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Abstract

We focus on, throughout this paper, convex risk measures defined on
Orlicz spaces. In particular, we investigate basic properties of convolutions
defined between a convex risk measure and a convex set, and between two
convex risk measures. Moreover, we study shortfall risk measures, which
are convex risk measures induced by the shortfall risk. By using results
on convolutions, we obtain a robust representation result for shortfall risk
measures defined on Orlicz spaces under the assumption that the set of
hedging strategies has the sequential compactness in a weak sense. We
discuss in addition a construction of an example having the sequential
compactness.

1 Introduction

Our aim of this paper is to study some properties of convex risk measures defined
on Orlicz spaces. Firstly, we introduce a robust representation theorem which
is based on Corollary 28 of Biagini and Frittelli [5]. Moreover, we investigate
two types of convolution of convex risk measures on Orlicz spaces. The first
type is ones defined between a convex risk measure and a convex set. The other
is between two convex risk measures. We shall study their basic properties. In
particular, we lead to a sufficient condition under which convolutions become
order lower semi-continuous (l.s.c., for short). In addition, we study shortfall
risk measures, which are convex risk measures induced by the shortfall risk, and
whose definition shall be given in Section 4. By using results on convolutions,
we obtain a robust representation result for shortfall risk measures under the
assumption that the set of hedging strategies has the sequential compactness in
a weak sense. Moreover, we shall construct an example satisfying this additional
assumption.

∗This research was supported by Scientific Research (C) No.19540144 from the Ministry
of Education, Culture, Sports, Science and Technology of Japan. The author would like to
thank Martin Schweizer for his valuable comments and suggestions.
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A convex risk measure is a (−∞, +∞]-valued proper, monotone, translation
invariant and convex functional defined on a linear space of random variables.
Moreover, if a convex risk measure is positive homogeneous, then it is called a
coherent risk measure. Convex risk measures were undertaken by Föllmer and
Schied [11] and Frittelli and Rosazza Gianin [13] independently. In advance of
it, coherent risk measures were introduced by Artzer et al. [3]. There are much
literature on convex risk measures. Ruszczyński and Shapiro [18] developed ro-
bust representation results of convex risk measures on Banach lattices. Kaina
and Rüschendorf [14] investigated a theory of convex risk measures on Lp-spaces
for p ≥ 1. Cheridito and Li [6] treated the Orlicz heart case. Moreover, [5] ob-
tained robust representation results for convex risk measures defined on locally
convex Fréchet lattices.

First, we shall explain the terminology “Orlicz space”. Now, we fix arbitrar-
ily a left-continuous non-decreasing convex non-trivial function Φ : R+ → [0,∞]
with Φ(0) = 0, where Φ is non-trivial if Φ(x) > 0 for some x > 0 and
Φ(x) < ∞ for some x > 0. Common examples of Φ are Φ(x) = xp for
p ≥ 1 and Φ(x) = ex − 1. Then, we define a space LΦ of random variables
as LΦ := {X ∈ L0|E[Φ(c|X |)] < ∞ for some c > 0}. This LΦ is called an Or-
licz space. Likewise, we define an Orlicz heart as MΦ := {X ∈ L0|E[Φ(c|X |)] <
∞ for any c > 0}. For example, if Φ is a p-th power function, LΦ coincides with
MΦ as well as Lp. On the other hand, in the case of an exponential function,
say ex − 1 or ex − x − 1, we have Lp ⊃ LΦ ⊃ L∞ for any p ≥ 1, and LΦ does
not consist with MΦ in general. We introduce some examples of the case where
MΦ � LΦ.

Example 1.1 In the case where Φ(x) = ex − 1 or ex − x − 1, if a random
variable X follows an exponential distribution with a positive parameter, then
X ∈ LΦ but X /∈ MΦ.

Example 1.2 Set Φ(x) = ex2 − 1. Let X be a random variable following a
normal distribution. Then X ∈ LΦ but X /∈ MΦ.

Example 1.3 It is natural that an aggregate insurance claim amount follows a
compound distribution. See Daykin et al. [7]. We denote by (Nt)t≥0 the process
which describes the number of claims during time period [0, t]. We assume that
(Nt)t≥0 is a Poisson process with a positive parameter. The size of the i-th
claim is denoted by Ri, which is a nonnegative-valued random variable. We
suppose that (Ri)i≥1 is an i.i.d. sequence which is independent of (Nt)t≥0. The
aggregate insurance claim amount in this model is given by

At :=
{ ∑Nt

i=1 Ri, if Nt > 0,
0, otherwise.

Remark that E[ecAT ] = E[eNT log M(c)] for any fixed time horizon T > 0 and any
constant c > 0, where M(c) is the moment generating function of Ri, that is,
M(c) := E[ecRi ]. Taking an exponential type function as Φ, say Φ(x) = ex − 1,
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if there exist c1 > c2 > 0 such that M(c1) = ∞ and M(c2) < ∞, then AT ∈ LΦ,
but AT /∈ MΦ. For instance, if each Ri follows an exponential distribution with
parameter σ > 0, then

M(c) =
{

σ
σ−c , if c < σ,

∞, otherwise.

These two spaces LΦ and MΦ have much different properties, although their
definitions are very similar. We have to pay attention the fact that LΦ is not
order continuous topology, which is different from MΦ, equipped with a suitable
norm. In [5], they asserted that the order l.s.c. and the C-property which will
be defined in Section 2, are needed to obtain robust representations for convex
risk measures defined on non-order continuous topologies.

In this paper, we shall investigate basic properties of convolutions of convex
risk measures, which was introduced by Delbaen [8] and Barrieu and El Karoui
[4] in the framework of L∞. One of motivations to introduce convolutions
lies in the risk allocation problems. For details, see Acciaio [1]. Klöppel and
Schweizer [15], [16] investigated a dynamic version of convolutions on L∞. In
this paper, we consider two types of convolution on LΦ as follows. The first
type is defined as, for a convex set B ⊂ LΦ and a convex risk measure ρ,
ρ�B(X) := infY ∈B ρ(X − Y ). The second one is defined between two convex
risk measures ρ1 and ρ2 as ρ1�ρ2(X) := infY ∈LΦ{ρ1(X−Y )+ρ2(Y )}. We shall
extend results on these convolutions defined on L∞ to the Orlicz space setting.

Furthermore, we obtain a robust representation result for shortfall risk mea-
sures defined on Orlicz spaces. Some results on convolutions will be very useful
to get such a representation. Before stating this matter, we should introduce
shortfall risk measures. A shortfall risk measure is a convex risk measure in-
duced by the shortfall risk. The concept of the shortfall risk was undertaken by
Föllmer and Leukert [10]. Now, we presume an investor who intends to sell a
claim. The investor’s attitude toward risk is described by a loss function which
is a non-decreasing continuous convex function, and whose negative part sticks
on zero. Her shortfall risk, when she selects a certain hedging strategy, is given
by the weighted expectation by her loss function of the positive part of the dif-
ference between the claim and the value of her hedging strategy at the maturity.
If she sells the claim for the so-called super hedging cost, she could eliminate
her shortfall risk perfectly by selecting a suitable hedging strategy. It, however,
would be too expensive for a buyer to trade in general. She should then sell
the claim for a price being less than the super hedging cost. This means that
she should live with some shortfall risk. On the other hand, it is natural that
she hopes to suppress her shortfall risk less than a certain level, which is called
threshold. That is, if a price for which she sells the claim enables her to select
a hedging strategy to hold the corresponding shortfall risk to less than or equal
to her threshold, then she would accept the price. Then, one problem arises.
How much is the least price she can accept? The answer is represented by a
convex risk measure which is said a shortfall risk measure. More precisely, the
least price of the claim X which the investor can accept is given by ρ̂(−X),
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where ρ̂ is the shortfall risk measure determined by the shortfall risk with her
loss function and her threshold. The definition of ρ̂ will be given in Section 4.

The first result on shortfall risk measures appeared in [11]. They treated the
L∞ case under the discrete time setting. Arai [2] obtained robust representation
results of shortfall risk measures on Orlicz hearts under the continuous time
setting. He did not assume the locally boundedness of the asset price process,
and dealt with three cases in forms of self-financing admissible portfolios. One
is the case where the set of admissible portfolios forms a linear space. The
second one includes cone constraint. The third one is the case where admissible
portfolios form a predictably convex set. Both two papers [11] and [2] presumed
that investors select a self-financing admissible portfolio as a hedging strategy.
In other words, in the two papers, the value of a hedging strategy is expressed
by a stochastic integral with respect to the asset price process. On the other
hand, we take in this paper the set of all attainable claims with zero initial
endowment, instead of self-financing admissible portfolios. That is, an investor
selects an attainable claim with zero cost as her hedging strategy.

We can decompose a shortfall risk measure ρ̂ into two elements. One is the
structure of hedging strategies. The other is preference of the investor, that is,
the loss function and the threshold being determined by the investor. Actually,
we shall prove that a shortfall risk measure is expressed by the convolution
between a convex risk measure ρ0 induced by the loss function and the threshold,
and the convex set of all hedging strategies. Moreover, although we need to the
order l.s.c. of ρ̂ so as to obtain its robust representation, it suffices to care
only the order l.s.c. of ρ0 and the sequential compactness of the set of hedging
strategies in a weak sense by using results concerned with convolutions. In
summary, by grace of results on convolutions, we do not have to investigate
the order l.s.c. of the whole ρ̂. Furthermore, the order l.s.c. of ρ0 will be
proved without any additional assumption. As a result, we shall obtain a robust
representation for shortfall risk measures on Orlicz spaces under the sequential
compactness. In addition, we shall give a sufficient condition under which the
sequential compactness holds. More precisely, we form a closed set of hedging
strategies as an extension of Xia and Yan [19] in which they constructed an Lp-
closed set of stochastic integrals. Moreover, we give a sufficient condition under
which the set of hedging strategies has the conditional sequential compactness.

An outline of this paper is as follows: In Section 2, we prepare mathematical
preliminaries. Moreover, we shall introduce a robust representation result for
convex risk measures defined on Orlicz spaces. This result is strongly depending
on Corollary 28 of [5]. Section 3 is devoted to study convolutions. We owe many
parts of proofs given in Section 3 to [15]. Results on shortfall risk measures are
given in Section 4.

2 Preliminaries

Throughout this paper, we consider an incomplete financial market with ma-
turity T > 0 and zero interest rate. Consider a completed probability space
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(Ω,F , P ; F = {Ft}t∈[0,T ]), where F is a filtration satisfying the so-called usual
condition, that is, F is right-continuous, FT = F and F0 contains all null sets
of F . Let L0 be the space of all equivalence classes of F -measurable random
variables defined on Ω.

We firstly introduce some terminologies on Orlicz spaces. A left-continuous
non-decreasing convex non-trivial function Φ : R+ → [0,∞] with Φ(0) = 0 is
called an Orlicz function, where Φ is non-trivial if Φ(x) > 0 for some x > 0
and Φ(x) < ∞ for some x > 0. When Φ is an R+-valued continuous, strictly
increasing Orlicz function, we call it a strict Orlicz function in this paper. Note
that, for any strict Orlicz function Φ, we have Φ(x) ∈ (0,∞) for any x > 0 and
limx→∞ Φ(x) = ∞. Moreover, a strict Orlicz function Φ is differentiable a.e.
and its left-derivative Φ′ satisfies

Φ(x) =
∫ x

0

Φ′(u)du.

Note that Φ′ is left-continuous, and may have at most countably many jumps.
Define I(y) := inf{x ∈ (0,∞)|Φ′(x) ≥ y}, which is called the generalized left-
continuous inverse of Φ′. We define Ψ(y) :=

∫ y

0
I(v)dv for y ≥ 0, which is an

Orlicz function and called the conjugate function of Φ.

Remark 1 Any polynomial function starting at 0 whose minimal degree is
equal to or greater than 1, and all coefficients are positive, is a strict Orlicz
function. For example, cxp for c > 0, p ≥ 1, x2 + 3x5 and so forth. Moreover,
ex − 1, ex − x − 1, (x + 1) log(x + 1) − x and x − log(x + 1) are strict Orlicz
functions.

Now, we need the following definitions:

Definition 2.1 For an Orlicz function Φ, we define two spaces of random vari-
ables:
Orlicz space : LΦ := {X ∈ L0|E[Φ(c|X |)] < ∞ for some c > 0},
Orlicz heart : MΦ := {X ∈ L0|E[Φ(c|X |)] < ∞ for any c > 0}.
In addition, we define two norms:
Luxemburg norm : ‖X‖Φ := inf

{
λ > 0|E [

Φ
(∣∣X

λ

∣∣)] ≤ 1
}
,

Orlicz norm : ‖X‖∗Φ := sup{E[XY ]| ‖Y ‖Φ ≤ 1}.
Remark that MΦ ⊂ LΦ and both spaces LΦ and MΦ are linear. In the case of
the lower partial moments Φ(x) = xp/p for p > 1, the Orlicz space LΦ and the
Orlicz heart MΦ both are identical with Lp. The conjugate function Ψ in this
case is given by Ψ(x) = xq/q, where q = p/(p − 1), and MΨ = LΨ = Lq. In
general, if lim supx→∞

xΦ′(x)
Φ(x)

< ∞, then MΦ is identical with LΦ. For instance,
Φ(x) = x − log(x + 1) other than the lower partial moments. Otherwise, MΦ

would be a proper subset of LΦ, for example Φ(x) = ex − 1. See Examples 1.1
– 1.3. Moreover, if Φ is a strict Orlicz function, the norm dual of (MΦ, ‖ · ‖Φ) is
given by (LΨ, ‖·‖∗Φ). The norm dual of (LΦ, ‖·‖Φ) includes a singular part. This
fact would be crucial when we consider convex risk measures on Orlicz spaces.
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Note that LΦ becomes a Banach lattice under the usual pointwise ordering. For
more details on Orlicz spaces, see Rao and Ren [17], Edgar and Sucheston [9]
and Biagini and Frittelli [5].

Throughout this paper, we fix a strict Orlicz function Φ. Now, we define
convex risk measures and coherent risk measures on the Orlicz space LΦ.

Definition 2.2 A functional ρ defined on LΦ is called a convex risk measure
on LΦ if it satisfies the following four conditions:
(1) Properness : ρ(0) ∈ R and ρ is (−∞,∞]-valued,
(2) Monotonicity : ρ(X) ≥ ρ(Y ) for any X, Y ∈ LΦ such that X ≤ Y ,
(3) Translation invariance : ρ(X + m) = ρ(X) − m for X ∈ LΦ and m ∈ R,
(4) Convexity : ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for any X, Y ∈ LΦ

and λ ∈ [0, 1].
Moreover, if a convex risk measure ρ satisfies
(5) Positive homogeneity : ρ(λX) = λρ(X) for any λ ≥ 0,
then ρ is called a coherent risk measure.

[5] asserts that, when we consider a robust representation of convex risk mea-
sures, a significant issue is whether or not the topology on which the convex
risk measures are defined has the order continuity. In the case of order contin-
uous, say Lp for p ∈ [1,∞) or Orlicz hearts, we do not have to care the order
l.s.c. of convex risk measures. On the other hand, in the non-order continuous
case, say L∞ or Orlicz spaces, we have to check it. Indeed, Corollary 28 of
[5] products a robust representation for convex risk measures defined on locally
convex Fréchet lattices under the order l.s.c. and the C-property. Now, we shall
state a robust representation theorem for convex risk measures on LΦ based on
Corollary 28 of [5]. Firstly, we prepare some definitions. A linear topology τ has
C-property, if a net {Xα} converges to X in τ , then there exist a subsequence
{Xαn}n≥1 and convex combinations Yn ∈ conv(Xαn , Xαn+1, . . .) such that Yn

is order convergent to X. Note that the topology (LΦ, σ(LΦ, LΨ)) has the C-
property, and, in this case, “Yn → X in order” means “Yn → X a.s. and there
exists a Y ∈ LΦ such that |Yn| ≤ Y for any n ≥ 1”. Let PΨ be the set of all
probability measures being absolutely continuous with respect to P and having
LΨ-density with respect to P , that is, PΨ := {Q � P |dQ/dP ∈ LΨ}. Under
the above preparations, we can say a robust representation theorem as follows:

Theorem 2.1 Let ρ be a convex risk measure on LΦ. We define

αρ(Q) := sup
X∈Aρ

EQ[−X]

for any Q ∈ PΨ, where Aρ := {X ∈ LΦ|ρ(X) ≤ 0}. If ρ has the order l.s.c.,
then it is represented as follows:

ρ(X) = sup
Q∈PΨ

{EQ[−X] − αρ(Q)} . (2.1)
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Proof. Since σ(LΦ, LΨ) has the C-property, Corollary 28 in [5] implies that
ρ is expressed by

ρ(X) = sup
Q∈PΨ

{EQ[−X] − ρ∗(−dQ/dP )} ,

where ρ∗ is the convex conjugate of ρ. Moreover, we can obtain ρ∗(−dQ/dP ) =
αρ(Q) for any Q ∈ PΨ by the same way as the proof of Theorem 5 in [11]. �

Remark 2 The functional αρ and the set Aρ defined in Theorem 2.1 are called
the penalty function and the acceptance set of ρ, respectively. In order to prove
the equivalence of ρ∗(−dQ/dP ) and αρ(Q), we do not need the order l.s.c. of ρ.

Corollary 2.3 For a coherent risk measure ρ on LΦ having the order l.s.c.,
there exists a convex subset P ′ ⊂ PΨ such that ρ(X) = supQ∈P′ EQ[−X].

Proof. See the last assertion of Corollary 28 of [5]. �

3 Convolution

In this section, we investigate some properties of convolutions between a convex
risk measure on LΦ and a convex subset of LΦ, and convolutions of two convex
risk measures on LΦ. These types of convolution are undertaken by Delbaen
[8] and Barrieu and El Karoui [4]. Results in this section should be regarded
as extensions of the L∞ case. We shall prove that, under some additional
assumptions, convolutions on LΦ have similar properties with the case of L∞.
Some results in this section will be used in the next section. Firstly, we introduce
the definitions of convolutions as follows:

Definition 3.1 (a) Suppose that B ⊂ LΦ is non-empty convex. The convolu-
tion of a convex risk measure ρ on LΦ and B is defined as

ρ�B(X) := inf
Y ∈B

ρ(X − Y ), for any X ∈ LΦ.

(b) Let ρ1 and ρ2 be two convex risk measures on LΦ. The convolution of ρ1

and ρ2 is defined as

ρ1�ρ2(X) := inf
Y ∈LΦ

{ρ1(X − Y ) + ρ2(Y )}, for any X ∈ LΦ.

We shall prove three propositions in this section. In particular, we obtain
sufficient conditions under which convolutions have the order l.s.c. More pre-
cisely, we show that the concept of the sequential compactness in a weak sense
plays a vital role to ensure the order l.s.c. of a convolution. Many parts of proofs
in this section are based on the results of Section 4 in Klöpple and Schweizer
[15].
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Proposition 3.2 Let ρ be a convex risk measure on LΦ satisfying

ρ(X) < ∞ for any X ∈ LΦ such that E[Φ(|X|)] < ∞. (3.2)

Moreover, let B ⊂ LΦ be a convex set including 0. If ρ�B(0) > −∞, then the
following hold:
(a) ρ�B is a convex risk measure on LΦ.
(b) If ρ is coherent and B is cone, then ρ�B is also coherent.
(c) If B is sequentially compact in σ(LΦ, LΨ) and ρ is order l.s.c., then so is
ρ�B.

Proof. (a) It is clear that ρ�B has the monotonicity, the translation invari-
ance, and the convexity. We shall prove its properness. First, by 0 ∈ B and the
properness of ρ, we have ρ�B(0) = infY ∈B ρ(0 − Y ) ≤ ρ(0) < ∞, from which
ρ�B(0) ∈ R follows, since ρ�B(0) > −∞ is assumed.

Next, we prove that ρ�B > −∞. Suppose that there exists an X ∈ LΦ such
that ρ�B(X) = −∞. Without loss of generality, we may assume that X ≥ 0,
due to the monotonicity of ρ�B. By the convexity of ρ�B, we have, for any
λ > 0,

λ

1 + λ
ρ�B(X) +

1
1 + λ

ρ�B(−λX) ≥ ρ�B
(

λX

1 + λ
+

−λX

1 + λ

)
= ρ�B(0) > −∞.

Thus, ρ�B(−λX) = ∞ holds for any λ > 0, because ρ�B(X) = −∞. In
addition, 0 ∈ B yields ρ�B(−λX) = infY ∈B ρ(−λX − Y ) ≤ ρ(−λX), from
which ρ(−λX) = ∞ follows for any λ > 0.

Incidentally, E[Φ(λ|X|)] < ∞ holds for a sufficient small number λ > 0,
since X ∈ LΦ. By the condition (3.2), ρ(−λX) < ∞ holds for such a sufficient
small number λ > 0, which contradicts to the fact that ρ(−λX) = ∞ for any
λ > 0. Hence, we get ρ�B > −∞.

(b) Remark that ρ(0) = 0 since ρ is coherent. We show that ρ�B(0) = 0. We
have ρ�B(0) ≤ 0, since ρ�B(0) = infY ∈B ρ(0−Y ) ≤ ρ(0) = 0. Thus, supposing
ρ�B(0) �= 0, we have ρ�B(0) < 0. This implies the existence of Y ∈ B satisfying
ρ(−Y ) < 0. Since B is cone, we have λY ∈ B for any λ > 0. Moreover, the
positive homogeneity of ρ yields that

ρ(−λY ) = λρ(−Y ) −→ −∞ as λ −→ ∞.

We have then infY ∈B ρ(−Y ) = −∞, namely, ρ�B(0) = −∞, which contradicts
to the properness of ρ�B. Hence, ρ�B(0) = 0 holds.

Next, we have, for any λ > 0 and any X ∈ LΦ,

ρ�B(λX) = inf
Y ∈B

ρ(λX − Y ) = λ inf
Y ∈B

ρ(X − Y ) = λρ�B(X), (3.3)

where B consists with {Y/λ|Y ∈ B}. (3.3) implies that ρ�B(λX) = λρ�B(X).
Consequently, ρ�B has the positive homogeneity.

(c) From the view of Proposition 24 in Biagini and Frittelli [5], ρ has the
l.s.c in σ(LΦ, LΨ), and we have only to prove the l.s.c. of ρ�B in σ(LΦ, LΨ).
Note that σ(LΦ, LΨ) has the C-property.
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Let (Xn)n≥1 ⊂ LΦ be a sequence converging to some X ∈ LΦ in σ(LΦ, LΨ).
Now, for any n ≥ 1, let (Ŷ n

k )k≥1 ⊂ B be a minimizing sequence of infY ∈B ρ(Xn−
Y ). Since B has the sequential compactness in σ(LΦ, LΨ), for any n ≥ 1, there
exists a Ŷ n ∈ B such that, taking a subsequence if need be,

Ŷ n
k −→ Ŷ n in σ(LΦ, LΨ) as k → ∞.

The l.s.c. of ρ yields that, for any n ≥ 1, we have

ρ(Xn − Ŷ n) ≤ lim inf
k→∞

ρ(Xn − Ŷ n
k ) = inf

Y ∈B
ρ(Xn − Y ). (3.4)

Considering the sequence (Ŷ n)n≥1 ⊂ B and taking a subsequence again if need
be, there exists a Ŷ ∈ B such that Ŷ n → Ŷ in σ(LΦ, LΨ) as n → ∞. Thus,
since Xn → X in σ(LΦ, LΨ), we have

ρ(X − Ŷ ) ≤ lim inf
n→∞ ρ(Xn − Ŷ n). (3.5)

In conclusion, we get from (3.4) and (3.5)

ρ�B(X) = inf
Y ∈B

ρ(X − Y ) ≤ ρ(X − Ŷ ) ≤ lim inf
n→∞ ρ(Xn − Ŷ n)

≤ lim inf
n→∞ lim inf

k→∞
ρ(Xn − Ŷ n

k ) = lim inf
n→∞ inf

Y ∈B
ρ(Xn − Y )

= lim inf
n→∞ ρ�B(Xn),

which completes the proof of (c). �

Proposition 3.3 Let ρi, i = 1, 2, be convex risk measures on LΦ. Denote their
acceptance sets and penalty functions by Ai and αi, respectively. Assume that
ρ1 satisfies the condition (3.2), and A2 includes 0. If ρ1�ρ2(0) > −∞, then the
following hold:
(a) ρ1�ρ2 is a convex risk measure on LΦ, and represented as

ρ1�ρ2(X) = ρ1�A2(X) = inf
Y ∈B

{ρ1(X − Y ) + ρ2(Y )}, for any X ∈ LΦ,

where B is a subset of LΦ including A2.
(b) If ρ1 and ρ2 both are coherent, then so is ρ1�ρ2.
(c) The penalty function of ρ1�ρ2 is given by

α1�2(Q) = α1(Q) + α2(Q) for any Q ∈ PΨ.

(d) Let A2 be sequentially compact in σ(LΦ, LΨ). If ρ1 is order l.s.c., then so
is ρ1�ρ2. Moreover, the acceptance set of ρ1�ρ2 satisfies

A1�2 = A1 + A2, (3.6)

which is the closure of A1 + A2 in σ(LΦ, LΨ).

9



Remark 3 Under the condition of (d), ρ2 is also order l.s.c. To see it, let
A2 be sequentially compact in σ(LΦ, LΨ), and (Xn)n≥1 ⊂ A2 a sequence con-
verging to some X ∈ A2 in σ(LΦ, LΨ). Now, our aim is to show ρ2(X) ≤
lim infn→∞ ρ2(Xn). Thus, we assume that ρ2(X) > lim infn→∞ ρ2(Xn). This
implies that, for a sufficient small number ε > 0, there exist infinitely many ns
such that ρ2(X) − ε ≥ ρ2(Xn). Hence, we can extract a subsequence (Xin)n≥1

to satisfy
sup

n
ρ2(Xin) < ρ2(X). (3.7)

Set α := supn ρ2(Xin). Note that α < ∞ from (3.7). Denoting X′
n := Xin + α

for n ≥ 1, we have X′
n ∈ A2 since ρ2(X′

n) = ρ2(Xin) − α ≤ 0. Thus, recalling
X′

n → X + α in σ(LΦ, LΨ), X + α ∈ A2 holds since A2 has the sequential
compactness. We can say, however, from (3.7) that ρ2(X +α) = ρ2(X)−α > 0,
which means X + α /∈ A2. This is a contradiction. Consequently, ρ2 is order
l.s.c.

Proof of Proposition 3.3. (a) We can prove this assertion by a similar way
with the proof of Theorem 4.3 (a) in [15].

(b) By Proposition 4.6 of Föllmer and Schied [12], A2 is cone. Thus, the
assertion (a) and Proposition 3.2 (b) imply the assertion (b).

(c) We can show this equation by the same manner as the proof of (4.5) in
Theorem 4.3 of [15].

(d) Although we can prove this assertion by a similar way with the proof of
Theorem 4.3 (c) in [15], we need some additional discussion.

Since it is clear that ρ1�ρ2 is order l.s.c. by Proposition 3.2 (c) and the
assertion (a), we have only to prove (3.6). For any Xi ∈ Ai, i = 1, 2, we have

ρ1�ρ2(X1 + X2) = inf
Y ∈LΦ

{ρ1(X1 + X2 − Y ) + ρ2(Y )}
≤ ρ1(X1 + X2 − X2) + ρ2(X2) = ρ1(X1) + ρ2(X2) ≤ 0,

which implies X1 + X2 ∈ A1�2. By the proof of Proposition 24 in [5] together
with the order l.s.c. of ρ1�ρ2, A1�2 is σ(LΦ, LΨ) -closed. Thus, we obtain
A1�2 ⊃ A1 + A2.

We shall prove the reverse inclusion. By a similar manner with the proof of
Theorem 4.3 (c) in [15], we can obtain the following:

inf
X∈A1�2

E[ZX] = inf
X∈A1+A2

E[ZX] = inf
X∈A1+A2

E[ZX] (3.8)

for all Z ∈ LΨ
+. Now, we suppose that there exists an X′ satisfying X′ ∈

A1�2 \A1 + A2. The Hahn-Banach theorem implies that there exists a Z′ ∈ LΨ

such that
inf

X∈A1+A2

E[Z ′X] > E[Z ′X′] > −∞. (3.9)

Next, we prove that −A1 + A2 is solid, namely,

X ∈ A1 + A2, Y ∈ LΦ, Y ≥ X =⇒ Y ∈ A1 + A2. (3.10)
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Let X1 ∈ A1 and X2 ∈ A2. Taking a Y ∈ LΦ such that Y ≥ X1 + X2,
Y − X2 ≥ X1 holds. Since Ai, i = 1, 2 are acceptance sets, −Ai, i = 1, 2 are
solid by the monotonicity of the convex risk measures. Thus, Y −X2 ∈ A1, and
Y ∈ A1+A2 because Y = Y −X2+X2. Therefore, −(A1+A2) is solid. Now, let
X ∈ A1 + A2, and Y ∈ LΦ such that Y ≥ X. We have only to see Y ∈ A1 + A2.
Taking a sequence (Xn)n≥1 ⊂ A1 + A2 such that Xn → X in σ(LΦ, LΨ),
since σ(LΦ, LΨ) has the C-property, there exist a subsequence (Xik)k≥1 and
a sequence (Wk)k≥1 such that, each Wk belongs to conv(Xik , Xik+1 , . . .) and
Wk → X in order. The convexity of A1 + A2 implies that each Wk belongs to
A1 +A2. Since −(A1 + A2) is solid, we have Wk ∨ Y ∈ A1 + A2 for any k ≥ 1.
Remark that Wk ∨ Y → X ∨ Y = Y a.s., and we can take a Ŵ ∈ LΦ such that
|Wk|∨ |Y | ≤ Ŵ for each k ≥ 1. Thus, for any Z ∈ LΨ, E[(Wk ∨Y )Z] → E[Y Z],
which means that Wk ∨ Y → Y as k tends to ∞ in σ(LΦ, LΨ). Consequently,
Y ∈ A1 + A2, that is, −A1 + A2 is solid.

We see that the Z′ in (3.9) is non-negative. Fix X ∈ A1 + A2 arbitrarily.
Setting, for any c > 0, Xc := X + c1{Z′<0}, we have Xc ∈ A1 + A2 since
−A1 + A2 is solid. Now, assuming P (Z′ < 0) > 0, we have

E[Z ′Xc] = E[Z ′X] + cE[Z ′1{Z′<0}] → −∞
as c tends to ∞, which implies that the LHS of (3.9)= −∞. This is a con-
tradiction. Hence, P (Z′ < 0) = 0. Since (3.9) holds for some Z′ ∈ LΨ

+, we
have

inf
X∈A1+A2

E[Z ′X] > inf
X∈A1�2

E[Z ′X]

by X′ ∈ A1�2. This contradicts to (3.8). Hence, there is no such an X′, that
is, A1 + A2 ⊃ A1�2 follows. �

Proposition 3.4 Let B be a convex subset of LΦ including 0, ρ a convex risk
measure on LΦ satisfying (3.2). Define ρB(X) := inf{x ∈ R|x +X ∈ B} for any
X ∈ LΦ. Let αB be defined as, for any Q ∈ PΨ,

αB(Q) =
{

0, if EQ[−X] ≤ 0 for any X ∈ AB,
∞, otherwise,

where AB is the acceptance set of ρB, that is,

AB := {X ∈ LΦ|ρB(X) ≤ 0} = {X ∈ LΦ|x + X ∈ B for any x > 0}. (3.11)

Assume that −B is solid, which is defined in (3.10), and ρ�ρB(0) > −∞.
(a) We have

ρ�B = ρ�ρB.

(b) If B is cone, then the penalty function αρ�B of ρ�B is given by

αρ�B = αρ + αB,

where αρ is the penalty function of ρ.
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Proof. (a) Our proof is based on the proof of Proposition 4.7 in [15]. Since
−B is solid, (3.11) implies that B ⊂ AB. Proposition 3.3 (a) yields that

ρ�ρB(X) = inf
Y ′∈AB

ρ(X − Y ′) ≤ inf
Y ∈B

ρ(X − Y ) = ρ�B(X).

Hence, we have only to show that

inf
Y ′∈AB

ρ(X − Y ′) ≥ inf
Y ∈B

ρ(X − Y ). (3.12)

Defining A0
B := {Y ′ ∈ AB|ρB(Y ′) = 0}, we have

inf
Y ′∈AB

ρ(X − Y ′) = inf
Y ∈A0

B
ρ(X − Y ), (3.13)

because A0
B ⊂ AB and Y ′+ρB(Y ′) ∈ A0

B for any Y ′ ∈ AB. Furthermore, for any

Y0 ∈ A0
B, we have Y0 +

1
n

∈ B for any n ≥ 1. We have then, for any Y0 ∈ A0
B,

inf
Y ∈B

ρ(X − Y ) ≤ ρ

(
X − Y0 − 1

n

)
= ρ(X − Y0) +

1
n

for any n ≥ 1, that is,

inf
Y ∈B

ρ(X − Y ) ≤ ρ(X − Y0) (3.14)

for any Y0 ∈ A0
B. Taking infY0∈A0

B
on both sides of (3.14), (3.13) implies

inf
Y ∈B

ρ(X − Y ) ≤ inf
Y0∈A0

B
ρ(X − Y0) = inf

Y ′∈AB
ρ(X − Y ′),

from which (3.12) follows.
(b) By Proposition 3.3 (c), we have αρ�B = αρ + αρB , where αρB is the

penalty function of ρB. Thus, we have αρB (Q) = supX∈AB EQ[−X] for any Q ∈
PΨ. Since AB = {X ∈ LΦ|ρB(X) ≤ 0} = {X ∈ LΦ|x + X ∈ B for any x > 0}
and B is cone, we have, for any fixed c > 0,

X ∈ AB ⇐⇒ x + X ∈ B for any x > 0 ⇐⇒ c(x + X) ∈ B for any x > 0
⇐⇒ x + cX ∈ B for any x > 0 ⇐⇒ cX ∈ AB.

Hence, for Q ∈ PΨ, if there exists an X ∈ AB such that EQ[−X] > 0, then
αρB (Q) = ∞. Moreover, we remark that αρB ≥ 0 since 0 ∈ B. Therefore, for
Q ∈ PΨ, if EQ[−X] ≤ 0 holds for any X ∈ AB, then αρB(Q) = 0. That is, we
obtain αρB = αB. �

12



4 Shortfall risk measure

We shall obtain a robust representation theorem for shortfall risk measures de-
fined on LΦ under the sequential compactness of the set of all hedging strategies
in a weak sense. In addition, we shall construct an example satisfying the above
sequential compactness.

Let C be a convex subset of LΦ including 0. In this section, we regard C as
the set of all attainable claims with zero initial endowment. Furthermore, each
element of C is interpreted as a hedging strategy. We denote by X a contingent
claim, which is a payoff at the maturity T . Thus, X is an FT -measurable
random variable. In particular, we presume that X is in LΦ.

Let l be a function from R to R+ satisfying l(x) = 0 if x ≤ 0, and l(x) = Φ(x)
if x > 0. Throughout this section, we presume a risk-averse investor who intends
to sell the claim X, and whose loss function is given by l. When the price of
X and the hedging strategy are given by x ∈ R and U ∈ C, respectively, the
shortfall risk for the seller is expressed by E[l(−x − U + X)]. We denote by
δ > 0 the threshold of the seller. Note that the threshold δ determines the limit
of the shortfall risk which she can endure. We define, in addition, a subset of
LΦ as

A0 := {X ∈ LΦ|E[l(−X)] ≤ δ},
which is called the acceptance set with level δ. We define, by using A0, a
functional ρ̂ defined on LΦ as

ρ̂(X) := inf{x ∈ R| there exists a U ∈ C such that x + U + X ∈ A0}.

We call ρ̂ the shortfall risk measure. Note that ρ̂(−X) would give the least
price which the seller can accept. In other words, if the seller sells the claim
X for a price more than ρ̂(−X), then she could find a hedging strategy whose
corresponding shortfall risk is less than or equal to the threshold δ. We focus
on a robust representation result for ρ̂.

Föllmer and Schied [11] have proved that, roughly speaking, if ρ̂ is defined
on L∞, ρ̂ becomes a convex risk measure, and have obtained a robust repre-
sentation. Moreover, Arai [2] extend it to the Orlicz heart case to study the
problem of good deal bounds. Remark that, although [11] and [2] took a set of
stochastic integrals with respect to the asset price process as the set of hedging
strategies, we presume that investors select an attainable claim with zero initial
cost as their hedging strategy. In this section, we shall try to extend results in
[2] to the Orlicz space case. As we have seen in Example 1.3, there are several
examples of claims which are included in LΦ, but not in MΦ. In particular,
when we consider insurance claims, our extension might be very significant.
Since Orlicz hearts are order continuous, we do not need to get the order l.s.c.
of ρ̂ to obtain its representation. On the other hand, we have to investigate the
order l.s.c. of ρ̂ for the Orlicz space case, since Orlicz spaces do not have the
order continuity in general.

Hereafter, we look into a sufficient condition for the order l.s.c. of ρ̂. Firstly,
we impose the following:
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Assumption 4.1 ρ̂(0) > −∞
By adopting results in Section 3, we could make our problem easier. Actually,
the shortfall risk measure ρ̂ is represented by using a convolution. We make
sure this fact. Denoting

ρ0(X) := inf{x ∈ R|x + X ∈ A0},

we have the following results:

Lemma 4.2 ρ0 is a convex risk measure on LΦ.

Proof. First, we see the properness of ρ0. It is clear that ρ0(0) ≤ 0. Assum-
ing ρ0(X) = −∞ for some X ∈ LΦ, we have E[l(x − X)] ≤ δ for any x > 0.
The monotone convergence theorem implies that δ ≥ limx→∞ E[l(x − X)] =
E[limx→∞ l(x − X)] = ∞. This is a contradiction. Thus, ρ0 > −∞.

It is easy to check that the set −A0 is solid, that is

X ∈ A0, Y ∈ LΦ, Y ≥ X =⇒ Y ∈ A0,

and A0 satisfies
inf{x ∈ R|x ∈ A0} > −∞.

Thus, Proposition 4.7 (b) of Föllmer and Schied [12] completes the proof of
Lemma 4.2. �

Proposition 4.3 ρ̂ = ρ0�(−C).

Proof. Fix X ∈ LΦ arbitrarily. By the definitions of ρ̂ and ρ0, we have
ε+ρ0(X +U) ≥ ρ̂(X) for any ε > 0 and any U ∈ C. Then, we have ρ0(X +U) ≥
ρ̂(X) for any U ∈ C, equivalently,

ρ0�(−C)(X) ≥ ρ̂(X). (4.15)

Fix a z ∈ R arbitrarily to satisfy z < ρ0(X + U) for any U ∈ C. Supposing
z > ρ̂(X), there exists a U0 ∈ C such that z + U0 + X ∈ A0. By the definition
of ρ0, z ≥ ρ0(X + U0) holds, this contradicts to the definition of z. Hence,
z ≤ ρ̂(X), which implies ρ̂(X) ≥ infU∈C ρ0(X + U). As a result, we get

ρ̂(X) ≥ ρ0�(−C)(X). (4.16)

(4.16) together with (4.15) yields Proposition 4.3. �

Lemma 4.4 ρ0 is order l.s.c.
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Proof. From the view of Remark 18 in Biagini and Frittelli [5], it suffices to
show the continuity from above. Let (Xn)n≥1 ⊂ LΦ be a decreasing sequence
such that Xn converges a.s. to some X ∈ LΦ. The sequence (ρ0(Xn))n≥1 is then
increasing, and ρ0(Xn) ≤ ρ0(X) holds for any n ≥ 1. If limn→∞ ρ0(Xn) = ∞,
then limn→∞ ρ0(Xn) = ρ0(X) follows. Thus, we assume that limn→∞ ρ0(Xn) <
∞. Fix an x ∈ R arbitrarily to satisfy x > ρ0(Xn) for any n ≥ 1. By the
definition of ρ0, we have x + Xn ∈ A0 for any n ≥ 1, that is,

E[l(−x − Xn)] ≤ δ for any n ≥ 1.

The monotone convergence theorem implies that we get E[l(−x − Xn)] →
E[l(−x − X)], namely, E[l(−x − X)] ≤ δ. This implies x ≥ ρ0(X). By the
arbitrariness of x, we have ρ0(X) = supn≥1 ρ0(Xn) = limn→∞ ρ0(Xn). �

Combining these results with Proposition 3.2, we can obtain a representation
result for ρ̂ under some additional assumptions.

Theorem 4.1 Under Assumption 4.1, if C is sequentially compact in σ(LΦ, LΨ),
then ρ̂ is a (−∞, +∞]-valued convex risk measure on LΦ satisfying the following:

ρ̂(X) = sup
Q∈PΨ

{
EQ[−X] − sup

X1∈A1

EQ[−X1 ]− inf
λ>0

1
λ

{
δ + E

[
Ψ

(
λ

dQ

dP

)]}}
,

(4.17)
where A1 := {X ∈ LΦ| there exists a U ∈ C such that X + U ≥ 0}.
Proof. From the view of Proposition 3.2 (a) together with Lemma 4.2 and
Proposition 4.3, we have only to make sure whether ρ0 satisfies (3.2) in order
to prove the first assertion. If X satisfies E[Φ(|X|)] < ∞, then E[l(−X)] < ∞.
The dominated convergence theorem yields

lim
x→∞E[l(−x − X)] = E[ lim

x→∞ l(−x − X)] = 0,

since l(−x−X) ≤ l(−X) ∈ L1. Hence, for a sufficient large x, we have E[l(−x−
X)] ≤ δ. As a result, ρ0(X) < ∞ follows.

Propositions 3.2 (c) and 4.3, the sequential compactness of C and Lemma
4.4 imply that ρ̂ is order l.s.c. Theorem 2.1 yields that ρ̂ has the representation
(2.1). By the same manner as the proof of Proposition 3.7 of [2], we obtain the
representation (4.17). �

4.1 Construction of C having the sequential compactness

From the view of Theorem 4.1, ρ̂ has a robust representation if C has the sequen-
tial compactness in σ(LΦ, LΨ). We construct, in this subsection, an example of
C being sequentially compact in σ(LΦ, LΨ).

We consider an incomplete financial market being composed of one riskless
asset and d risky assets. The fluctuation of the risky assets is described by
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an Rd-valued RCLL special semimartingale S, which is possibly non-locally
bounded. Instead, we suppose that S is locally in LΦ in the following sense:
there exists a localizing sequence (τn)n≥1 of stopping times such that, for any
n ≥ 1, the family {Sτ |τ : stopping time, τ ≤ τn} is a subset of LΦ. Now, we
construct, by the same manner as Xia and Yan [19], a σ(LΦ, LΨ)-closed set
of stochastic integrals. Let Ks

Φ be the subspace of LΦ spanned by the simple
stochastic integrals of the form htr(Sσ2 −Sσ1 ), where σ1 ≤ σ2 are stopping times
such that {Sσ |σ: stopping time, σ ≤ σ2} ⊂ LΦ and h ∈ L∞ is Fσ1 -measurable.
We denote the following:

MΨ,s := {Z ∈ LΨ|E[WZ] = 0 for any W ∈ Ks
Φ and E[Z] = 1},

MΨ,e := {Z ∈ MΨ,s|Z > 0 a.s.},
and KΦ := Ks

Φ, which is the closure of Ks
Φ in σ(LΦ, LΨ). We prepare one

lemma.

Lemma 4.5 (a) MΨ,s �= ∅ =⇒ 1 /∈ KΦ.
(b) For any Z ∈ LΨ, Z ∈ MΨ,s if and only if E[Z] = 1 and E[WZ] = 0 for any
W ∈ KΦ.

Proof. (a) Suppose MΨ,s �= ∅, and let Z ∈ MΨ,s. If 1 ∈ KΦ, then E[Z ·1] =
0, which contradicts to E[Z] = 1.

(b) The sufficient part is obvious. For any W ∈ KΦ, we can find a sequence
Wn ∈ Ks

Φ satisfying Wn → W in σ(LΦ, LΨ). For any Z ∈ MΨ,s, we have

E[WZ] = E[(W − Wn + Wn)Z] = E[(W − Wn)Z] + E[WnZ] → 0

This completes the proof. �

The following lemma is proved by the analogy with the proof of Lemma 2.2
of [19].

Lemma 4.6 Assume MΨ,s �= ∅. We have

W ∈ KΦ ⇐⇒ W ∈ LΦ and E[WZ] = 0 for any Z ∈ MΨ,s.

ΘL denotes the set of all S-integrable predictable processes ϑ such that∫ T

0
ϑsdSs ∈ LΦ and E[

∫ T

0
ϑsdSs · Z] = 0 for any Z ∈ MΨ,s. Moreover, we

denote G := {∫ T

0
ϑsdSs|ϑ ∈ ΘL}. Note that, if MΨ,s �= ∅, Lemma 4.6 implies

G ⊂ KΦ. We introduce the following assumption:

Assumption 4.7 MΨ,e �= ∅.
Now, we can give a proof of the following theorem by the analogy with the proof
of Theorem 2.1 in [19].

Theorem 4.2 Under Assumption 4.7, we have KΦ = G, that is, G is closed in
σ(LΦ, LΨ).
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Proof. We shall illustrate only parts being different from the proof of The-
orem 2.1 in [19]. Fix a probability measure Q whose density belongs to MΨ,e.
Letting W ∈ KΦ, we have W ∈ LΦ and E[WZ] = 0 for any Z ∈ MΨ,s by
Lemma 4.6. Thus, we have only to show that W is represented as a stochastic
integral. Note that there exists a sequence (Wn)n≥1 ⊂ Ks

Φ such that Wn → W
in σ(LΦ, LΨ). Since σ(LΦ, LΨ) has the C-property, we can extract a subse-
quence (Wik )k≥1 and take convex combinations Yk ∈ conv(Wik , Wik+1 , . . .) for
k ≥ 1 such that Yk → W in order. Hence, we can say Yk → W in L1(Q).
Moreover, the set

G̃ :=

{∫ T

0

ϑsdSs

∣∣∣ϑ is an S-integrable predictable process,

the process
∫ ·

0

ϑsdSs is Q-uniformly integrable

}

is closed in L1(Q). Note that the process S is a local Q-martingale, since S is
locally in LΦ. Each Wn belongs to G̃, thus so is each Yk, namely, W ∈ G̃. �

Now, we impose an additional assumption.

Assumption 4.8 limk→0 k−1E[Φ(k|W |)] = 0 uniformly in W ∈ G.

Under Assumptions 4.7 and 4.8, G is sequentially compact in σ(LΦ, LΨ) by
Theorem IV.5.3 of Rao and Ren [17] and Theorem 4.2.

Remark 4 Although, in Theorem IV.5.3 of [17], the function Φ is restricted to
be an N-function, we do not have to impose it for our purpose.

Taking G − A as the set C of all attainable claims with zero initial endow-
ment, where A is a sequentially compact subset of LΦ

+ in σ(LΦ, LΨ), C is also
sequentially compact. Hence, we can conclude the following:

Theorem 4.3 Under Assumptions 4.1, 4.7 and 4.8, ρ̂ is a (−∞, +∞]-valued
convex risk measure on LΦ satisfying (4.17).
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[14] Kaina, M. and Rüschendorf, L. On convex risk measures on Lp-spaces,
Math. Meth. Oper. Res., 69, pp. 475–495 (2009)

[15] Klöppel, S. and Schweizer, M. Dynamic utility indifference valuation
via convex risk measures, FINRISK Working paper No.209 (2005)
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