized
countries can be well understood if we dipide the Japanese fenale labor force into two different categories: the one category consisting of household-based workers (self-emploged workers and home handicraft and fanily workers), the other consisting of paid employees. These two categories showed different movents during the process of Japanese econonic growth. The U-shaped peculiarity is thought of as combined movents of the decreasing household workers and the increasing paid employees.
r-based
Japan experienced unripalled econonic growth during the period before the first oil crisis of 1973. Econonic grouth caused a drastic chage in the employment structure and rice versa. At the beginning of the economic growth, a large proportion of workers were householdbased workers in cottage industries and agriculture. For instance, in 1960 59.2\% of female narkers were self employed, home handicraft, or unpaid fanily workers. During economic grouth this figure dropped rapidly, reaching 40.2\% in 1975. This is a conmon fact of economic development. At the same time the number of female employees has gradually been increasing. During the time before the first oil crisis, however, the shrinkage of the labor force based on the farm and in the household dominated the rise of paid employment in the modern sectors. Accordingly, the aggregate women's labor force rate showed a decline from 54.4\% in 1960 to 45.7\% in 1975. This is the downward facet of the U-shaped trend, and the upward trend then follows. We may think of two influences of the oil crisis on the Japanese ferale participation ratio. One
is that the oil crisis slowed the decline of householduorkers. -basied The other is that the crisis accelerated the growh rate of enployees. These two influences combined into the fact that the aggregate wonen's labor force rate has continued to increase since the gear 1975.

In this way, the two categories showed quite different movements during dapanese ecomomic growth. Therefore when we analyze the labor supplymechaniss, these two types of job status must be distinguished. Otherwise the amalysis will produce a biased conclusion. We therefore confine ourselves to the study of labor supply defined a employment outside the home. And we leare aside labor supply such as self-employment, home handicraft, and unpaid family workers, for the mechanism of choice between labor supply in household and that towards the market is still anbiguous.
(2) It is more difficult for emplogees than for self-emploged workers to select their own working bours. We can imagine psychological and institutional pressures which make it difficult for employees to adjust working hours to their optimal ones for a given wage rate. The actual working hours in a day or a week are practically determined by the firm. The employment termis given not only by a wage rate but by a combination of wage rate and assigned working hours to which the emplogees are subject. Therefore suppliers cannot adjust their hours of work for a particular employment term. If sereral employment opportunities having fixed wage rate and assigned working hours are arailable in
the market, then suppliers may be to select one among then. (Obi (1983)) In addition, from our previous analysis concerning the optimal working hours, by using Japanese jearly working hours data, it is clear that there is not as large arange of working hours in Japan as in the U.S. (Higuchi and Hagami(1984)). Furthermore, even if there aight be a large varietg of working hours which are assigned by firas, the turn-over cost in Japan is more expensive than that in the U.S. Most Japanese firms have a seniority wage system. In this systen, the length of continuous serice in firmis influential in wage deteraination. If an eaployee suitches to another job in order to adjust his working hours to the optimus, he must be ready for a large decrease in his wage. In Japan the turnorer rate is rery low. We can sag that it is not proper in Japan to accept the model where a supplier selects his optimal working hours freely without paying regard to turn-oper cost. Consequently we set up a labor supply model of the framework where a wife makes a decision as to whether she accepts an offered emplogment opportunity or refuses it.
(3) As shown in Table 2, the number of part-time workers has increased remarkably under the circumstances where the emplogee participation rate was accelerating. The percentage of female nonagricultural emplogees whose working hours are less than 35 hours per week rose from 8% in 1960 to 20% in 1983. We present the model to clarify the mechanism of suppliers' choice between part-time and full-time employment. One may also note that the bulk of "part-
tine" workers in Japan work more or less regularly and their work pattern is not all that different from full-time workers. So we assune that the working hours of a part-tise job is assigned by the employer. In addition to these types of employment, suppliers can choose not to work in the marke The model denonstrates wive behavior concerning the choice anong the three alternatives.

2
Theoretical Formulation
2.1 We will consider the labor supply beharior of wipes to whon sereral employment opportunities are open. We consider in particular the case where two types of employment opportunities are offered on the firm-side. In rien of the present state of the labor market with increasing participation by part-time workers, ue assume that employment opportunities are classified into two classes of full-tine enployent and part-time emplogment. Wives are assumed to choose one of the two types of emplogment opportunities or to choose no emplognent. Therefore wives have three alternative options, which we call the full-time employment option, the part-time emplogent option, and the no-market work option. Our model based on the incone-leisure preference describe wives' labor supply behavior in this choice situation.

The above formulation implies discrete choice behavior. This is the basic presumption of our model. The wage rates of part-tine and full-time jobs are different. In most cases, it is obseryed
that the former is lower than the latter. There are two options which are specified pairs of working time and wage rate. We introduce into the \quad odel an institutional factor that the employnent opportunity is offered to the supplier with a fired wage rate and assigned working hours. This is contrary to the neoclassical franework where workers freely choose the optinal length of time to work under a fixed wage rate. In the present model, the worker can only accept or reject a particular employment opportunity, and if several opportunities are offered then the worker can choose one of thea taking into account utility maximization.
2.2 Denoting household income by X and leisure hours by Λ, the income-leisure prefernce of the household is presented by atility indicator $\omega(X, \quad \Lambda)$. To nake an empirical test possible, we adopt the utility indicator of quadratic form in income and leisure hours,

$$
\begin{equation*}
\omega(X, \Lambda)=\frac{1}{2} \gamma_{1} X^{2}+\gamma_{2} X+\gamma_{3} X \Lambda+\bar{\gamma}_{4} \Lambda+\frac{1}{2} \gamma_{5} \Lambda ? \tag{2.1}
\end{equation*}
$$

Here the household income X consists of guaranteed income I, which way be husband's incone andor property income, and of wipes' income, which is zero, when the wife accepts the no-market work option. And the leisure hours is the total dispensable hours T minus wive's labor hours which is zero if the wife accepts the nomarket work option. The r's are parameters characterizing the indifference curve.

We observe that wives's labor supply behavior results in different decisions eqen if they are considered as being in the same condition. That is, within a group of wiyes facing sinilar emplognent opportunities and having equal husband's incone, some wives choose emplogent opportunity and sone wives do not work in the market. To describe this variation of wives' beharior, we introduce into the model the stochastic nature of the inconeleisure preferences. For this purpose we regard the $\bar{\gamma}_{4}$ as a randor rariable reflecting the rariation of household preferences. Different households are assumed to have different values of $\bar{\gamma}_{4}$ We specify that $\bar{\gamma}_{4}$ is distributed as normal with mean $\bar{\gamma}_{4}$ and variance 6^{2},

$$
\begin{equation*}
\bar{\gamma}_{4} \sim N\left(\gamma_{4}, 6^{2}\right) . \tag{2.2}
\end{equation*}
$$

The "structural" parameters $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}, 6$ are final objects of our econometric inference, while the "reduced form" paraneters, uhich will appear later (2.29) as some combinations of the structural paraneters, can be intermediate objects.

The firms offer the two types of employment opportunities, and their employment terms are indicated by their wage rate and hours of working. For the full-time employment option, the employment term is denoted by a combination of wage rate $w, ~ a n d ~ w o r k i n g ~ h o u r s ~$ h, For the part-time employment option, the emplogent tern is denoted by a coubination of the wage rate w_{2} and working hours h_{2}
For the no-market work option, we use the convention of denoting its wage rate and working hours by $w_{0}=0$ and $b_{0}=0$ respectively. We
set an inequality $h,>h_{2}$ to mean that the full-tine employment option has longer hours of work.

In the empirical test which follows, we identify full-time emplogent as 35 hours or longer during a normal week, and parttime employment as less than 35 hours. For the wage rates, we see from our data that $w_{1}>W_{2}$. But this relationship between W_{1} and W_{2}, is not always necessary for our model to be formally valid.

The households bave three alternative options which are presented by pairs of variables $\left(w_{1}, h_{1}\right)$, (w_{2}, h_{2}) and (w_{0}, h_{0}). Again, the household is not assumed to have a possibility of selecting its optimal hours of work froma continuous range of hours. Instead, our model assumes that the household chooses on of the three alternative options depending on which gields maxime utility. Therefore, we will examine which one of the options gives the maximum. The choice of the household depends on the guarantted income I, the values of the wage rates, and the assigned working hours. These variables, $I, W_{1}, h_{1}, w_{2}, h_{2}$, as well as T constitute a set of eqogenous variables for the model. A set (population) of households faces these exogenous variables in common. The stochastic variable $\bar{\gamma}_{4}$, which is specific to each household, is also a determining factor of the household's decision.

In Fig. 1 the three options of full-tine employment, part-time employment and the no-market work option are illustrated as points a, b, and cespectively. Given the ralues of the exogenous variables, the shape of the indifference curpe determines the
utility maximing point. For the shape of the curve depends on the value of $\bar{\gamma}_{4}$ that each household has. In Figs. 2, 3 and 4, we present different shapes of the indifference curre, and they correspond respectively to three cases where the points c, b, and a give the manimutility. A household which has the value of $\bar{\gamma}_{4}$ giving the indifference curve of Fig 2, chooses the utility maximizing point c or the no-market work option. Similarly, a household in Fig. 3 chooses point b or the part-tine employment option. And a household in Fig. 4 chooses point a or the full-tise employnent option.
2.3 From the graphical illustration, we turn to an analigical discussion, which determines the option that a particular household chooses, and derives the probability that a particular option is chosen by a set of households. For this, consider a household having a specific value of $\bar{\gamma}_{4}$.

If this household chooses the full-time employment option, it must hold that utility at point a is greater than that at points b and c, i. e. ,

$$
\begin{align*}
& \omega\left(I+h_{1} W_{1}, T-h_{1}\right)>\omega\left(I+h_{2} H_{2}, T-h_{2}\right), \tag{2.3}\\
& \omega\left(I+h_{1} w_{1}, T-h_{1}\right)>\omega(I, T) . \tag{2.4}
\end{align*}
$$

Or, if the inequalities (2.3) and (2.4) both hold, then the household chooses the point a or the full-time employent option. By using the specification of the utility indicator (2.1), we solve the inequalities in $\bar{\gamma}_{4}$, to obtain

$$
\begin{equation*}
\bar{\gamma}_{4}<(I(n-n)+(i-j)) /\left(h_{1}-h_{2}\right), \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\gamma}_{4}<(\mathrm{In}+\mathrm{i}) / \mathrm{h}_{\mathrm{l}}, \tag{2.6}
\end{equation*}
$$

where

$$
m=h_{1}\left(\gamma_{1} w_{1}-\gamma_{3}\right), n=h_{2}\left(\gamma_{1} w_{2}-\gamma_{3}\right),
$$

$$
\begin{align*}
& i=\frac{1}{2} \gamma_{1} h_{1}^{2} w_{1}^{2}+\gamma_{2} h_{1} w_{1}+\gamma_{3} h_{1} w_{1}\left(T-h_{1}\right)-\gamma_{5} h_{1}\left(T-\frac{1}{2} h_{1}\right), \tag{2.7}\\
& j=\frac{1}{2} \gamma_{1} h_{2}{ }^{2} w_{2}{ }^{2}+\gamma_{2} h_{2} w_{2}+\gamma_{3} h_{2} w_{2}\left(T-h_{2}\right)-\gamma_{5} h_{2}\left(T-\frac{1}{2} h_{2}\right) .
\end{align*}
$$

We see that a household having the value of $\overline{\gamma_{4}}$ which satisfies (2. 5) and (2.6) chooses full-time employent. We denote the right hand sides of (2.5) and (2.6) bs A and B respectively.

In a similar wag, for a housebold choosing part-tine work, it must hold that

$$
\begin{equation*}
\omega\left(I+h_{2} w_{2}, T-h_{2}\right)>\omega\left(I+h_{1} w_{1}, T-h_{1}\right), \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\omega\left(\mathrm{I}+\mathrm{h}_{2} \mathrm{w}_{2}, \mathrm{~T}-\mathrm{h}_{2}\right)>\omega(\mathrm{I}, \mathrm{~T}), \tag{2.9}
\end{equation*}
$$

or equivalently that

$$
\begin{equation*}
\bar{\gamma}_{4}>A, \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\gamma}_{4}<(\operatorname{In}+\mathrm{j}) / \mathrm{h}_{2} . \tag{2.11}
\end{equation*}
$$

we denote the right hand side of (2.11) bs C. If a bousehold has \bar{r}_{4} satisfying (2.10) and (2.11), then the household chooses the part-time emplogent option. Similarly again, for a household choosing the no-market work option, we hare

$$
\begin{align*}
& \omega(I, T)>\omega\left(I+h_{1} N_{1}, T-h_{1}\right), \tag{2.12}\\
& \omega(I, T)>\omega\left(I+h_{2} N_{2}, T-h_{2}\right), \tag{2.13}
\end{align*}
$$

or the equiralent inequalities

$$
\begin{equation*}
\bar{\gamma}_{4}>B, \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\gamma}_{4}>c . \tag{2.15}
\end{equation*}
$$

Conversely, a household which has $\bar{\gamma}_{4}$ satisfying (2.14) and (2.15) chooses the no-market work option. In this was, the choice of households depends an the value of $\bar{\gamma}_{4}$. These are considerations of the behavior of a single household with a specific value of $\bar{\gamma}_{4}$.

We then consider the behavior of households as a whole. And the question will be what proportion of a set of househalds chooses a particular option. To begin, we obtain the equations, from the definitions of A, B and C,

$$
\begin{align*}
& A-B=\left\{(I m+i) h_{2}-(I n+j) h_{1}\right\} / h_{1}\left(h_{1}-h_{2}\right), \tag{2.16}\\
& B-C=\left\{(I n+i) h_{2}-(I n+j) h_{1}\right\} / h_{1} h_{2}
\end{align*}
$$

Since $h_{1}-h_{2}$ is positive and the same expression appears in the brackets of both equations, we find that the sign of ($A-B$) and the sign of (B-C) are the same. Therefore, we hape two possible relationships between A, B and C,

$$
\begin{array}{ll}
\text { case } & 1 \tag{2.17}\\
\text { case } & 2 \geqq B \geqq C, \\
\text { cas },
\end{array}
$$

ir respectire of the ralues of exogenous variables and the structural parameters included in A, B and C.

Suppose for the time being that the case $1, A \geqq B \geqq C$, holds; then there is no $\bar{\gamma}_{4}$ such that the inequalities (2.10) and (2.11) are
satisfied sialtaneously. Therefore there cannot theoretically erist any household choosing the part-tine enploynent option. We, howerer, actually observe the existence of households working parttime. So we cannot maintain that case lholds in reality, and we proceed with the discussion under the condition of case 2.

Under case 2 , we can find, within the range of $\bar{\gamma}_{4}-$ distribution, a value of $\quad \bar{\gamma}_{4}$ satisfigin (2.5) and (2.6), another value of $\bar{\gamma}_{4}$ satisfying (2.10) and (2.11), and still another value of $\bar{\gamma}_{4}$ satisfing (2.14) and (2.15): Within the range of the distribution of $\bar{\gamma}_{4}$, we take a value of $\bar{\gamma}_{4}$ such that

$$
\begin{equation*}
\bar{\gamma}_{4}<\mathrm{A} . \tag{2.18}
\end{equation*}
$$

For this value, we see that

$$
\begin{equation*}
\bar{\gamma}_{4}<B \text { and } \bar{\gamma}_{4}<A, \tag{2.19}
\end{equation*}
$$

under case2, i. e. the inequalities (2.5) and (2.6) are satisfied. Therefore a group of households, which have $\bar{\gamma}_{4}$ less than A, chooses the full-time emplogent option. Next we take, from the range of distribution,

$$
\begin{equation*}
A<\bar{\gamma}_{4}<C \tag{2.20}
\end{equation*}
$$

Then we see that, under case 2 ,

$$
\begin{equation*}
\bar{\gamma}_{4}>A \text { and } \bar{\gamma}_{4}<C . \tag{2.21}
\end{equation*}
$$

Therefore a group of households which has $\bar{\gamma}_{4}$ satisfing (2.20)will choose the part-tine employment option. Sinilarly, we take a value of $\bar{\gamma}_{4}$ such that

$$
\begin{equation*}
c<\bar{\gamma}_{4} \tag{2.22}
\end{equation*}
$$

Then we have, under case 2 ,
(2.23)
$B<\bar{\gamma}_{4}$ and $\bar{\gamma}_{4}<C$.

Households which have $\bar{\gamma}_{4}$ satisfying (2.22) will choose the nomarket vork option. For households having $\bar{\gamma}_{4}$ equal to A, full-time emplogment and part-tine emplognent are indifferent. But this probability is zero under the continuous distribution. A similar arguent applies when $\bar{\gamma}_{4}$ is equal to C.

We now define the probabilities P_{1}, P_{2} and P_{0} such that a particular household chooses full-time work, part-time work or nomarket work respectively. In other words, P_{1}, for instance, is the probability that a certain household drawn from the population is a household choosing full-tine work.

Fran the previous discussion, we obtain

$$
\begin{align*}
& P_{1}=\int_{\infty}^{A} f\left(\bar{\gamma}_{4}\right) d \bar{\gamma}_{4}, \\
& P_{2}=\int_{A}^{C} f\left(\bar{\gamma}_{4}\right) d \bar{\gamma}_{4}, \tag{2.24}\\
& P_{0}=\int_{C}^{\infty} f\left(\bar{\gamma}_{4}\right) d \bar{\gamma}_{4},
\end{align*}
$$

where $f\left(\bar{\gamma}_{4}\right)$ is the probability density function of $\bar{\gamma}_{4}$. Using the noreal specification (2.2), we can write

$$
\begin{align*}
& P_{1}=\int_{\infty}^{y_{1}} \phi(x) d x, \\
& P_{2}=\iint_{y_{0}}^{y_{1}} \phi(x) d x, \tag{2.25}\\
& P_{\mathrm{E}}=\iint_{0}^{\infty} \phi(x) d x,
\end{align*}
$$

where

$$
\begin{align*}
& y_{1}=\left(A-\gamma_{4}\right) / 6 \\
& y_{0}=\left(C-\gamma_{4}\right) / 6 \tag{2.26}\\
& \phi(x)=e x p-\frac{1}{2} x^{2} / \sqrt{2 \pi}
\end{align*}
$$

Based on the utility mazinization principle, we obtain the solution which shows that the probabilities P_{1}, P_{2} and P_{0} are deternined by thresholds y_{1} and Y_{0} which are explicit functions of the set of the exogenous variables and of the structural paraneters, as shown in Fig 5.

Fron the definition (2.7) of n, n, i, and j, and fron the definition of A and C, we write out (2.26) in the form

$$
\underset{\sim}{y} \equiv\left[\begin{array}{l}
y_{0} \tag{2.27}\\
y_{1}
\end{array}\right]=z \pi .
$$

Here
(2.28)

$$
\begin{aligned}
Z & =\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right], \\
\pi^{\prime} & =[\pi 00, \pi 01, \pi 10, \pi 11\}
\end{aligned}
$$

and furthermore the reduced form parameter is given by

$$
\begin{equation*}
x=\chi \theta, \tag{2.29}
\end{equation*}
$$

where the structural parameter $\underset{\sim}{\mathcal{A}}$ and the matrix $\underset{\mathcal{Z}}{ }$ are given as

$$
\stackrel{\theta}{Q}^{\prime}=\left[r_{1} / 6, r_{2} / 6, r_{3} / 6, r_{4} / 6, r_{5} / 6\right],
$$

$$
\underset{\sim}{X}=\left(\begin{array}{cccc}
\frac{1}{2} h_{2} w_{2}^{2} & w_{2} & u_{2}\left(T-h_{2}\right) & -1 \tag{2.30}\\
\frac{u_{2}}{2} & 0 & -1 & \frac{1}{2} h_{2}-T \\
\frac{h_{1}^{2} w_{1}^{2}-h_{2}^{2} w_{2}^{2}}{2\left(h_{1} h_{2}\right)} & \frac{h_{1} w_{1}-h_{2} u_{2}}{h_{1}-h_{2}} & \frac{h_{1} w_{1}\left(T-h_{1}\right)-h_{2} w_{2}\left(T-h_{2}\right)}{h_{1}-h_{2}} & -1 \\
\frac{h_{1} w_{1}-h_{2} w_{2}}{h_{1}-h_{2}} & 0 & -1 & \frac{h_{1}+h_{2}}{2}-T \\
& & -1 & 0
\end{array}\right)
$$

We can rewrite $\underset{y}{y}$ in the forn, fron (2.29),

$$
\begin{equation*}
\mathbf{X}=\chi \ell \tag{2.31}
\end{equation*}
$$

where $\mathbb{X}=\mathbb{Z}$, The equation (2.27) corresponds to the estination of \mathbb{X}, and the equation (2.31) corresponds to the estimation of θ.

Fron (2.25), we obtain

$$
\begin{align*}
& \partial \mathrm{P}_{0} \prime \partial \mathrm{I}=-\not \subset\left(\mathrm{y}_{0}\right) \pi_{01}, \\
& \partial \mathrm{P}_{1} / \partial \mathrm{I}=\neq\left(\mathrm{y}_{1}\right) \pi_{11}, \tag{2.32}\\
& \partial \mathrm{P}_{2} \prime \partial \mathrm{I}=\not \partial\left(\mathrm{y}_{0}\right) \pi_{01}-0 \quad\left(\mathrm{y}_{1}\right) \pi_{11} .
\end{align*}
$$

Since \emptyset is the normal density function and positive, we see that

$$
\begin{align*}
& \partial P_{0} / \partial I>0 \text { or } \partial\left(P_{1}+P_{2}\right) / \partial I<0, \tag{2.33}\\
& \partial P_{1} / \partial I<0,
\end{align*}
$$

if $\pi_{01}<0$, and $\pi_{11}<0$, respectivelg. Therefore, the effect of increasing I to the labor supply probabilities P_{0}, P_{1}, and P_{2} depends on the paraneters π_{01} and π_{11}. Recalling Douglas Law of labor supply which says that husband's income affects wife's labor supply negatively $\partial P_{0} / \partial I>0$, it is interesting to see whether the estimated values of the parameters are of negative magnitude.
2.4 The model presented above is subject to empirical implementation. Our enpirical test is twofold with respect to the data used; one using cross-sectional data ranging oper housebolds where the exogenous variables H_{1}, K_{2}, h_{1} and h_{2} for instance, in the matrix $\underset{\sim}{X}$, are considered to be constant and the guaranteed incose I varies over the households, the other using pooled data consisting of sets of cross
sectional data at tro time points, where the erogenous variables at the two tine points are different. In the cross sectional analysis we estinate the paraneter π, which is of interest in view of (2.32). In the pooled data analysis our ain of estimation is the paraneter $\boldsymbol{\theta}$. 2.4.1 Let the cross sectional data at a single tine point be grouped into K income classes according to the value of I. Let the k-th incone class has I_{k} for the guaranteed incone. For the k-th class, three probabilities are, from (2.25), given by
(2.34) $\quad P_{2 k}=\int_{y_{1 k}}^{y_{0 k}} \not \subset(z) d x$

$$
P_{1 k}=\int_{\infty}^{y_{1 k}} \not \partial(x) d x
$$

$$
P_{0 k}=\int_{y_{0 x}}^{\infty} \not f(x) d x
$$

where
(2.35)

$$
\begin{aligned}
& {\underset{\sim}{k}}^{y_{k}}=\binom{y_{0 k}}{y_{1 k}}=z_{k} \underset{\sim}{\pi}, \\
& {\underset{\sim}{k}}^{z_{k}}=\left[\begin{array}{llll}
1 & I_{k} & 0 & 0 \\
0 & 0 & 1 & I_{k}
\end{array}\right]
\end{aligned}
$$

Here, assuming that the households within the cross section are offered the common set of employnent teras denoted by (w_{1}, h_{1}) and (W_{2}, h_{2}), wemay that the matriz $\underset{\sim}{X}$ is constant for efery household ithin a particular population, and that $\underset{\sim}{\pi}=\underset{\sim}{\theta} \underset{\sim}{\theta}$ is considered to be costant parameter. This assumpion is reinforced by our data control: We apply the modeltocioss sectional data of approsimately uniform households, since we classify the original data to obtain a sample set being in the uniform condition in teras of wives age, wives' educational career, and the age structure of children. These attributes might be cortelated with the wage rates and working hours. By controlling the sample, the wires within the cross section are expected to hare almost the sare age, sage education, and children of the same age.
 . . . , Y_{K} uniquely, since the noral integral (2.34) is ane to one transforation when $0<P_{0 k}<1$ and $0<P_{1 k}<1$. And the correspondence between ${\underset{\sim}{1}}^{1}, \ldots, Y_{K}$ and $\underset{\sim}{\pi}$ is written as
 determines π uniquelg. If the matrix

$$
{\underset{Z}{2}}^{0}=\left[\begin{array}{lll}
1 & \cdots & 1 \tag{2.37}\\
I_{1} & \cdots & I_{K}
\end{array}\right]
$$

is of full rank 2 then $\underset{\sim}{\underset{\sim}{*}}$ is of rank 4 . Thus the parameter π is identifiable if the number of income classes is larger than 2 and if no collinearity is present in the matrix \underline{Z}^{0}.

Although π is uniquely determined, the equation (2.29) cannot determine the fire dimension vector $\underset{\sim}{\theta} X$, since the rank of $\underset{\sim}{X}$ is at most 4. We can estimate $\underset{\sim}{\pi}$ but not $\underset{\sim}{\theta}$ when a cross section at a single time point is used.
2.4.2 Estimation of $\underset{\sim}{\theta}$ is possible if cross sectional data is arailable for at least tuo time points. We use cross sectional data at time $t=1$ and 2. Both cross sectional data are grouped according to the guaranteed income $I_{k l}$ for time $t=1$, and according to $I_{k 2}$ for time $t=2$. Here k_{1} runs from 1 to K_{1} and k_{2} runs from 1 to K_{2}, K_{1} and K_{2} being number of income classes. The enplojernt terms. w's and h's, are different at each time point and are denoted by (w_{1}, h_{1}) and (w_{2}, h_{2}) for full-time enplognent and part-time employment respectively.

From (2.25) and (2.27), the labor supply probabilities for the pooled data analysis are given by

$$
\begin{aligned}
& P_{l k t}=\int_{\infty}^{y_{1 k t}} \not \subset(x) d x, \\
& P_{2 k t}=\int_{y_{1 k t}}^{y_{0 k t}} \phi(x) d x, \\
& P_{0 k t}=\int_{y_{0 k t}}^{\infty} \not x(x) d x \text {, } \\
& k=1, \ldots, K_{t}, \quad t=1,2 \\
& \text { (2.38) }
\end{aligned}
$$

for the household in the k-th income class at tine t. Here, from (2.31), we can write
(2.39)

$$
{\underset{y}{k t}}^{=}\left[\begin{array}{l}
y_{0 k t} \\
y_{1 k t}
\end{array}\right]=Y_{k t} \stackrel{\theta}{r}
$$

where

$$
\underline{Y}_{k t}={\underset{Z}{k t}}^{X_{t}},
$$

(2.40)

$$
z_{k t}=\left[\begin{array}{llll}
1 & I_{k t} & 0 & 0 \\
0 & 0 & 1 & I_{k t}
\end{array}\right]
$$

and ${\underset{\sim}{t}}^{\text {t }}$ is obtained by suffixing t to the variables w's and h^{\prime} 's in the watrix \mathbb{X}. If we write out (2.39), we get
where
(2.42)

$$
\underline{Y}^{* *}={\underset{Z}{ }}^{* *} \underline{X}^{* *} \quad{\underset{Z}{Z}}^{* *}=\left[\begin{array}{cc}
Z_{1}^{*} & 0 \\
0 & Z_{2}^{k}
\end{array}\right)
$$

and ${\underset{\sim}{x}}^{*}=\binom{x_{1}}{x_{2}}$
In a was similar to the identifiability discussion for the cross sectional analysis, we see that the identifiabilitg of the structural parameter $\underset{\sim}{\theta}$ is dependent on the rank of $\underset{\sim}{\mathcal{H}}$. If ${\underset{\sim}{2}}_{e}^{0}$ defined analogously to (2.37) is full rank for $t=1$, 2 , then ${\underset{\sim}{2}}_{1}^{*}$ and ${\underset{Z}{2}}_{2}^{*}$ both hare rank 4. And consequently $\underset{\underset{\sim}{2}}{\underset{\sim}{*}}$ has rank 8 . In our designing the matrix \mathbb{X}^{*} its full rank is assured. Therefore $\mathbb{Y}^{2 \pi}$ is of full rank unless nuisance collinearity appears after multiplying $\underset{\sim}{\underset{\sim}{\sim}}$ and $\underset{\sim}{x}$
2.5 The surveg is conducted every three gears throughout the country and a sample of some 800,000 individuals or 300,000 households is collected. One of the advantages of this data set is that because of its large size one can disaggregate the sample quite finely in order to control the effects of compounding factors. The other adrantage is that the survey contains extensife questions to infestigate the labor force status of respondents so that the surveg propides rich inforation far labor supply analysis.

The basic data we used are the aicro-level household data files of the Basic Surpey of Emplogment Structure. We used the data files of the Basic Surpeg of Emplognent Structure for the gears 1974 and 1977 . On the other hand, the survey gives only limited information on wage rates. We therefore supplemented this weak point by utilizing rich inforation on wage structure taken from the Basic Surpeg of Wage Structures conducted every gear by the Ministry of Labor.

Saples vere taken only from households whose heads are emplogees, and also without parent(s) of household's head and/or of spouse living together. This set of samples was then subdivided into 32 different types classified by (1) age of wives; 20-29, 3039, 40-49, 50-59, (2) education of wives; junior or senior high school, (3) age composition of children; four groups depending upan whether the fanilg has children in the age range of 0 to 5 , and/or 6 to 14. Each of the 32 groups of households was then classified into 15 cells according to the income class of the household head. We then find for each cell the following variables; sample sizepart-tim eaplogees, full-tige emplogess, non-labor force people, and the arerage real income level af household head. The Basic Sruvey of Emplogaent Structure does not hare inforation about property
income. Then let us presume the income of household head as guaranted income I. When the sample size in a cell is less than 100 , we did not estimate the parameters in these groups of households. As a result the ralues of the parameter of 13 groups of households, as shown in Table 3 , were estiated. Epery bousehold within a household group is assumed to face common employment terms at a single time point.

We attempted estimation of parameters in two different steps, as explained before. The first step was, using cross-sectional data files for 1974 and 1977 separately, to estimate the reduced form parameter π. The second step was to estinate the value of the structural paraneter θ 's using the pooled data sets for gear 1974 and 1977. Pooling data sets for two gears enabled us to conduct direct estimation of θ 's since the variation of values f or h's and w's across different gears helped to satisfy the identifia bility condition of the system.

3 Statistical Methods

3. 1 Here we concider the statistical procedures for aeasuring the parameter $\mathfrak{\pi}$ by using cross sectional at a single time point, and the parameter $\underset{\sim}{\theta}$ by using two sets of cross sectional data. For the cross sectional estimation, we classify the data concerning N households into K income classes according to the values of guaranteed income $1, k=1$, . . K. By N ue denote the number of households in the k-th class. Suppose that, among N households, b households choose the full-time employent option, S households choose the part-time emplogment option and households choose the no market work option, where $N=L+S+M$.
The probability that this event occurs is given by the trinomial distribution,

$$
\begin{equation*}
F_{k}=\frac{N_{k}!}{L_{k}!S_{k}!M_{k}!}-P_{1 k}{ }^{L_{k}} \quad P_{2 k} S_{k} \quad P_{0 k}{ }^{M_{k}} \quad, k=1, \ldots, k \tag{3.1}
\end{equation*}
$$

where $P_{1 k}, P_{2 k}$ and $P_{0 k}$ are given by (2.34). The observed ratios

$$
P_{1 k}=L_{k} / N_{k}
$$

(3.2) $p_{2 k}=S_{k} / N_{k}$,

$$
P_{o k}=M_{k} / N_{k}=\left(1-p_{1 k}-P_{2 k}\right)
$$

or the labor force participation ratio for each employment opportunity, are the observed couterpart of $P_{i k}, P_{2 k}$ and $P_{c k}$. If the probability distribution F_{k} applies to the k-th imcome class, we obtain, under the stochastic independence assumption, the likelihood function F for cross sectional date at a single tine point,

$$
\begin{equation*}
F=\prod_{k=1}^{K} F_{k} \tag{3.3}
\end{equation*}
$$

We get the likelihood equation by a straightforward differentiation of (3. 3) with respect to π,
(3.4)

$$
\frac{\partial \ln }{\partial \pi}=\sum_{k=1}^{K} \frac{\partial g^{\prime}}{\partial \pi}{\underset{\sim}{k}}_{-1}^{N_{k}}\binom{\frac{p_{0 k}}{P_{0 k}}-\frac{p_{2 k}}{P_{2 k}}}{\frac{p_{1 k}}{P_{1 k}}-\frac{p_{2 k}}{P_{2 k}}}=Q
$$

where
(3.5)

$$
\begin{aligned}
& \Phi_{k}^{-1}=\left(\begin{array}{cc}
\phi\left(y_{0 k}\right) & 0 \\
0 & \phi\left(y_{1 k}\right)
\end{array}\right) \\
& \frac{\partial Z_{k}}{\partial z_{z}}=z_{k}^{\prime}
\end{aligned}
$$

If we let
(3.6) ${\underset{\sim}{r}}_{k}=\frac{1}{N_{k}}\left(\begin{array}{ll}P_{0 k}\left(1-P_{0 k}\right) & -P_{1 k} P_{0 k} \\ -P_{0 k} P_{1 k} & P_{1 k}\left(1-P_{1 k}\right)\end{array}\right)$
(3.7)
then I_{k} is a covariance matrix of $p_{k}^{\prime}=〔 p_{o_{k}}, p_{l k} 〕$ and Ω_{k}^{-1} is an approximate covariance matrix of \mathcal{S}^{\prime}, we can write the likelihood equation in the form,
(3.8)

$$
\frac{\partial \ln F}{\partial \pi}=\sum_{k=1}^{K} Z_{k} \mathscr{R}_{k}^{-1} \mathscr{\varphi}_{k}=2
$$

To get the Maximum Likelihood Estinate of π, we solve this equation using the scoring method. The scoring method is an interative procedure presented as

$$
\begin{equation*}
\pi^{(i+1)}=\pi^{(i)}+\left.L\left(\pi^{(i)}\right)^{1} \frac{\partial \ln F}{\partial \pi}\right|_{\pi^{(i)}} i=1,2, \ldots \tag{3.9}
\end{equation*}
$$

where $I(\pi)$ is the information matrix given as
(3.10) $I(\pi)=-E\left\{\frac{\left.\partial^{2}\right|_{n} F}{\partial \mathbb{Z} \partial \mathbb{K}^{\prime}}\right\}=-\sum_{k=1}^{K} Z_{k}^{\prime} \mathbb{Z}_{k}^{-1} \mathcal{Z}_{k}$,
and $\quad \pi^{(i+1)}$ is the $(i+1)$-st approziation to the MLE. To obtain the initial value π, we linearize the likelihood equation. First we define $\left[\eta_{0 k}, \eta_{/ k}\right] \equiv \eta_{l k} \quad$ bj
(3.11)

$$
\begin{aligned}
& \int_{-\infty}^{\eta_{1 k}} \phi(X) d x=p_{0 k}, \\
& \int_{0 k}^{\infty} \phi(X) d x=p_{1 k} .
\end{aligned}
$$

The η_{k} is approzimation to $\underline{\mathscr{X}}_{k}$. Then by Taylor espansion we obtain

$$
\begin{equation*}
\underline{p}_{k} \doteqdot \underline{p}_{k}+\Phi\left(\underline{y}_{k}\right)\left(\eta_{k}-g_{k}\right) . \tag{3.12}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\underline{\varphi}_{k}=\eta_{k}-\underline{y}_{k}=\eta_{k}-{\underset{\sim}{z}}_{k} \approx \tag{3.13}
\end{equation*}
$$

The linearized likelihood equation is, by substituting (3.13) into (3.8) ,

We use this linear equation in $\underset{\sim}{\pi}$ to obtain the initial value π,

$$
\left.{\underset{\sim}{\pi}}^{(1)}=\left\{\begin{array}{ll}
\Sigma & {\underset{z}{k}} \Omega_{k}^{-1}{\underset{Z}{k}}^{z} \tag{3.15}
\end{array}\right\}^{-1 /\{ }{\underset{\sim}{z}}_{k} \Omega_{k}^{-1} \eta_{k}\right\}
$$

For actual calculation of (3.15) we substitute the directly obserped ${\underset{\sim}{x}}$ and η_{k} derived by (3.11) in the place of P_{h} and Y_{k}, see (3 4) and (3.6). That is,P_{k} and \mathcal{D} are the "o-th" approximation to $P_{n}^{(i)}$ and I_{k}. Once $\pi^{(i)}$ is calculated for $i \geqslant 1$, we calculate $Y_{k}^{(i)}$ and $P_{k}^{(i)}$, using

$$
\begin{equation*}
{\underset{k}{g}}_{(i)}^{Z_{k}^{Z}}{\underset{\sim}{n}}^{(i)} \tag{3.16}
\end{equation*}
$$

$$
P_{o k}^{(i)}=\int_{-\infty}^{y^{(i)} 1 k} \phi(x) d x, \quad P_{1 k}^{(i)}=\int_{g_{0 k}^{(i)}}^{\infty} \phi(x) d x,
$$

to be substituted for \mathbb{Z}_{k} and ${\underset{K}{k}}$, which are necessarg for the (i+1)-st iteration.
A change of the teration process is defined as

$$
\begin{equation*}
d^{(i+1)}=\left|\pi_{r i+1}^{(i+1)}-\pi^{(i)} / \quad \pi^{(i+1)}\right| \tag{3.17}
\end{equation*}
$$

for each element of $\pi^{(i+1)}$ When the change $d^{(i+1)}$ becomes less than $1 / 100$ for every element of π, we stop the iteration process and consider the last value as the MLE of \boldsymbol{x}.

We use the classical results concerning the asymptotic property of the $M L E$, since the regularity condition applied to the nonclassical franeurk of the present model is get uncertain. Therefore we consider that the MLE is asgaptotically normal with mean π and corariance matriz equal to the inverse of the information matrix $\underset{\sim}{\sim}$). And our significance test is conducted based on the normal distribution. For the goodness of fit test, we use Person's χ^{2} statistic.
(3.18)

$$
\begin{aligned}
x^{2} & =\sum_{k=1}\left(\frac{M_{k}-N_{k} P_{o k}^{2}}{N_{k} P_{0 k}}\right)+\left(\frac{L_{k}-N_{k} P_{1 k}}{N_{k} P_{1 k}}\right)^{2}+\left(\frac{S_{k}-N_{k} P_{k}}{N_{K} P_{2 k}}\right)^{2} \\
& =\Sigma_{k} \mathscr{\varrho}_{k}^{\prime} \Sigma_{k}^{-1} \mathscr{Q}_{k},
\end{aligned}
$$

where ${\underset{\sim}{p}}_{k}$ is the prediction evaluated by using the MLE, see (3. 16). The χ^{2}, in the classical framework, is known to be distributed as the χ^{2} with degrees of freedom n equal to the number of independent cells minus the number of the estimated parameters, i. e. , $n=(3-1) K-4$.
3.2 We estimate the parameter $\underset{\sim}{\theta}$ using cross sections at two time points $t=1,2$, without introducing any complicated stochastic structure for combining the cross sections. The cross sectional data at time has K_{t} income classes, the guarantee income of the $k-t h$ class being $I_{k t}$ and the number of households in the k-th class being $N_{k t}$ for each t. Let $L_{k t}, S_{k t}$ and $M_{k t}$ be respectively the number of households choosing full-time, part-time, and no-market work option, where $N_{k t}=L_{k \tau}+S_{k t}+M_{k t}$. The likelihood function for the single cross sectional data is
(3.19) $F_{(t)}^{*}=\prod_{k=1}^{K_{t}} \frac{N_{k t}!}{L_{k \tau}!S_{k \tau}!M_{k \tau}!} \cdot P_{1 k t}^{L_{k t}}{ }_{P_{2 k t}}^{S_{k t}}{ }_{P_{0 k t}}^{M_{k t}}, t=1,2$ where $P_{\text {lit }}, P_{2 k t}$ and $P_{\text {ont }}$ are given by (2. 38). The likelihood function for the pooled date is a simple product,
(3.20) $F^{*}=F_{(1)}^{*} \cdot F_{(2)}^{*}$,
under the condition that the data sampling for both cross sections is conducted independently. The likelihood equation is derived by a straightforward differentiation of F^{*} with respect to $\underset{\sim}{\theta}$,
(3.21)

$$
\begin{aligned}
& \frac{\partial \ln F^{*}}{\partial \theta}=\frac{\partial \ln F^{*}(1)}{\partial \underline{\theta}}+\frac{\partial \ln F^{*}(2)}{\partial \underline{\theta}} \\
& =\sum_{t=1}^{2} \sum_{k=1}^{k t} \frac{\partial Y_{h k}^{\prime}}{\partial \underline{E}} \Phi_{k t}^{-1} N_{k t}\binom{P_{0 k t}-\frac{P_{2 k t}}{P_{0 k t}}}{\frac{P_{2 k t}}{P_{1 k t}}-\frac{P_{2 k t}}{P_{2 k t}}}=0 .
\end{aligned}
$$

Here

$$
p_{1 k t}=L_{k t} / N_{k t}
$$

$$
\begin{align*}
& p_{2 k t}=S_{k t} / N_{k t}, \tag{3.22}\\
& p_{0 k t}=M_{k t} / N_{k t}
\end{align*}
$$

are direct estimates of $P_{\text {Fit }}, P_{2 k t}$ and $P_{V h t}$, and

$$
\underset{k t}{\Phi}=\left(\begin{array}{cc}
\phi\left(y_{0 k t}\right) & 0 \\
0 & \phi\left(y_{1 k t}\right)
\end{array}\right)
$$

(3.23)

$$
\frac{\partial \underline{\underline{P}}_{k t}^{\prime}}{\partial \underline{\theta}}=\underline{\Psi}_{k t}^{\prime} .
$$

If we let

$$
I_{k t}=\frac{1}{N_{k t}}\left[\begin{array}{cc}
P_{0 k t}\left(1-P_{0 k t}\right) & -P_{0 k t} P_{1 k t} \\
-P_{1 k t} P_{0 k t} & P_{1 k t}\left(1-P_{1 k t}\right)
\end{array}\right]
$$

$$
\begin{align*}
& \mathscr{L}_{k t}=\mathscr{Q}_{k t}^{-1}\binom{p_{0 k t}-p_{0 k t}}{p_{1 k t}-p_{1 k t}} \tag{3.24}\\
& \Omega_{k t}^{-1}=\Phi_{k t}^{-1} \quad \chi_{k t}^{-1} \mathscr{Q}_{k t}^{-1}
\end{align*}
$$

we can rewrite the likelihood $\underset{\text { equation }}{\text { in }}$ the form

$$
\begin{equation*}
\underline{0}=\sum_{t=1}^{2} \sum_{k=1}^{K} t \underline{Y}_{k t}^{\prime} \Omega_{k t}^{-1} \quad e_{k t} \tag{3.25}
\end{equation*}
$$

The scoring method to solve (3. 25), using the information matrix

$$
\begin{equation*}
\underset{\sim}{I}(\theta)=\sum_{t=1}^{2} \sum_{k=1}^{K} \underline{\sim}_{k t}^{\prime} \quad Q_{k t}^{-1}{\underset{\sim}{y}}_{k t}, \tag{3.26}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\theta^{(i+1)}=e^{(i)}+L\left(\left.Q^{(i)} 5^{1} \frac{\partial \ln F}{\partial Q}\right|_{E^{(i)}}\right. \tag{3.27}
\end{equation*}
$$

The initial value θ is derived similarly to (3. 13) and (3. 14), as
 where $\eta_{k 1}^{\prime}=\left[\jmath_{\text {oke }} \eta_{1 k t}\right]$ are defined bs

$$
\int_{-\infty}^{\eta_{1 k t}} \phi(z) d z=p_{0 k t}
$$

$$
\begin{equation*}
\int_{\eta_{0 k t}}^{\infty} \phi(x) d x=p_{1 k t}, \tag{3.29}
\end{equation*}
$$

For the calculation of (3. 28), we need the value of $\mathcal{S}_{k t}$ or its elements, $P_{\text {ont }}, P_{1 k t}$, and $\mathbf{J o k t ~}_{\text {, }} \mathrm{J}_{\text {kt }}$. Their " 0 -th" approximation $\mathrm{P}_{\text {ok }}$, $\mathrm{P}_{1 k t}$ and $\eta_{\text {ck }}, \eta_{1 k t}$ are substituted.

Once $\stackrel{\theta}{(i)}^{(i)}, i \geq 1$ is obtained, we calculate ${\underset{j}{k t}}_{(i)}$ and $P_{o k t}^{(i)}, P_{\text {ikt }}^{(i)} u \operatorname{sing}$

$$
\begin{align*}
y_{k t}^{(i)} & =\underline{Y}_{k t}{\underset{\sim}{\theta}}^{(i)} \tag{3.30}\\
P_{0 k t}^{(i)} & =\int_{-\infty}^{y_{1 k t}}(i) \phi(x) d x, \quad P_{1 k t}^{(i)}=\int_{y_{0 k t}}^{\infty}(i) \phi(x) d x,
\end{align*}
$$

to be used in the ($i+1$)-st iteration. When the change of iteration, defined similarly to (3. 17), becomes less than $1 / 100$, we stop the iteration process.

We apply the classical analysis on the property of the MLE to our significance test. In certain regularity conditions, the MLE is asymptotically distributed as normal with the mean $\underset{\sim}{\theta}$ and the covariance matrix equal to the inferse of the information matrix, $I(, \theta)^{-1}$. The regularity condition for our non-classical case is yet uncertain.

The goodness of fit test is performed using Pearson's χ^{2}, where $x^{2}=x_{1}^{2}+x_{2}^{2}$,

being defined sinilarly as (3.18) in our case.In the classical case χ^{2} is asymptotically distributed as χ^{2} with degrees of freedom $n=t h e$ number of independent cells minus the numberof estimated parneters, i, e.

$$
\text { e. } \quad \mathrm{n}=(3-1)\left(K_{1}+K_{2}\right)-5 .
$$

Fron the viewpoint that the statistical inference relies on the classical results for the asyaptotic property of the MLE and the x^{2} statistic, it should be mentioned that the conclusion is not decisive.

4.Estimated Results

4. 1 Cross Sectional Analgsis

The results of estimation by using cross sectional data sets for gears 1974 and 1977 separately are shown in Tables 3 and 4. Two of criteria are used for testing the estimated results: statistical criteria and criteria referring to the sign of parameters.

Let us begin with statistical tests. The two test statistics, X^{2} and the significance-test statistic, bothemplained in section 3 , are shonn in Tables 3 and 4. Figures in the last row indicate the magnitudes of x^{2} and those in parentheses the magnitudes of the significance-test statistic. Asterisks attached to figures denote statistical leqel of significance in hypothesis testing. ** and * respectively correspond to 0.5% and 5% levels.

According to the results for 1974 (Table3), our model cannot be rejected in the goodness of fit test (χ^{2} test)at the 5% significant level in 11 household types of 13. We have the sane estimated results for 1977 (Table4). Furthermore, the results of the significance test show that 48 paraneters of 52 in 1974 and 45 parameters of 52 in 1977 are significant at the 0.5% level. Consequently, we conclude that our model satisfies the statistical criterion in the case of estimation by using cross sectional data sets separately. Next we will consider the criteria refering to the estimated parameters. Empirical studies on the supply of labor began in the 1930 s with the pioneering work of Paul Douglas(1934). Since then, wany researchers have carried out empirical analyses of labor
supply. Their empirical findings make it clear that (1) the participation rate of naried wonen behaves as decreasing function of husband's income, and (2) it behaves as an increasing function of own wage rate offered by the firm. Because these findings are rery stable and can be widely across many countries, we adopt this well docunented evidence as the enpirical criterion to which the estinated result should conform. In the case of estimation by using cross sectional data; since we cannot estimate the structural paraneter, it is imposible to test whether our estimated reduced parameter, implies that own wage rate exert a positive influence on the female participation ratio.

The first empirical criterion, the negative effect of husband's income on the feale participation ratio, depends on the sign of estimated parameters $\pi_{p_{1}}$ and $\pi_{1 /}$ in our model, as deriped from equations (2. 32) and (2. 33). If they have negative signs, our nodel coforas to the criteria. Tables 3 and 4 indicate that π_{0} and π_{1} are negative and significant at the 5\% statistical level in everg household type except E type for 1977. It can be ascertained that our model satisfies the empirical criterion on the estimation by using the cross sectional data at a single time point, too.
4.2 Analysis of Pooled Data Sets

Pooling the data sets for more than two years enables us to estimate directly the structural parameters, ℓ. The estimated results by these date, as shown in Table 5, are quite poor. of 13
types of householdes for which we are able to conduct estimation, our model passes the goodness of fit test in only 2 types, D and G. In the remaining 11 types, the mod does not have sufficient explanatory power.

Furthermore, a sinulation by using the estimated paraneter fron pooled data sets indicates that our model does not conform to the empirical criterion in 11 types of households except types A and B, and that the increase of own wage rate makes the predicted values of participation ratio decline.

From the vien points of both statistical and empirical criteria, we have judged it necessary to modify our model in order to explain the pooled data sets. What causes the model to lose the explantory power for the pooled data sets? And what kinds of rariables should be introduced to the model?

To find new variables tobe introduced into modified model, Figure 6 (A) exhibits the household head's incone on the horizontal axis and the obserped values and theoretical ralues of full-tine paticipation ratio on the vertical axis. The theoretical values are predicted by the estinated parameters in Table 5 and the actual palues of the exogenous variables.

The line wich shows the observed relationship between the participation ratio and household head's income shifts upward from 1974 to 1977 substantialls. Namels, the female participation ratio rises rapidly even holding household head's incone constant. In the model, we tried to explain this situation by the increase
of her own wage rates and changes of assigned working hours. Depending on estimated parameters, howerer, these variables can explain only a sall part of the increase in female participation. As a result, we have orerestigated values in 1974 and underestinated values in 1977. More interesting is that the gap between observed ralues and theoretical values is different among the household head's income classes. It is relatively wider in the higher income classes in 1974 and in the lower income in 1977. These situations are common to most types of household.

Taking into consideration these facts, we hare to select a new rariableto be introduced into the model that satisfies the following two criterion: (i) It causes the participation ratio of wives to rise in 1977, (ii) It makes the slopes of the curve which indicates the relationship between participation ratio and head's incone steeper in 1974 and gentler in 1977.
4.3 Modifging the Model by Introducing an Eleaent of Habit Formation

In the previous sections, since we hare not included any variables other than household incone and leisure hours in the utility indicator, it has been assumed that the shapes of the indifference curve in the income-leisure preferencefield, or exactly speaking their distribution anong bouseholds in the same type, are fized and constant in 1974 and 1977. Obserping the estimated results by using pooled data sets, howerer, we cannot
help but doubting this assumption. It seems necessary for us to introduce sane rariables into the model which will vary the shape of the indifferece curve systematically.tasing account of the previous two criteria, we will try to find the systematic factors other than age of wife, her educational career and age conposition of children, which were already controlled in our model.

Now, let us refer to the study of consumption. Mang studies of consumption have pointed out that the element of habit formation is one of the key variables that gields consistent explanation for longrun tiae series consumption data and cross-sectional data. The relationship between hosehold income and consumption is usually obserred to be different in long-run time series data and cross--section data. Many researchers hape tried to give a consistent explanation for both of then. J. S. Duesenberry (1948) succeeded in esplaining both of them by introducing the habit formation effect intothe preference indicator. It was proved that household preferences were influenced by their consumption history, and propensity to consume was determined by the highest income level of the household in the past. Since then, H. S. Houthakker and L. D. Taylor(1966), K. Tsujimura(1968) and mang other researchers have confirmed that the habit formation hgpothesis is useful to fill the gap between timeseries analysis and cross-sectional analysis.

In this paper, the habit formation hypotheses is applied to labor supply analysis and tested eapirically. The pattern of consumption formed on the basis of a certain level of incone cannot be changed
even though incone level changes in the short-run and the gap betuen expenditure and income is made up by additional incone earned by marinal workers in the household who are primarily housewires. This effect can be quite large if we include as an elenent of consumption expenditure payments for long-tera housing loans. When families experience a certain period of rapid income grouth, they naturally build a long-run expectation for income growth, and this effects not only their pattern of daily consumption but also long-teri investrents such as housing. Thus, the definition of "necessary" expenditures is directly related to the stage and pace of econonic development. In early stages of econonic development, the definition of "necessities" mag include only food, housing, clothing, etc. As economic development proceeds the definition expands to include a greater variety of consumptiongoods. Once these expectations and consumption patterns are built, they cannot change easily in response to short-run changes in income. Thus they tend to affect decisions of household labor supply and consequently are reflected most sharply in female labor supply.

Taking into account these points, we should remove the prepious assumption that the form of the indifference curve is permanent, and instead of it, say that the indifference curpe is able to be transformed by introducing a habit formation tera.

To begin, we shall define the habit formation variable, H, along the lines of Tsujinura's consumption study (1968) by
(4. 1)

$$
H_{k t}=\sum_{s=\left\{\beta q_{3}\right.}^{t-1} k s,
$$

where $X_{k s}$ is the real household income of the k-th income class in s year. The equation implies that the habit formation ter is represented by the accumulated real household income counted from gear 1973 up to the gear prior to the gear of observation, or ($t-1$)-st gear.

The form of the utility indicator is modified from equation (2.1) to the following equation,
(4.2) $\omega(\mathrm{X}, \Lambda)=\frac{1}{2} \gamma_{1} \mathrm{X}^{2}+(\alpha+\beta H) \mathrm{X}+\gamma_{3} \mathrm{X} \Lambda+\bar{\gamma}_{4} \Lambda+\frac{1}{2} \gamma_{5} \Lambda^{2}$.

Equation (4.2) is different in the term of the first degree of income from (2.1).

Under this specif action, (2. 35) and (2. 36) must be rewritten by

where

$$
\sim_{k t}^{Z}=\left\{\begin{array}{llllll}
1 & I_{k t} & { }_{0}^{H} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & I_{k t}
\end{array}\right\},
$$

(4.5) $\left.\pi_{t}^{\prime}=〔 \pi_{00 t} \pi_{01 t} \pi_{02 t} \pi_{10 t} \pi_{11 t} \pi_{12 t}\right\}$,

$$
\left.\underline{\theta}^{* \prime}=〔 \begin{array}{lllllll}
\gamma_{1} / 6 & \alpha / 6 & \beta / 6 & \gamma_{3} / 6 & \gamma_{4} / 6 & \gamma_{5} / 6
\end{array}\right\},
$$

The marginal utility function of incose is proved tobe(4.6) under the utility indicator formulation (4. 2)
(4. 8) $\partial \omega / \partial X=\alpha+\beta H+\gamma_{3} \Lambda+\gamma_{1} X$

The estimated parameter β is expected to hape a positive sign, because the habit formation effect must raise the marginal utility of income If this condition is satisfied, parameters, $\pi_{i 2 t}$ and $\pi_{12 t}$, have positive signs, too. Comparing the ralues of H for the same incone class k in 1974 and 1977 , it is clear that in 1977 it is larger than in 1974, fromequation (4. 1). Consequently, yokt and ${ }_{\text {the }}$ must rise in 1977 ceteris paribus, and this isplies that the full-tiae participation ratio and total participation ratio become higher in 1977 than in 1974. It satisfies the first criterion in selecting a new rariable was mentioned abope. Neyt, we consider whether introduction of habit formation tern into the preference indicator satisfies th cond criterion for modifing the mode which was
mentioned in thelast section. The degree of habit formation depends on the past incone of the husehold. If it is assumed that most people with relatively high income last year also have high current incone, the magnitude of habit formation is, in general, large in high income houseboulds. Since babit formation influences the full-time participation ratiodad total participation ratio positively through $\mathrm{P}_{\text {okt }}$ and $\mathrm{g}_{\text {LKt }}$, by our modification of the model, they will increase more rapidly in higher household head's income classes. Then the introduction of habit foration is in accordance with the secod criterion.

Table 6 indicates the estimated results of the modified model by using the maximum likelihood estmation method. Conparing these results with those of the previous madel, Table 5, it is clear that the modified model has been surprisingly improved. In the case of the χ^{2} test, the previous model was not rejected in only two types of household groups at the 0.5% significance level, but the modified nodel was not rejected in eight types. Furthermore, in significance tests of parameters, the number of parameters which are not significant at the 0.5% level decreases from 17 to 9 . In order to compare the fit of the models with the habit formation term and without it, let us plot the obseryed full-time participation ratio and predicted ratio by the modified model of households type C in Figure $6(B)$, as we did in Figure 6(A). The phenonenon of operestimates in 1974 and underestimates in 1977 in Figure 6(A) disappears in Figure $8(B)$, and the slope is improved to be steeper in 1974 and gentler in 1977.

It is still more interesting to consider the results from the pieupoint of the empirical criterion. In the prepious model, as mentioned above the sinulation indicated that an increres in own wage rate caused the predicted participation ratio to decline. These simulat results are contrary to the well docunented evidence which many previous studies have found. On the other hand, the simulation inditates that in the modified model own wage rate has a positive effects on the partipation ratios in 10 types of household groups except the goung family types A and B. The modification by introducing the habit foration effect is judged useful from this criterion.

What is iaplied by the fact that the habit formation effect, as being specified in equation (4. 1), is significant? The estimated parameter β has a positive sign in every type of household group, as expected before estimation. Households with high incose in the past have already fornded the habits for consunption and saving, and their marginal utility for current income has increased. As a result, under other given condition, the participation ratio of wives in these households is high. Supposing we apply this fact to time series data, even if the household head's income and wife's mage rate are constant the participation ratio of maried females rises under the condition where the growth rate of income is low, because the magnitude of their habit formation is large. Let us consider two countries where the current incone is the same but the growth rate of incone is different. In the country whose growth rate of income is low, since people's past
incone must have been high, the magnitude of habit formation is large. On the contrary, people in the country whose incone growth rate is high have a small magitude of habit formation. Consequentif, ceter . paribus the participation ratio of maried females is bigh under the condition where the growth rate of incone is low.

Figures 8 and 9 show the magitudes of the influences on the fulltime and part-tise labor force particifation ratio of maried females by household head's income, onn wage rates and assigned working hours assessed on the basis of pooled data estimation. The basic case is supposed as follous; household head's income=2 million gen/sear, wage rate in full-time job $=730$ gen/hour, assigned working hours in full-time job=2200 hours/year, wage rate in part-tiue job=460 gen/hour, assigned working hours in part-time job=1500 hours/gear, and habit formation=2 million and 3 hundred thousand yen. The point at the bottom of Figures 7 and 8 indicates the predicted value of full-tine participation in each type of household group under the gipen exogenous pariables. The net influences of household head's income, each hourly wage rates and assigned working hours are shown by the points in the upper part of the Figure.

To begin with in obsering the habit formation effects, it increases the full-tine participation ratio and reduce the parttiae participation ratio in the opposite direction. These effects are especially strong in the household whose wife is in the age bracket 30 to 39 , with senior high school education and without children. The negative effect of household head's income on wife's labor supply works as a factor to reduce full-tine participation of wipes. The households where wife is in the age range of 40 to 49 , with senior high school education and without children, exhibit strong effects of household head's incone. This effect for the part-tise participation ratio is negligible. Now let us turn to the effect of wage rates and assigned working hours on each job opportunity. The increase in the wage rate and shortening of assigned working hours raises the
assigned working bours on each job opportunity. The increase in the wage rate and shortening of assigned working hours raises the corresponding participation ratio. More interesting is that the elasticity of assigned working hours is as great as that of the wage rate for female workers in Japan.

Finallg along the lines of our estimated results, let us consider the reason why female labor fore participation took off waking the first ail crisis as turning point. The results of our analysis suggests that the change in the labor supply of maried woren observed between 1974 and 1977 can be successfully erplained by the effect of habit formation. In other words, even for the same level of household head's incone, wives of families whose past income levels were higher tend to participate in the labor market more than othervise.

In this way, moremets of the Japnese female labor force participation ratio over tine are reasonably well explained by our modified model of choice between part-time and full-time employment opportunities that includes the habit formation effect.

References
Arisaua, H., (1956) "Chingin Kozo to Keizai Kazo" (Wage Differentials and the Structure of the Econors), Chingin Kihon Chosa (A Study of Wages), ed.by Nakayana Ichiro, Tokgo : Toyo Keizai Shimpo sha.

Douglas, P.H., (1934) The Theorg of Wages. Nen York: Macmillan Pub.Co.

Duesenbery, J.S., (1949) Incone, Saving, and the Theorg of Consumer Behavior. Harvard Univ. Press

Higuchi, Y. and Hagani, H., (1984) "A Comparaive Study of Female Labor Supply in Japan and the United States". Mita Business Review. Vol. 27, No.5.

Houthakker, H.S. and Taylor, L.D., (1957) Consumption Demand in the United States. Harvard Unir. Press

Obi, K., (1983) A Studg in the Theory and Measurenent of Household Labor Supply. KEO Discussion Paper, Keio Economic Observatory.

Tsujimura, K., (1968) Consuption Structure and Prices. Tokyo : Keiso Shyobo.
Table 1 Female Labor Force Participation Ratio in Japan

An employee household is defined as a houshold whose head is an enplogee. Source:Prine Minister's Office, Bureau of Statisics, Labor Force Survez.
Table 2 Percentage of Women in Given Categories in the Labor Force

Table 3-1 The Estimated Results Using Cross Sectional Data(1974)

Type of households	A	B	C	D	E	F	G
Age of wife	20-29	20-29	30-39	30-39	30-39	30-39	30-39
Educational level	Senior high	Senior high	Junior high	Junior high	Senior high	Senior high	Senior high
ib. of children age 0 to 5	0	$1+$	0	1+	0	0	$1+$
b. of children age 6 to 14	0	0	$1+$	$1+$	0	$1+$	$1+$
π 。	$\begin{array}{r} 0.143017 \\ (2.0905)^{* *} \end{array}$	$\begin{aligned} & -0.387773 \\ & (4.4986)^{* 4} \end{aligned}$	-0.213105 (5.0395)**	$\begin{gathered} -0.848854 \\ (6.9376)^{* 4} \end{gathered}$	-0.373924 $(4.3335)^{* *}$ (4. 3335)**	$\begin{aligned} & -0.223612 \\ & (5.0233)^{* *} \end{aligned}$	$\begin{aligned} & -0.616859 \\ & (6.56 .1)^{* * *} \end{aligned}$
π_{01}	$\begin{array}{r} -0.4143018 E-2 \\ (13.0115)^{* *} \end{array}$	$\begin{array}{r} -0.444613 E-2 \\ (10.3158)^{* * *} \end{array}$	$\begin{array}{r} -0.187976 E-2 \\ (9.4539)^{* *} \end{array}$	$\begin{array}{r} -0.136785 E-2 \\ (2.1894)^{* *} \end{array}$	$\begin{array}{r} -0.158662 E-2 \\ (4.5080)^{* *} \end{array}$	$\begin{array}{r} -0.223469 E-2 \\ (13.6767)^{* *} \end{array}$	$\begin{array}{r} -0.205044 E-2 \\ (5.52 .66)^{* *} \end{array}$
π_{10}	$\begin{array}{r} 0.140904 \\ (2.0080)^{* *} \end{array}$	$\begin{aligned} & -0.403 .453 \\ & (4.4552)^{* *} \end{aligned}$	-0.293823 (6. 5895)**	-0.845024 (6. 4208)**	-0.469477 (5. 2335)**	$\begin{aligned} & -0.342035 \\ & (7.0876)^{* *} \end{aligned}$	-0.859585 $(7.8806)^{* *}$
π_{1}	$\begin{array}{r} -0.481188 E-2 \\ \quad(13.6870)^{* *} \end{array}$	$\begin{array}{r} -0.490439 E-2 \\ (10.6929) * * \end{array}$	$\begin{gathered} -0.260022 E-2 \\ (12.1663)^{* *} \end{gathered}$	$\begin{array}{r} -0.252435 E-2 \\ (3.6753)^{* *} \end{array}$	$\begin{array}{r} -0.174892 E-2 \\ (4.7486) * * \end{array}$	$\begin{array}{r} -0.269280 E-2 \\ (14.8271)^{* *} \end{array}$	$\begin{array}{r} -0.203651 E-2 \\ (4.8801)^{=0} \end{array}$
Number of iterations	2	6	2	2	2	2	3
χ^{2}	12.3679**	25.4683*	12.0158*	14.5842*	16.0688**	53.3770	17.5986*
Degrees of freedom	(14)	(18)	(22)		(20)	(21)	(20)

* Significant at 5% level
** Significant at 0.5% level
Table 3-2 The Estimated Results Using Cross Sectional Data(1974)

Type of households	H	I	J	K	L	M
Age of wife	40-49	40-49	40-49	40-49	50-59	50-59
Educational lepel	Junior high	Junior high	Senior high	Senior high	Junior high	Senior high
Nb of children age 0 to 5	0	0	0	0	0	0
Nb of children age 6 to 14	0	$1+$	0	$1+$	0	0
π_{0}	$\begin{gathered} 0.134716 \\ (3.6021) * * \end{gathered}$	$\begin{array}{r} 0.688481 E-1 \\ (1.4742) \end{array}$	$\begin{gathered} 0.188901 \\ (3.7711)^{* *} \end{gathered}$	$\begin{gathered} 0.1450 .16 \\ (2.3149)^{* *} \end{gathered}$	-0.239155 (6.5805)**	-0.419739 (7. 5497) **
π	$\begin{array}{r} -0.192212 E-2 \\ (11.6629)^{* *} \end{array}$	$\begin{array}{r} -0.216030 E-2 \\ \cdot(10.0051)^{* *} \end{array}$	$\begin{array}{r} -0.244606 E-2 \\ (14.9229)^{* *} \end{array}$	$\begin{gathered} -0.266427 E-2 \\ (12.7741) * * \end{gathered}$	$\begin{array}{r} -0.180946 E-2 \\ (9.5588)^{* 4} \end{array}$	$\begin{array}{r} -0.143641 E-2 \\ (7.1084)^{* *} \end{array}$
π_{10}	0. $417320 E-1$ (1.1025)	$\begin{array}{r} -0.654399 E-3 \\ (0.0137) \end{array}$	$\begin{array}{r} 0.143411 \\ (2.7966)^{* *} \end{array}$	0.762571 E-2 (0.1162)	$\begin{aligned} & -0.330181 \\ & (8.8667)^{* *} \end{aligned}$	$\begin{aligned} & -0.525639 . \\ & (9.1537) * * . \end{aligned}$
π	$\begin{array}{r} -0.207537 E-2 \\ (12.3487) * * \end{array}$	$\begin{array}{r} -0.265005 E-2 \\ (11.8329)^{* *} \end{array}$	$\begin{array}{r} -0.282109 E-2 \\ (16.5356) * * \end{array}$	$\begin{array}{r} -0.284506 E-2 \\ (12.8149) * * \end{array}$	$\begin{array}{r} -0.193761 E-2 \\ (9.9013) * * \end{array}$	$\begin{array}{r} -0.146406 E-2 \\ (6.9616)^{* *} \end{array}$
ber of iterations	2	- 3		2	- 1	
Degrees of freadom	27.0009**	17.2905*	59.7249	30.7682*	21. 1609*	43.5963**
Degrees of freedam			(24)			

Table 4-1 The Estimated Results Using Cross Sectional Data(1977)

Type of households	A	B	C	D	E	F	G
Age of uife	20-29	20-29	30-39	30-39	30-39	30-39	30-30
educational level	Senior high	Senior high	Junior hirh	Junior. high	Senior high	Senior high	Senior high
vo of children age 0 to 5	0	$1+$	0	$1+$	0	0	$1+$
No of children age 6 to 14	0	0	$1+$	$1+$	0	$1+$	$1+$
π	$\begin{array}{r} 0.372695 \\ (5.0006)^{4 *} \end{array}$	$\begin{aligned} & -0.465163 \\ & (7.8427)^{* *} \end{aligned}$	$\begin{aligned} & -0.119742 \\ & (2.6241)^{* *} \end{aligned}$	-0.499873 (5.7210)**	$\begin{array}{r} -0.152782 \\ (0.9779) \end{array}$	$-0.798692 E-1$ (1.8054)	$\begin{aligned} & -0.311284 \\ & (4.2649)^{* *} \end{aligned}$
$\pi 01$	$\begin{array}{r} -0.315081 E-2 \\ (8.9229)^{* *} \end{array}$	$\begin{array}{r} -0.340972 E-2 \\ (12.6646)^{* *} \end{array}$	$\begin{array}{r} -0.148061 E-2 \\ (7.7744)^{* * *} \end{array}$	$\begin{array}{r} -0.238823 E-2 \\ (6.1197)^{* *} \end{array}$	$\begin{array}{r} -0.977042 E-3 \\ (1.5147) \end{array}$	$\begin{array}{r} -0.185405 E-2 \\ (13.3968)^{* *} \end{array}$	$\begin{array}{r} -0.258908 E-2 \\ (10.0106)^{* *} \end{array}$
$\boldsymbol{\pi} 10$	$\begin{array}{r} 0.320492 \\ (4.2628)^{* *} \end{array}$	-0.531305 (8. 5832)**	$\begin{aligned} & -0.187013 \\ & (3.9619)^{* *} \end{aligned}$	$\begin{aligned} & -0.560942 \\ & (5.9153)^{* *} \end{aligned}$	$\begin{array}{r} -0.163963 \\ (1.0310) \end{array}$	$\begin{aligned} & -0.184627 \\ & \text { (3. } 8691)^{* *} \end{aligned}$	-0.499955 (6. 3149) **
$\pi{ }_{1}$	$\begin{array}{r} -0.325186 E-2 \\ (9.0988)^{* *} \end{array}$	$\begin{array}{r} -0.351419 E-2 \\ (12.5285)^{* *} \end{array}$	$\begin{aligned} & -0.198630 E-2 \\ & (9.0574)^{* *} \end{aligned}$	$\begin{array}{r} -0.308657 E-2 \\ (7.1277) * * \end{array}$	$\begin{array}{r} -0.153404 E^{-2} \\ (2.3265)^{* *} \end{array}$	$\begin{array}{r} -0.226710 E-2 \\ (14.9141)^{* *} \end{array}$	$\begin{array}{r} -0.262536 E-2 \\ (9.2600)^{* *} \end{array}$
Number of iterations	2	2	- $\dot{2}$	2	2	3	2
χ^{2}	9880	25. 2512^{*}	26.5170*	10.9848*	8. $3099{ }^{*}$	69.2273	21.7232*
Degrees of freedon							(18)

Table 4-2 The Estimated Results Using Cross Sectional Data(1977)

Type of households	H	I	J	K	L	M
Age of uife	40-49	40-49	40-49	40-49	50-59	50-59
Educational level	Junior high	Junior high	Senior high	Senior high	Junior high	Senior high
Nb of children age 0 to 5	0	0	0	0	0	0
Nb of children age 6 to 14	0	$1+$	0	1+	0	0
π_{00}	$\begin{array}{r} 0.286416 \\ (7.6838)^{* *} \end{array}$	$\begin{array}{r} 0.376253 E-1 \\ (0.8794) \end{array}$	$\begin{array}{r} 0.377122 \\ (7.7171)^{* *} \end{array}$	$\begin{array}{r} 0.302646 \\ (5.6156)^{* *} \end{array}$	-0.222342 (6. 9079)**	-0.268992 (5. 5833) **
$\pi \sim$	$\begin{array}{r} -0.193541 E-2 \\ (14.1365) \end{array}$	$\begin{array}{r} -0.154827 E-2 \\ (9.1058)^{* *} \end{array}$	$\begin{array}{r} -0.234779 E-2 \\ (17.2271)^{* *} \end{array}$	$\begin{array}{r} -0.240145 E-2 \\ (15.3749)^{* *} \end{array}$	$\begin{array}{r} -0.136250 E-2 \\ (9.7800)^{+*} \end{array}$	$\begin{array}{r} -0.131518 E-2 \\ (9.5810)^{* *} \end{array}$
$\pi 10$	$\begin{gathered} 0.238371 \\ (6.3376)^{* *} \end{gathered}$	$\begin{array}{r} -0.435312 E-1 \\ (0.9969) \end{array}$	$\begin{array}{r} 0.276605 \\ (5.5617)^{* *} \end{array}$	$\begin{array}{r} 0.154264 \\ (2.7576)^{* * *} \end{array}$	-0.276292 (8. 4306) **	-0.375701 (7.5810) **
$\pi 11$	$\begin{array}{r} -0.214219 E-2 \\ (15.3838)^{* *} \end{array}$	$\begin{array}{r} -0.185757 E-2 \\ (10.5963)^{* *} \end{array}$	$\begin{array}{r} -0.246607 E-2 \\ (17.5855)^{* *} \end{array}$	$\begin{array}{r} -0.259994 E-2 \\ (15.7185)^{* *} \end{array}$	$\begin{array}{r} -0.155161 E-2 \\ (10.8352)^{* *} \end{array}$	$\begin{array}{r} -0.132946 E-2 \\ (9.3422)^{* *} \end{array}$
Number of iterations	${ }^{2}$	2	2	2	2	2
χ^{2}	39. 4664**	38. $8525{ }^{\text {*** }}$	23.1164*	33. 30.42^{*}	30.6809**	31.0659*
Degrees of freedom	(22)	(22)	(22)	(22)	(22)	(24)

Table 5-1 The Estimated Results Using Pooled Data

Type of households	A	B	C	D	E	F	G
Age of wife	20-29	20-29	30-39	30-39	30-39	30-39	30-39
Educational lepel	Senior high	Senior high	Junior high	Junior high	Senior high	Senior high	Senior high
Nb of children age 0 to 5	0	$1+$	0	$1+$	0	0	$1+$
No of children age 6 to 14	0	0	$1+$	$1+$	0	1+	1+
$r_{1} /{ }^{\text {a }}$	$\begin{array}{r} -0.210610 E-2 \\ (1.9402) \end{array}$	$\begin{array}{r} -0.291112 E-2 \\ (2.3350)^{* *} \end{array}$	$\begin{array}{r} -0.738635 E-2 \\ (7.7598)^{* *} \end{array}$	$\begin{array}{r} -0.104590 E-1 \\ (4.1094) * * \end{array}$	$\begin{array}{r} -0.274951 E-2 \\ (1.6538) \end{array}$	$\begin{array}{r} -0.528854 E-2 \\ (6.3236)^{* *} \end{array}$	$\begin{array}{r} -0.220506 E-3 \\ (0.1368) \end{array}$
$r_{2} / 0$	$\begin{aligned} & -6.546196 \\ & (2.1292)^{* *} \end{aligned}$	-10.994171 $(2.7288)^{* *}$	-10.476751 $(6.88 .13)^{* *}$	-6.781215 (1.9390)	-8.447696 $(2.7331) * *$	$\xrightarrow{-10.858538}$	$\begin{array}{r} -15.751899 \\ (5.7725)^{* *} \end{array}$
$n 2 / 0$	$0.382312 E-2$ (14.9439)**	$0.351551 E-2$ $(14.6240)^{* *}$	$0.116329 E-2$ $(7.7269)^{* *}$	0.137475 E-2 (3.8230)**	$0.136291 E-2$ $(4.1843) * *$	0. $152362 \mathrm{E}-2$ (13. 1034$)^{* *}$	0. $225677 \mathrm{E}-2$ $(9.7043$)***
ri/o	9.020178 $(5.4106) * *$	5.789858 $(2.4596)^{* *}$		0.384755 (0.2348)	$-0.582128 E-1$ (0.0417)	-1.180756 (1.4811)	$\begin{array}{r} -0.335359 \\ (0.2395) \end{array}$
rs/o	$-0.103266 E-2$ $(5.3444)^{* *}$	$-0.582050 E-3$ $(2.1290)^{* *}$	$0.357073 E-3$ $(4.2495)^{* *}$	$0.516255 E-4$ (0.2708)	$0.510833 E-4$ (0.3151)	$0.176489 E-3$ (1. 8993$)$	$\begin{array}{r} 0.103057 E-3 \\ (0.6335) \end{array}$
Number of iterations x^{2}	19 387.4443	$\begin{aligned} & 4 \\ & 68.8709 \end{aligned}$	2 118.9529	$\begin{gathered} 3 \\ 37.0551^{*} \end{gathered}$	6 94. 1352	372.1064	66. ${ }^{3}$
Degrees of freedon	(35)	(41)	(47)	(39)	(37)	(49)	(41)
mprical criterio	0	0	\times	\times	x	\times	\times

Table 5-2 The Estimated Results Using Pooled Data

Table 6-1 The Estinated Results of the Modified Model Using Pooled Data

Tape of households	A	B	C	D	E	F	G
Age of wife	20-29	20-29	30-39	30-39	30-39	30-39	30-39
Educational level	Senior high	Senior high	Junior high	Junior high	Senior high	Senior high	Senior high
No of children age 0 to 5	0	1+	\bigcirc	1+	0	\bigcirc	1+
No of children age 6 to 14	0	0	$1+$	$1+$	0	$1+$	$1+$
$r_{1} / 0$	$\begin{array}{r} -0.999008 E-2 \\ (4.2644) * * \end{array}$	$\begin{array}{r} -0.100022 E-1 \\ (3.0909)^{* *} \end{array}$	$\begin{array}{r} -0.136083 E-1 \\ (10.7724)^{* *} \end{array}$	$\begin{array}{r} -0.171781 E-1 \\ (5: 0510)^{* *} \end{array}$	$\begin{array}{r} -0.939871 E-2 \\ (4.5932)^{* *} \end{array}$	$\begin{array}{r} -0.127791 E-1 \\ .(11.6696)^{* *} \end{array}$	$\begin{array}{r} -0.693999 E-2 \\ (2.9297)^{* *} \end{array}$
α / σ	$\begin{gathered} -51.994054 \\ (3.6104)^{* *} \end{gathered}$	$\begin{array}{r} -53.821782 \\ (2.9559)^{* *} \end{array}$	$\begin{array}{r} 8.007482 \\ (2.8548) * * \end{array}$	B. 620718 (1. 3993)	$\begin{gathered} 28.155549 \\ (4.235 i)^{* *} \end{gathered}$	$\begin{array}{r} 14.496896 \\ (5.2181)^{* *} \end{array}$	3. 656419 (0.6670)
$\beta / \boldsymbol{\square}$	$\begin{gathered} 0.293028 E-2 \\ (3.2979)^{* *} \end{gathered}$	$\begin{array}{r} 0.271717 E-2 \\ (2.3936)^{* *} \end{array}$	$\begin{gathered} 0.329102 E-2 \\ (7.7643)^{* *} \end{gathered}$	$\begin{array}{r} 0.304581 E-2 \\ (2.9672)^{* *} \end{array}$	$\begin{array}{r} 0.564711 E-2 \\ (6.0797) * * \end{array}$	$\begin{gathered} 0.372532 E-2 \\ (10.4533)^{* *} \end{gathered}$	$\begin{aligned} & 0.291733 E-2 \\ & (4.1311)^{* *} \end{aligned}$
r $3 / \sigma$	$\begin{gathered} 0.362119 \dot{E}-2 \\ (14.0877)^{* *} \end{gathered}$	$\begin{gathered} 0.348457 E-2 \\ (14.5347)^{* *} \end{gathered}$	$\begin{gathered} 0.130900 E-2 \\ (8.6490)^{* *} \end{gathered}$	$\begin{array}{r} 0.162439 E-2 \\ (4.4383)^{* *} \end{array}$	$\begin{array}{r} 0.140638 E-2 \\ (4.2765)^{* *} \end{array}$	$\begin{gathered} 0.172905 E-2 \\ (14.7086)^{* *} \end{gathered}$	$\begin{gathered} 0.239440 E-2 \\ (10.1652)^{* *} \end{gathered}$
r / σ	$\begin{gathered} -21.510538 \\ (2.2858)^{* *} \end{gathered}$	$\begin{array}{r} -22.380856 \\ (1.8816) \end{array}$	$\begin{array}{r} 9.924865 \\ (5.5354) * * \end{array}$	$\begin{gathered} 11.173978 \\ (2.819 .1)^{* *} \end{gathered}$	$\begin{gathered} 25.268118 \\ (5.8012)^{* *} \end{gathered}$	$\begin{aligned} & \text { 16. } 186057 \\ & (8.7168)^{* *} \end{aligned}$	12. 652062 (3.6476)**
ru/a	$\begin{array}{r} 0.251475 E-2 \\ (2.3014)^{* *} \end{array}$	$\begin{array}{r} 0.268917 E-2 \\ (1.9472) \end{array}$	$\begin{array}{r} -0.111911 E-2 \\ \quad(5.3588)^{* *} \end{array}$	$\begin{array}{r} -0.120352 E-2 \\ (2.6101)^{* *} \end{array}$	$\begin{array}{r} -0.290453 E-2 \\ (5.716 .1)^{* *} \end{array}$	$\begin{array}{r} -0.18 .1849 E-2 \\ (8.5332)^{* *} \end{array}$	$\begin{array}{r} -0.140691 E-2 \\ (3.4905) * * \end{array}$
Num	19	7	3	3	5	3	3
χ^{2}	370.8490	65. 9931**	58.0952*	29.4782*	55. 5428*	170.2020	54. 5352*
Degrees of freedom	(34)	(40)	(46)	(38)	(36)	(48)	(40)
Empirical criterion	\times	x	0	0	0	0	\bigcirc

Table 6-2 The Estimated Results of the Modified Model Using Pooled Data

Type of households	H	I	J	K	L	M
Age of vife	40-49	40-49	40-49	40-49	50-59	50-59
Educational level	Junior high	Junior high	Senior high	Senior high	Junior high	Senior high
Nb cf children age 0 to 5	0	\bigcirc	0	0	0	0
No of children age 6 to 14	0	1+	0	1+	0	0
$n /{ }^{\text {a }}$	$\begin{array}{r} -0.504120 E-2 \\ (5.7883)^{* *} \end{array}$	$\begin{array}{r} -0.864351 E-2 \\ (7.0914) * * \end{array}$	$\begin{array}{r} -0.798255 E-2 \\ (8.9394) * * \end{array}$	$\begin{array}{r} -0.840056 E-2 \\ (6.6598)^{* *} \end{array}$	$\begin{array}{r} -0.554084 E-2 \\ (4.8159)^{* *} \end{array}$	$\begin{array}{r} -0.426317 E-2 \\ (3.4264)^{* *} \end{array}$
a/a	$\begin{aligned} & -9.208804 \\ & (9.1222)^{* *} \end{aligned}$	$\begin{aligned} & -5.814501 \\ & (4.3769)^{* *} \end{aligned}$	$\begin{aligned} & -7.757513 \\ & (6.9612)^{* *} \\ & \hline \end{aligned}$	$\begin{aligned} & -6.978966 \\ & (4.7439)^{* *} \end{aligned}$	$\begin{aligned} & -6.062174 \\ & (3.5477)^{* *} \end{aligned}$	$\begin{array}{r} -0.820369 \\ (0.3501) \end{array}$
$8 / \sigma$	0. 127750 E-2. $(3.7827)^{* *}$	0. 181639E-2 (4.0612) **	$\begin{array}{r} 0.269773 E-2 \\ (7.7584)^{* *} \end{array}$	$0.308605 E-2$ (7. 1546)**	0. 129508E-2 (3. 3036)**	$\begin{aligned} & 0.172905 E-2 \\ & (3.9978)^{* *} \end{aligned}$
$r 3 / 0$	$\begin{gathered} 0.172109 E-2 \\ (15.1603)^{* *} \end{gathered}$	0. 155199 E-2 (10.3719)**	$\begin{gathered} 0.223552 E-2 \\ (19.4038)^{* *} \end{gathered}$	$0.239377 E-2$ (16.7032)**	0. 135776 E-2 $(11.2024)^{* *}$	0. $127477 E-2$ (10.4632)**
i. $1 / 0$	$\begin{array}{r} -0.162540 \\ (0.4002) \end{array}$	$\begin{gathered} 1.208309 \\ (2.3203)^{* *} \end{gathered}$	$\begin{array}{r} 2.132879 \\ (4.0370)^{* *} \end{array}$	$\begin{array}{r} 3.555208 \\ (5.3623)^{* *} \end{array}$	$\begin{aligned} & 0.83870! \\ & (1.0529) \end{aligned}$	$\text { 3. } 942399$ $(3.2631)^{* *}$
$r s / \sigma$	$0.160278 E-4$ (0.3476)	$\begin{aligned} & -0.124543 E-3 \\ & (2.1057)^{* *} \end{aligned}$	$\begin{array}{r} -0.249897 E-3 \\ (4.1308)^{* *} \end{array}$	$\begin{array}{r} -0.409638 E-3 \\ \quad(5.4069)^{* *} \end{array}$	$\begin{array}{r} -0.521819 E-4 \\ (0.5785) \end{array}$	$\begin{array}{r} -0.398127 E-3 \\ (2.8974)^{* *} \end{array}$
Number of iteration			5	- 3	3	- 5
χ^{2}	${ }^{107.5162}$	5632*	108. 3923	91.3298	66.4893**	77. $1098{ }^{\text {** }}$
Degrees of freedom	(46)	(46)	(48)	(44)	(46)	(50)
Empirical criterion	\times	\bigcirc	\bigcirc	\bigcirc	0	O

Diagramatic Epposition of Choice anong Three Alternative Options for Labor Force Participation

Figure 1

Figure 2

Figure 4

Notes: (1) The vertical axis (Λ) measures upward the amount of leisure time, and the horizontal amis (Y) measures income.
(2) Notations are: Y husband's(or household head's)incone; h_{1}, designated haurs for full-tise work; h_{2}, designated hours for part-tiae work; w_{2}, hourly wage rate for fulltime work; w_{1}, hourly wage rate for part-time work.
(3) $\omega_{0}, \omega_{1}, \omega_{2}$, indicate utility levels in descending order.

Figure 5. Diagramaticempression of Probability Density Function of the Value of a Parameter of Utility Function

Figure 6. Actual and Predicted Relationships betwera Full-tine Labor Farce Participation Rate and Real Household Head's Incone

Notes: (1)Vertical azis(LFPR) measures full-time labor farce participation rate, and horizontal axis(Y) measures real household head's annual incone in terns of 10 thousand yen.
(2) Notations on the graph, 1977A indicates actual palues observed for 1977 and 1977P indicates predicted ralues computed on the basis of our result of estimation.
Figure 7-1 Simulation Results of Full-tine Participation Ratios Basic case: $1=2$ illion yen/year, $\boldsymbol{n}_{1}=730$ yen/hour, $\mathbf{M}_{2}=460 \mathrm{yen} / \mathrm{hour}$, $h_{1}=2200$ hours/sear, $h_{2}=1500$ hours/year.

Figure 7-2 Sinulation Results of Full-time Participation Ratios

Figure 8-1 Sinulation Results of Part-tine Participation Ratios

Figure b-2 Sinulation Results of Part-time Participation Ratios

