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EMPIRICAL LIKELIHOOD INFERENCE FOR MONOTONE INDEX MODEL

TAISUKE OTSU, KEISUKE TAKAHATA, AND MENGSHAN XU

Abstract. This paper proposes an empirical likelihood inference method for monotone index
models. We construct the empirical likelihood function based on a modified score function
developed by Balabdaoui, Groeneboom and Hendrickx (2019), where the monotone link function
is estimated by isotonic regression. It is shown that the empirical likelihood ratio statistic
converges to a weighted chi-squared distribution. We suggest inference procedures based on an
adjusted empirical likelihood statistic that is asymptotically pivotal, and a bootstrap calibration
with recentering. A simulation study illustrates usefulness of the proposed inference methods.

1. Introduction

Single index models are widely used in statistics since they compromise interpretability of index
coefficients in the parametric part and flexibility of regression modeling in the nonparametric
part (see, ch. 8 of Li and Racine, 2007, for a review). Many estimation methods have been
proposed for single index models, such as the semiparametric least squares estimator (Härdle,
Hall and Ichimura, 1993; Ichimura, 1993), M-estimator (Klein and Spady, 1993), and average
derivative estimator (Powell, Stock and Stoker, 1989). Although these estimation methods have
desirable theoretical properties under certain regularity conditions, they typically require some
nonparametric smoothing method to evaluate the unknown link function, which involves tuning
parameters, such as bandwidth and series length parameters, and the optimal choices of them
are substantial (theoretical and practical) problems.

The monotone single index model, in which monotonicity is imposed on the link function,
has been studied in recent years. Balabdaoui, Durot and Jankowski (2016) showed that the
least square estimator of a monotone single index model generally converges at the cube root
rate, but its asymptotic distribution is still unknown. The main difficulty for deriving the
asymptotic distribution of the least square estimator arises from the non-differentiability of the
objective function; in a monotone single index model, the link function, which is an infinite-
dimensional nuisance parameter, is generally estimated by a nonparametric approach such as
isotonic regression, while the index part is parametrically modeled as a linear combination of the
covariates. Then the derivative of the objective function with respect to the index coefficients is
intractable due to the non-smoothness of the estimated nuisance parameter.

To overcome this issue, Groeneboom and Hendrickx (2018) developed a score-type estimator
for the current status model, which is a special case of monotone single index models. Their
approach is based on the estimating equation which is the same as the first-order condition of
the least square estimator except that it ignores the derivative of the estimated link function.
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They proved
p
n-consistency and asymptotic normality of their estimator without any tuning

parameter. Their result was extended to general monotone single index models by Balabdaoui,
Groeneboom and Hendrickx (2019), where they derived

p
n-consistency and asymptotic nor-

mality for the parametric component and an n1/3/ log n convergence rate for the nonparametric
estimator of the link function.

Although the score estimation approach is remarkable, the main drawback is that it requires
smoothing parameters to estimate the asymptotic variance to implement hypothesis testing and
interval estimation. Because the estimating function in the score-type approach is dependent on
the estimated link function, some conditional expectation is involved in the asymptotic variance.
Besides, the partial derivative of the link function is also included in the asymptotic variance
even though the estimated link function is not smooth. Therefore, smoothing methods, such
as the kernel smoothing, are employed to estimate such quantities, which require us to select
multiple smoothing parameters and make statistical inference cumbersome.

To address this problem, we propose an empirical likelihood inference method based on the
score-type approach for monotone index models. We show that the empirical likelihood statistic
based on the estimating equation of Balabdaoui, Groeneboom and Hendrickx (2019) converges
in distribution to the weighted chi-squared distribution. Even in our empirical likelihood ap-
proach, the conditional expectation as mentioned above appears in the asymptotic distribution.
To circumvent selection of smoothing parameters, we adapt the bootstrap calibration method
proposed by Hjort, McKeague and van Keilegom (2009) to our context. Because of the esti-
mating equation with the estimated nuisance parameter plugged-in, a classical naive bootstrap
method is not asymptotically valid. Hjort, McKeague and van Keilegom (2009) provided a mod-
ified bootstrap method by recentering and reweighting to deal with such a situation. Combining
the empirical likelihood and modified bootstrap methods, our approach provides a simple and
theoretically justified method for statistical inference in monotone single index models.

The remainder of this paper is organized as follows. Section 2 presents our basic setup,
methodology, and theoretical results. In Section 3, we conduct a small simulation study to
illustrate the proposed method. All proofs are contained in the appendix.

2. Main result

We closely follow the setup and notation of Balabdaoui, Groeneboom and Hendrickx (2019)
(hereafter BGH). Consider the monotone index model

Y =  0(X
0↵0) + ✏, E[✏|X] = 0, (1)

where Y is a scalar response variable, X is a d-dimensional vector of covariates, ✏ is an error
term, ↵0 is a k-dimensional vector of parameters, and  0 : R ! R is an unknown monotone
increasing function. For identification, we assume that ↵0 belongs to the d-dimensional unit
sphere Sd�1 = {↵ 2 Rd : ||↵|| = 1}. We are interested in conducting statistical inference (i.e.,
interval estimation and hypothesis testing) on ↵0 based on the empirical likelihood approach.

Let S : Rd�1 ! Sd�1 be a parameterization such that for each ↵ in a neighborhood of ↵0

on Sd�1, there exists a unique � 2 Rd�1 which satisfies ↵ = S(�). To motivate the score-type
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approach of BGH, we tentatively assume that  0 is known. The population score equation for
the least square estimation of �0 is

E
h
J(�0)0X (1)

0 (X 0S(�0)){Y �  0(X
0S(�0))}

i
= 0, (2)

where  (1)
0 is the derivative of  0 and J(�) is the Jacobian of S(�). Thus, it is natural to construct

an estimator of �0 by taking an empirical counterpart of (2) and inserting estimators for  (1)
0 and

 0. However, when we estimate  0 by the isotonic regression method, the resulting estimator
of  0 is typically discontinuous and it is not clear how to evaluate the derivative  (1)

0 without
introducing smoothing parameters. To address this issue, BGH and Groeneboom and Hendrickx
(2018) considered the modified population score equation

E
⇥
J(�0)0X{Y �  0(X

0S(�0))}
⇤
= 0. (3)

In particular, for point estimation of ↵0, BGH proposed to solve the following score-type equation

1

n

nX

i=1

J(�̂)0Xi{Yi �  ̂�̂(X
0
iS(�̂))} = 0, (4)

with respect to �̂, and estimate ↵0 by ↵̂ = S(�̂), where for given �,  ̂� is obtained by the isotonic
regression

 ̂� = arg min
 2M

nX

i=1

{Yi �  (X 0
iS(�))}2, (5)

and M is the set of monotone increasing functions defined on R.
In this paper, we employ the score-type equation in (3) as a moment function and propose the

following empirical likelihood statistic

`(�0) = �2 max
{pi}ni=1

nX

i=1

log(npi) s.t.
nX

i=1

pi = 1,
nX

i=1

piĝi(�0) = 0, (6)

where
ĝi(�) = J(�)0Xi{Yi �  ̂�(X

0
iS(�))}.

By the Lagrange multiplier argument, its dual form is obtained as

`(�0) = 2
nX

i=1

log(1 + �̂0ĝi(�0)), (7)

where the Lagrange multiplier �̂ solves

1

n

nX

i=1

ĝi(�0)

1 + �̂0ĝi(�0)
= 0. (8)

In practice, we use the dual representation in (7) to implement statistical inference. To study
the asymptotic properties of the empirical likelihood statistic `(�0), we impose the following
assumptions. Let k·k be the Euclidean norm and B(a0, A) = {a : ka� a0k  A} be a ball
around a0 of radius A.

Assumption.
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A1: {Yi, Xi}ni=1 is an iid sample generated by (1). The support X of X is convex with a
nonempty interior, and X ⇢ B(0, R) for some R > 0. The Lebesgue density of X has a
bounded derivative on X . There exist positive constants c and C such that E[|Y |m|X =

x]  cm!Cm�2 for all integers m � 2 and almost every x 2 X .
A2:  0 is monotone increasing and there exists K0 > 0 such that | 0(u)|  K0 for all

u 2 {x0↵0 : x 2 X}.

These assumptions are adaptations of Assumptions A1-A6 in BGH. Compared to BGH, our
assumptions are simpler because we do not need to control the behavior of the score function
outside the true parameter ↵0 = S(�0). Assumption A1 is on the distribution form of the data.
The support condition in A1 may be relaxed by assuming X to follow a sub-Gaussian distribu-
tion. The moment condition in A1, which is analogous to BGH’s A6, is required to guarantee
max1in |Yi| = Op(log n) to control the entropy of a class of score functions. Assumption A2 is
on the true link function  0. Compared to BGH which considers point estimation, we only need
to impose boundedness, which is a mild requirement.

Under these assumptions, our main result is presented as follows.

Theorem 1. Under Assumptions A1-A2, it holds

`(�0)
d! Z 0V Z,

where Z ⇠ N(0,⌃) with ⌃ = J(�0)0E[✏2(X � E[X|X 0S(�0)])(X � E[X|X 0S(�0)])0]J(�0) and
V = J(�0)0E[✏2XX 0]J(�0).

Remark 1. This theorem says that the empirical likelihood statistic `(�0) is not asymptoti-
cally pivotal and converges to a weighted chi-squared distribution w1�2

1,1 + · · · + wd�1�2
1,d�1,

where w1, . . . , wd�1 are the eigenvalues of ⌃�1V and �2
1,1, . . . ,�

2
1,d�1 are independent �2

1 ran-
dom variables. This lack of asymptotic pivotalness is caused by the mismatch in the asymp-
totic variance ⌃ of the score function 1p

n

Pn
i=1 ĝi(�0) and the limit V of the sample variance

V̂ = 1
n

Pn
i=1 ĝi(�0)ĝi(�0)

0. In the literature of empirical likelihood, weighted chi-squared limit-
ing distributions often emerge when the score (or moment) functions involve estimated nuisance
parameters (e.g., Qin and Jing, 2001; Xue and Zhu, 2006; Hjort, McKeague, and van Keilegom,
2009).

Remark 2. One way to conduct statistical inference based on `(�0) is to estimate the critical
values of w1�2

1,1 + · · · + wd�1�2
1,d�1 based on some estimators of ⌃ and V . Based on (13), V is

consistently estimated by V̂ . On the other hand, ⌃ can be estimated by

⌃̂ = J(�0)0
1

n

nX

i=1

✏̂2i {Xi � m̂(X 0
iS(�0))}{Xi � m̂(X 0

iS(�0))}J(�0),

where ✏̂i = Yi� ̂�0(X 0
iS(�0)) and m̂(·) is a nonparametric estimator of m(·) = E[X|X 0S(�0) = ·].

An alternative way for statistical inference is to adjust the empirical likelihood statistic `(�0)
to recover the asymptotic pivotalness. Based on Rao and Scott (1981) (see also Xue and Zhu,

4



2006), the above theorem implies

`A(�0) =
d� 1

trace(⌃̂�1V̂ )
`(�0)

d! �2
d�1. (9)

Then the confidence region of ↵0 = S(�0) can be obtained by {S(�) : `A(�)  qa}, where qa is
the (1� a)-th quantile of the �2

d�1 distribution.

Remark 3. A drawback of the asymptotic inference method presented in the previous remark
is that it requires a selection of a tuning parameter to implement the nonparametric estimator
m̂(·). In order to obtain an inference procedure which is free from tuning parameters, we adapt
the bootstrap method of Hjort, McKeague, and van Keilegom (2009) as follows.

(1) Based on the original sample {Yi, Xi}ni=1, compute �̂ as in (4), and then compute

Mn(�̂) =
1

n

nX

i=1

ĝi(S(�̂)), V̄ =
1

n

nX

i=1

ĝi(S(�̂))ĝi(S(�̂))0.

(2) Draw {Y ⇤
i , X

⇤
i }ni=1 from the original sample {Yi, Xi}ni=1 with equal weights. Then com-

pute

M⇤
n(�̂) =

1

n

nX

i=1

J(�̂)0X⇤
i {Y ⇤

i �  ̂⇤
�̂
(X⇤0

i S(�̂))},

where  ̂⇤
�̂
= argmin 2M

Pn
i=1{Y ⇤

i �  (X⇤0
i S(�̂))}2.

(3) The bootstrap counterpart of `(�0) is given by

`⇤ = n{M⇤
n(�̂)�Mn(�̂)}0V̄ �1{M⇤

n(�̂)�Mn(�̂)}. (10)

Under the additional assumptions A3-A5 in the appendix, the validity of this bootstrap approx-
imation is obtained as follows.

Theorem 2. Under Assumptions A1-A5, it holds

sup
t�0

|P ⇤{`⇤  t}� P0{`(�0)  t}| p! 0,

where P ⇤ is the bootstrap distribution conditional on the data.

3. Simulation

We conduct a simulation study to investigate the finite sample performance of the proposed
inference methods. We consider the following data generation process:

Y =  0(X
0↵0) + ✏,  0(u) = u3, ↵0 = (1, 1, 1)0/

p
3

✏ ⇠ N(0, 1), X ⇠ N(0, I3),

where I3 is the 3⇥3 identity matrix. We consider sample sizes n = 100, 500, 1000. The number of
Monte Carlo replications is 1000. We consider two testing methods discussed in Remarks 2 and 3.
For the adjusted statistic in (9), we estimate m(·) = E[X|X 0S(�0) = ·] by the Nadaraya-Watson
estimator, and choose the bandwidths based on the expected Kullback-Leibler cross-validation
(Hurvich, Simonoff and Tsai, 1998). To test the null hypothesis H0 : ↵0 = (1, 1, 1)0/

p
3, we

calculate the test statistic (9) and compare it with the 95 percentile of the �2
d�1 distribution.
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Table 1. Rejection frequencies (%)

n
Adjusted Bootstrap ↵̂1

N A1 A2 A3 N A1 A2 A3 mean s.d.
100 4.7 4.9 6.1 8.7 8.1 8.3 9.0 13.9 0.577 0.0528
500 4.2 7.5 15.9 51.1 6.6 10.0 18.1 53.3 0.576 0.0166

1000 7.4 14.8 31.5 86.1 5.6 18.2 34.9 87.8 0.577 0.0113

For the bootstrap-calibrated test statistic (10), we compute �̂ as in BGH (the computer code
is available at Groeneboom’s website), and generate 499 bootstrap samples, and calculate the
bootstrap counterpart `⇤ in (10).

Table 1 presents the rejection frequencies of the above empirical likelihood tests for the null
H0 : ↵0 = (1, 1, 1)0/

p
3 when the true values of ↵0 are (N) ↵0 = (1, 1, 1)0/

p
3, (A1) ↵0 =

(1.03, 1, 1)0/
p
1.032 + 2, (A2) ↵0 = (1.05, 1, 1)0/

p
1.052 + 2, and (A3) ↵0 = (1.10, 1, 1)0/

p
1.102 + 2.

(N) is for the size properties, and (A1)-(A3) are to evaluate power properties.
The column “↵̂1” reports the Monte Carlos averages and standard deviations of the first

element of the BGH estimator ↵̂. It shows that the mean is close to the truth, ↵01 = 1/
p
3 '

0.577, while the standard deviation becomes smaller with the sample size. From the columns
(N), we can see that both the adjusted and bootstrap empirical likelihood tests have reasonable
size properties. Both tests become powerful as the sample size increases and the true values of
↵0 are more distinct from the null values (i.e., from A1 to A3). Also, we find that overall the
bootstrap test rejects slightly more often than the adjusted test.

Overall, our simulation results are encouraging.
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Appendix A. Mathematical appendix

A.1. Proof of theorem 1. Here we denote ĝ0i = ĝi(�0), S0 = S(�0), and J0 = J(�0).
Note that (i) X has bounded support (by Assumption A1), (ii) max |Yi| = Op(log n) (by

Assumption A2 and Lemma 7.1 of Balabdaoui, Durot and Jankowski, 2016), and
(iii) supx2X | ̂�0(x0S0)| = Op(log n) by Lemma 8 of the supplementary material of BGH (hereafter
BGH-supp). Combining these results, it holds

max
1in

|ĝ0i| = Op(log n). (11)

Thus, an expansion of (8) around �̂ = 0 using the same argument in Owen (1991, proof of
Theorem 2) based on (11) implies

�̂ =

"
1

n

nX

i=1

ĝ0iĝ0i
0

#�1
1

n

nX

i=1

ĝ0i + op(n
�1/2). (12)

A second-order expansion of (7) around �̂ = 0 using (12) yields

`(�0) = 2�̂0
nX

i=1

ĝ0i � �̂0
"

nX

i=1

ĝ0iĝ
0
0i

#
�̂+ op(1)

=

 
1p
n

nX

i=1

ĝ0i

!0 "
1

n

nX

i=1

ĝ0iĝ
0
0i

#�1 
1p
n

nX

i=1

ĝ0i

!
+ op(1).

Then it is enough for the conclusion to show that

1

n

nX

i=1

ĝ0iĝ
0
0i

p! V = J00E[✏2XX 0]J0, (13)

1p
n

nX

i=1

ĝ0i
d! N(0,⌃). (14)

We first show (13). Decompose

1

n

nX

i=1

ĝ0iĝ
0
0i = J00

"
1

n

nX

i=1

✏2iXiX
0
i

#
J0 + J00

"
1

n

nX

i=1

{ 0(X
0
iS0)�  ̂�0(X

0
iS0)}2XiX

0
i

#
J0

+J00

"
2

n

nX

i=1

✏i{ 0(X
0
iS0)�  ̂�0(X

0
iS0)}XiX

0
i

#
J0. (15)

By the law of large numbers, the first term of (15) converges to V . By Mukerjee (1988, Theorem
3.3), we have the uniform consistency

sup
x2X

| 0(x
0S0)�  ̂�0(x

0S0)|
p! 0. (16)

Therefore, both the second and third terms of (15) converge to zero. Combining these results,
we obtain (13).

We now show (14). Let Pn be the empirical measure of {Xi, Yi}ni=1, P0 be the true measure
of (X,Y ), and

E[X|x0S0] = E[X|X 0S0 = u] evaluated at u = x0S0.
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Decompose

1

n

nX

i=1

ĝ0i = J00
ˆ

x{y �  ̂�0(x
0S0)}dPn(y, x)

= J00
ˆ
{x� E[X|x0S0]}{y �  ̂�0(x

0S0)}dPn(y, x)

+J00
ˆ
{E[X|x0S0]� Ēn(x

0S0)}{y �  ̂�0(x
0S0)}dPn(y, x)

+J00
ˆ

Ēn(x
0S0){y �  ̂�0(x

0S0)}dPn(y, x)

:= J00(I + II + III),

where

Ēn(u) =

8
>>><

>>>:

E[X|x0S0 = ⌧i,S0 ] if  0(u) >  ̂�0(u) for all u 2 (⌧i, ⌧i+1),

E[X|x0S0 = s] if  0(s) =  ̂�0(s) for some s 2 (⌧i, ⌧i+1),

E[X|x0S0 = ⌧i+1,S0 ] if  0(u) <  ̂�0(u) for all u 2 (⌧i, ⌧i+1),

(17)

and ⌧i,S0 is the sequence of jump points of  ̂�0 . By the definition of Ēn(x0S0), it holds III = 0

(see, (C.10) in BGH-supp).
For II, decompose

II =

ˆ
{E[X|x0S0]� Ēn(x

0S0)}{y �  ̂�0(x
0S0)}d(Pn � P0)(y, x)

+

ˆ
{E[X|x0S0]� Ēn(x

0S0)}{y �  �0(x
0S0)}dP0(y, x)

+

ˆ
{E[X|x0S0]� Ēn(x

0S0)}{ ̂�0(x0S0)�  0(x
0S0)}dP0(y, x)

:= IIa + IIb + IIc. (18)

The same argument as in pp. 19-20 of BGH-supp guarantees IIa = op(n�1/2) and IIb =

op(n�1/2). For IIc, using (C.11) of BGH-supp and Proposition 4 of BGH, we have

kIIck  C

ˆ
{ ̂�0(x0S0)�  0(x

0S0)}2dP0(y, x)

= Op((log n)
2n�2/3) = op(n

�1/2),

for some C > 0. Therefore, we obtain

II = op(n
�1/2). (19)

For I, decompose

I =

ˆ
{x� E[X|x0S0]}{y �  0(x

0S0)}dPn(y, x)

+

ˆ
{x� E[X|x0S0]}{ 0(x

0S0)�  ̂�0(x
0S0)}dPn(y, x)

:= Ia + Ib.
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From pp. 21-22 of BGH-supp, we can show that Ib = op(n�1/2). Therefore,

1

n

nX

i=1

ĝ0i = J00
ˆ

{x� E[X|x0S0]}{y �  0(x
0S0)}dPn(y, x) + op(n

�1/2)

= J00
1

n

nX

i=1

{Xi � E[Xi|X 0
iS0]}✏i + op(n

�1/2), (20)

and the central limit theorem implies (14). Therefore, the conclusion is obtained.

A.2. Proof of Theorem 2. Based on Hjort, McKeague and van Keilegom (2009), it is sufficient
for the conclusion to show that

V̄
P0! J00E[✏2XX 0]J0, (21)

p
n{M⇤

n(�̂)�Mn(�̂)}
d! N(0,⌃), (22)

where �̂ is obtained by solving (4). For the validity of bootstrap, we add the following assump-
tions.

A3: There exists �0 > 0 such that the mapping u 7! E[Y |X 0↵ = u] is monotone increasing
on I↵ = {z0↵, z 2 Z} for each ↵ 2 B(↵0, �0).

A4: For all � 6= �0 with S(�) 2 B(↵0, �0), Cov
⇥
(�0 � �)0J(�)0X, 0(S(�0)0X)|S(�)0X

⇤
6= 0

almost surely.
A5: J00E[ (1)

0 (X 0↵0)V ar(X|X 0↵0)]J0 is non-singular.

By BGH, it can be shown that under A1-A5, �̂ is consistent and
p
n(�̂ � �0) is asymptotically

normal. Let  �(u) = E[Y |X 0S(�) = u]. For (21), note that

V̄ = J(�̂)0
"
1

n

nX

i=1

Xi{✏i +  �̂(X
0
iS(�̂))�  ̂�̂(X

0
iS(�̂))}2X 0

i

#
J(�̂) + op(1)

= {J0 + op(1)}0
(
1

n

nX

i=1

✏2iXiX
0
i + op(1)

)
{J0 + op(1)},

where the first equality follows from  0(x0S(�0))�  �̂(x
0S(�̂)) = Op(�̂ � �0) for almost every x

(by p. 26 and Lemma 17 of BGH-supp) and the consistency of �̂, and the second equality follows
from (16), A3, and the consistency of �̂. Thus, by the law of large numbers, we obtain (21).

We now prove (22). Note that M⇤
n(�̂) � Mn(�̂) = M⇤

n(�̂) by (4). Let P̂n be the empirical
measure of the bootstrap resample. Decompose

M⇤
n(�̂) = J(�̂)0

ˆ
{x� E(X|x0S(�̂))}{y �  ̂⇤

�̂
(x0S(�̂))}dP̂n

+J(�̂)0
ˆ

{E(X|x0S(�̂))� Ē⇤
n(x

0S(�̂))}{y �  ̂⇤
�̂
(x0S(�̂))}dP̂n

+J(�̂)0
ˆ

Ē⇤
n(x

0S(�̂)){y �  ̂⇤
�̂
(x0S(�̂))}dP̂n

:= I⇤ + II⇤ + III⇤, (23)

9



where Ē⇤
n(·) is defined similarly to (17) with respect to  ̂⇤

�̂
. Again, we have III⇤ = 0 by the

definition of Ē⇤
n(·). For II⇤, similar to (19) and p. 3481 of Groeneboom and Hendrickx (2017)

(GH hereafter), we have II⇤ = oPM (n�1/2), where PM is defined in p. 3450 of GH.
For I⇤, decompose

I⇤ = J(�̂)0
ˆ

{x� E(X|x0S(�̂))}{y �  ̂⇤
�̂
(x0S(�̂))}d(P̂n � Pn)

+J(�̂)0
ˆ

{x� E(X|x0S(�̂))}{y �  ̂�̂(x
0S(�̂))}dPn

+J(�̂)0
ˆ

{x� E(X|x0S(�̂))}{ ̂�̂(x
0S(�̂))�  ̂⇤

�̂
(x0S(�̂))}dPn

:= I⇤a + I⇤b + I⇤c .

For I⇤b , (4) and pp. 19-20 of BGH-supp combined with �̂ � �0 = Op(n�1/2) imply

I⇤b = J(�̂)0
ˆ

x{y �  ̂�̂(x
0S(�̂))}dPn

�J(�̂)0
ˆ
{E(X|x0S(�̂))� Ēn(x

0S(�̂))}{y �  ̂�̂(x
0S(�̂))}dPn

= op(n
�1/2).

For I⇤c , (6.21) in GH and pp. 21-22 of BGH-supp yield

I⇤c = J(�̂)0
ˆ

{x� E(X|x0S(�̂))}{ �̂(x
0S(�̂))�  ̂⇤

�̂
(x0S(�̂))}dPn

+J(�̂)0
ˆ
{x� E(X|x0S(�̂))}{ ̂�̂(x

0S(�̂))�  �̂(x
0S(�̂))}dPn

= op(n
�1/2).

Finally, for I⇤a , we have

I⇤a = J(�̂)0
ˆ
{x� E(X|x0S0)}{y �  0(x

0S0)}d(P̂n � Pn) + oPM (n�1/2 + (�̂ � �0))

= J(�̂)0
ˆ
{x� E(X|x0S0)}✏d(P̂n � Pn) + oPM (n�1/2),

where the first equality follows from a similar argument to (6.25) in GH, and the second equality
follows from a rearrangement and �̂ � �0 = Op(n�1/2).

Combining these results, we have

M⇤
n(�̂)�Mn(�̂) = J(�̂)0

ˆ
{x� E(X|x0S0)}✏d(P̂n � Pn) + oPM (n�1/2).

Comparing this and (20), the central limit theorem yields (22). Therefore, the conclusion follows.
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