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KOLMOGOROV-SMIRNOV TYPE TEST FOR GENERATED VARIABLES

TAISUKE OTSU AND GO TANIGUCHI

Abstract. Distribution homogeneity testing, particularly based on the Kolmogorov-Smirnov
statistic, has been applied in various empirical studies. In empirical economic analysis, it is
often the case that economic variables of interest are obtained as fitted values or residuals of
preliminary model fits, called generated variables. In this paper, we extend the Kolmogorov-
Smirnov type homogeneity test to accommodate such generated variables, and propose an
asymptotically valid bootstrap procedure. A small simulation study illustrates that it is crucial
for reliable inference to account for estimation errors in the generated variables. The proposed
method is applied to compare the total factor productivities across different countries.

1. Introduction

In various areas of empirical studies, researchers are often interested in testing homogeneity
of distributions across different samples. The most popular approach for distribution homo-
geneity testing is based on the Kolmogorov-Smirnov statistic, which is obtained as the largest
discrepancy of the empirical distribution functions by these samples, and statistical theory of
the Kolmogorov-Smirnov test is well known (e.g., Lehmann and Romano, 2005). An obvious
premise behind this statistical theory is that the samples of interest are all observable.

In empirical economic analysis, however, it is often the case that researchers are interested
in the distributions of latent or theoretical variables, which are unobservable but may be es-
timated by observable data. Such variables, called generated variables, are often obtained as
fitted values or residuals of preliminary regression fitting. Common examples include expected
values of prices or sales, total factor productivity, relative quality of firms, among others. A
major econometric issue of use of generated variables is that its statistical inference requires to
account for estimation errors contained in the generated variables. Pagan (1984) investigated
how to modify standard errors for regression analysis using generated regressors. Hahn and
Ridder (2013) studied standard error formulae for semiparametric estimators that involve gen-
erated variables. Matsushita and Otsu (2016) proposed a likelihood-based inference method
for semiparametric models with generated variables.

In this paper, we consider distribution homogeneity testing of generated variables. The test
statistic is the Kolmogorov-Smirnov statistic using the generated variables. However, the null
distribution is different from the conventional one due to the estimation errors to construct
the generated variables, and takes a somewhat complicated form. Therefore, we propose a
bootstrap procedure to compute the critical value for the Kolmogorov-Smirnov statistic. A
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key ingredient of our bootstrap procedure is to recenter for the bootstrap statistic to impose
the null hypothesis (cf. Whang, 2001). By adapting the asymptotic theory developed in
Linton, Maasoumi and Whang (2005), the asymptotic validity of our bootstrap procedure can
be established.

The proposed homogeneity test is illustrated by Monte Carlo simulation and an empirical
application. Our simulation study illustrates that it is crucial for reliable inference to account for
estimation errors in the generated variables. Especially the conventional Kolmogorov-Smirnov
test may exhibit severe size distortions. Also our empirical application on comparisons of the
total factor productivities across different countries illustrate usefulness of the proposed test.

2. Distribution homogeneity test

Consider scalar latent variables Xki for k = 1, . . . , K, which are not directly observable.
Suppose that the latent variables are specified as Xki = g(Zki, ✓k0), where g is a known function
up to the unknown parameters ✓k0 and Zki is a vector of observables. Let Fk be the cumula-
tive distribution function of Xk for k = 1, . . . , K. We wish to conduct hypothesis testing on
distribution homogeneity of generated variables

H0 : F1(x) = · · · = FK(x) for all x,

against H1 : H0 is false.
If {Xki}ni=1 is directly observable, then various homogeneity tests are available in the lit-

erature. In this paper we focus on the situation where some estimates ✓̂k for the parame-
ters ✓k0 are available to the researcher so that the generated variables X̂ki = g(Zki, ✓̂k) can
be constructed for i = 1, . . . , n. Typical examples of generated variables are fitted values
(X̂ki = Z 0

ki✓̂k0) and residuals (X̂ki = Z(1)
ki � Z(2)0

ki ✓̂k0) by preliminary OLS linear regression fit-
ting. Let F̂k(x) = n�1

Pn
i=1 I{X̂ki  x} be the empirical distribution function based on the

generated variables {X̂ki}ni=1, where I{·} is the indicator function. F̂k(x) is a consistent es-
timator of Fk(x) under mild regularity conditions as far as ✓̂k is consistent for ✓k0. In order
to test the distribution homogeneity hypothesis H0, we employ the Kolmogorov-Smirnov type
statistics

KS1 = max
k 6=l

sup
x2X

p
n|F̂k(x)� F̂l(x)|, (1)

KS2 = max
k

sup
x2X

p
n

�����F̂k(x)�
1

K

KX

l=1

F̂l(x)

����� ,

where X is a given set. The first statistic KS1 is the maximal pairwise sup-norm distance of
the empirical distributions {F̂k(·)}Kk=1. The second statistic KS2 is obtained by the maximal
deviation from the average K�1

PK
l=1 F̂l(x), which is equivalent to the empirical distribution

by the pooled sample {X̂ki}ni=1 over k = 1, . . . , K. When the number of different samples K is
large, KS2 is computationally more attractive.
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The limiting distributions of the Kolmogorov-Smirnov statistics under the null hypothesis
H0 are obtained as follows.

Proposition. For each k = 1, . . . , K, suppose

(i): {Zki}ni=1 is a strictly stationary and ↵-mixing sequence with the mixing coefficient
↵(m) = O(m�a) for some a > max{(q � 1)(q + 1), 1 + 2/r}, where q is an even integer
satisfying q > 3(max{dim ✓1, . . . , dim ✓K} + 1)/2 and r appears in (ii) below. For a
neighborhood Nk around ✓k0, Fk(x, ✓k) = P{g(Zki, ✓k)  x} is differentiable on ✓k 2
Nk, supx2X ,✓:|✓�✓k0|�n |@Fk(x, ✓k)/@✓k � @Fk(x, ✓k0)/@✓k| ! 0 for any positive sequence
�n ! 0, supx2X |@Fk(x, ✓k0)/@✓k| < 1, and E[sup✓k2Nk

|@g(Zki, ✓k)/@✓k|2] < 1 ;
(ii): the estimator ✓̂k satisfies

p
n(✓̂k�✓k0) = n�1/2

Pn
i=1  k(Zki, ✓k0)+op(1) with E[ k(Zki, ✓k0)] =

0 and E[| k(Zki, ✓k0)|2+r] < 1 for some r > 0.

Then under H0,

KS1
d! max

k 6=l
sup
x2X

����⌫kl(x) +
@Fk(x, ✓k0)

@✓0k
⇠k �

@Fl(x, ✓l0)

@✓0l
⇠l

���� , (2)

KS2
d! max

k
sup
x2X

�����
1

K

KX

l=1

⇢
⌫kl(x) +

@Fk(x, ✓k0)

@✓0k
⇠k �

@Fl(x, ✓l0)

@✓0l
⇠l

������ ,

where (⌫kl(·), ⇠0k, ⇠0l) is a mean zero Gaussian process with the covariance kernel Ckl(x1, x2) =

limn!1 nE[Skl,n(x1)Skl,n(x2)0],

Skl,n(x) =

 
⌫̂k(x, ✓k0)� ⌫̂l(x, ✓l0),

1p
n

nX

i=1

 k(Zki, ✓k0)
0,

1p
n

nX

i=1

 l(Zli, ✓l0)
0

!0

,

⌫̂k(x, ✓k) = n�1/2
nX

i=1

{I{g(Zki, ✓k)  x}� Fk(x, ✓k)}.

⇤
If Xki’s are directly observable, then the limiting null distributions of KS1 and KS2 reduce

to maxk 6=l supx2X |⌫kl(x)| and maxk supx2X |K�1
PK

l=1 ⌫kl(x)|, respectively. Thus, the terms in
(2) containing ⇠k’s are considered as correction terms to account for the estimation errors of
the parameter estimators, ✓̂k’s.

The assumptions for this proposition are adapted from Linton, Maasoumi and Whang (2005)
to our setup. Also, the proof is obtained by modifying that of Linton, Maasoumi and Whang
(2005, Theorem 1). Here we sketch the proof for the case of KS1. The proof for KS2 is similar.
Under H0 (i.e., Fk(x, ✓k0)� Fl(x, ✓l0) = 0), KS1 can be written as

KS1 = max
k 6=l

sup
x2X

|⌫̂k(x, ✓̂k)� ⌫̂l(x, ✓̂l) +
p
n{Fk(x, ✓̂k)� Fl(x, ✓̂l)}�

p
n{Fk(x, ✓k0)� Fl(x, ✓l0)}|.

3



By Linton, Maasoumi and Whang (2005, Lemmas 2 and 3),

sup
x2X

|⌫̂k(x, ✓̂k)� ⌫̂k(x, ✓k0)|
p! 0,

sup
x2X

p
n

�����Fk(x, ✓̂k)� Fk(x, ✓k0)�
@Fk(x, ✓k0)

@✓0k

1

n

nX

i=1

 k(Zki, ✓k0)

�����
p! 0,

for k = 1, . . . , K. Therefore, we obtain

KS1 = max
k 6=l

sup
x2X

�����
⌫̂k(x, ✓k0)� ⌫̂l(x, ✓l0)

+@Fk(x,✓k0)
@✓0k

1
n

Pn
i=1  k(Zki, ✓k0)� @Fl(x,✓l0)

@✓0l

1
n

Pn
i=1  l(Zli, ✓l0)

�����+ op(1), (3)

and the conclusion in (2) follows by the weak convergence of the empirical process ⌫̂k(x, ✓k0)
and continuous mapping theorem.

We can also show that the Kolmogorov-Smirnov tests based on KS1 and KS2 are consis-
tent under fixed alternative hypotheses and have non-trivial power under the local alternative
hypotheses at the rate of n�1/2.

Due to the correction terms associated with ⇠k’s, the limiting null distributions of the
Kolmogorov-Smirnov type statistics are not asymptotically pivotal and somewhat complicated.
Thus, we suggest the following bootstrap procedure to approximate the critical values.

Bootstrap procedure for critical values:

(1) Draw the bootstrap resample {Z⇤
1i, . . . , Z

⇤
Ki}ni=1 from the joint empirical distribution of

{Z1i, . . . , ZKi}ni=1, and compute the estimator {✓̂⇤1, . . . , ✓̂⇤K} by using {Z⇤
1i, . . . , Z

⇤
Ki}ni=1.

(2) Then compute the recentered bootstrap statistics

KS⇤
1 = max

k 6=l
sup
x

p
n|F̂ ⇤

k (x)� F̂ ⇤
l (x)� {F̂k(x)� F̂l(x)}|,

KS⇤
2 = max

k
sup
x

p
n

�����F̂
⇤
k (x)�

1

K

KX

l=1

F̂ ⇤
l (x)�

(
F̂k(x)�

1

K

KX

l=1

F̂l(x)

)����� ,

where F̂ ⇤
k (x) = n�1

Pn
i=1 I{g(Z⇤

ki, ✓̂
⇤
k)  x}.

(3) Repeat (2) B times to obtain {KS⇤
1,b}Bb=1 or {KS⇤

2,b}Bb=1. Their quantiles provide the
bootstrap critical values of KS1 or KS2 to test H0.

Note that the recentering in KS⇤
1 or KS⇤

2 is crucial to impose the null hypothesis H0. The
idea of recentering was suggested in the literature by Hall and Horowitz (1996), Whang (2001),
and Linton, Maasoumi and Whang (2005), for example. To obtain an intuition, consider the
bootstrap counterpart KS⇤

1 . We can show that KS⇤
1 satisfies

KS⇤
1 = max

k 6=l
sup
x2X

�����
⌫̂⇤k(x, ✓̂k)� ⌫̂⇤l (x, ✓̂l)

+@Fk(x,✓k0)
@✓0k

1
n

Pn
i=1  k(Z⇤

ki, ✓̂k)�
@Fl(x,✓l0)

@✓0l

1
n

Pn
i=1  l(Z⇤

li, ✓̂l)

�����+ op(1),

conditional on {Z1i, . . . , ZKi}ni=1 with probability one, where
⌫̂⇤k(x, ✓k) = n�1/2

Pn
i=1[I{g(Z⇤

ki, ✓k)  x} � I{g(Zki, ✓k)  x}]. This expression is analogous to
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(3) and guarantees the asymptotic validity of our bootstrap procedure. Without recentering in
KS⇤

1 , we would have additional terms in the above expansion of KS⇤
1 that may diverge.

3. Simulation

To illustrate the finite sample performance of our Kolmogorov-Smirnov type tests, we conduct
a small simulation study. We consider two regression models

Y1i = 1 + (1, 1)X1i + e1i, Y2i = 1 + (1, 1)X2i + e2i, (4)

for i = 1, . . . , n, where X1i and X2i are bivariate regressors generated from

X1i ⇠ N

  
0

0

!
,

 
1 0.5

0.5 1

!!
, X2i ⇠ N

  
0

0

!
,

 
1 0.7

0.7 1

!!
.

In this setup, we consider homogeneity testing of the distribution functions of the error terms
e1 and e2, i.e.,

H0 : Fe1(t) = Fe2(t) for all t,

based on the OLS residuals ê1i and ê2i for the regressions from Y1 on X1 and Y2 on X2,
respectively.

For the test statistic KS1 in (1), we compare the proposed bootstrap procedure with the con-
ventional Kolmogorov-Smirnov critical value that does not take into account for the estimation
errors ê1i � e1i and ê2i � e2i. Note that the conventional critical value is asymptotically invalid
and is used to illustrate importance of accommodating the estimation errors for the generated
variables.

To evaluate the size properties, we consider three distributions of e1 and e2: N(0, 1), stan-
dardized t(3), standardized �2(3), and standardized LN(0, 1) (log-normal generated by exp(Z)

for Z ⇠ N(0, 1)). For the sample size, we consider n =100, 200, and 500. The number of boot-
strap replications is 99 and the number of Monte Carlo replications is 1000. The nominal size
is 0.05. Table 1 presents the rejection frequencies under the null hypotheses. Our bootstrap
procedure works well for all cases although it shows under-coverage for most cases. On the
other hand, the conventional Kolmogorov-Smirnov critical value clearly fails to control the size
for the case of LN(0, 1). This indicates that it is crucial to take into account for the estimation
errors of the generated variables to conduct homogeneity testing.

We next evaluate power properties of the proposed test. Now the error terms in (4) are
generate by

e1i =
p
⇢✏0i +

p
1� ⇢✏1i,

e2i =
p
⇢✏0i +

p
1� ⇢✏2i,

for i = 1, . . . , n, where ⇢ 2 {0.0, 0.2, 0.4}, ✏0i ⇠ N(0, 1), ✏1i ⇠ N(0, 1), and ✏2i follows the
standardized t(3), standardized �2(3), and standardized LN(0, 1). The distributions of e1i and
e2i become similar as ⇢ increases.
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Table 1. Rejection Frequencies (Size)

n
Fe1 = Fe2 Method 100 200 500
N(0, 1) Bootstrap .001 .003 .006

Conventional KS .001 .001 .002
t(3) Bootstrap .009 .007 .013

Conventional KS .052 .064 .078
�2(3) Bootstrap .009 .017 .018

Conventional KS .005 .072 .069
LN(0, 1) Bootstrap .043 .048 .053

Conventional KS .390 .441 .506

Table 2 presents the rejection frequencies under the alternative hypotheses based on 1000
Monte Carlo replications. The proposed bootstrap test shows reasonable power properties
when the sample size is large enough. The power of the conventional Kolmogorov-Smirnov
for LN(0, 1) is spurious because of severe over-rejection under the null hypothesis. Also, as
⇢ increases, the power of the conventional Kolmogorov-Smirnov deteriorates faster than the
bootstrap test. Finally, although the results are not reported, we find that the bootstrap
statistic without recentering has zero power for all cases.

Table 2. Rejection Frequencies (Power)

n = 100 n = 200 n = 500
⇢ ⇢ ⇢

F✏2 Method 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
t(3) Bootstrap .087 .024 .007 .378 .108 .026 .946 .579 .191

Conventional KS .128 .027 .007 .495 .107 .022 .987 .539 .084
�2(3) Bootstrap .114 .045 .016 .605 .243 .061 1 .883 .416

Conventional KS .255 .063 .012 .779 .239 .049 1 .841 .255
LN(0, 1) Bootstrap .312 .195 .038 .780 .719 .237 .997 .997 .901

Conventional KS .979 .384 .067 1 .884 .260 1 1 .855

4. Empirical illustration: Total factor productivity

We apply our Kolmogorov-Smirnov type test to compare the total factor productivities among
different countries. Following Solow’s (1957) classical approach, we specify the production
function as Yt = AtK↵

t L
�
t , where Yt is total output, Kt and Lt are capital and labor inputs,

respectively, and At is total factor productivity. Solow (1957) specified the production func-
tion as Yt = AtF (Kt, Lt), where Yt is total output, Kt and Lt are capital and labor inputs,
respectively, and At is total factor productivity.1 If we specify F by the Cobb-Douglas function
F (Kt, Lt) = K↵

t L
�
t , we can derive

� log(At) = � log(Yt)� ↵� log(Kt)� �� log(Lt). (5)
1The capital input Kt is computed by the permanent inventory method, i.e., Kt = It+(1��)Kt�1, where It and
� are gross investment and depreciation rate, respectively. We use the data on gross fixed capital formulation
for It, and set the depreciation rate as � = 0.05. The initial capital stock K0 is calculated by K0 = I0/�.
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We use the datasets offered by the Federal Reserve Bank of St. Louis (FRED), OECD, United
Nations Statistics Division, and World Bank (see Table 3).

Table 3. List of variables

Variable Measurement
Y Gross domestic products in the country (World Bank)
I Gross fixed capital formation in the country (FRED)

Population (OECD)
L ⇥ Percentage of working age population (OECD)

⇥ Average annual hours worked by persons engaged for the country (FRED)

Using these data, we calculate the annual growth rate of total factor productivity from 1971 to
2014 for 15 countries (Australia, Austria, Belgium, Canada, Denmark, France, Germany, Italy,
Japan, Netherlands, Norway, South Korea, Sweden, United Kingdom, and United States). In
particular, � log(At) is estimated by evaluating ↵ and � in (5) with the OLS estimator.

We apply the Kolmogorov-Smirnov type test for generated variables to test homogeneity of
pairs of distributions of � log(At) from 15 countries. As in the simulation study, we compare
our bootstrap method with the conventional Kolmogorov-Smirnov critical value that does not
take into account for the estimation errors. The results are presented in Table 4. We can
see that the conclusions of the tests are different for several cases (indicated by bold letters).
Also those conclusions can be different in either ways. For reliable inference, it is critical to
incorporate estimation errors for generated variables as in our bootstrap method.
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