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Abstract: In the literature related to choice theory an important problem dealt at length
is the rationalizability of choice function of an individual. In the literature a number of
choice consistency conditions have been postulated, which guarantee best element and
maximal element rationalizability of choice functions. In this paper a set of necessary
and sufficient conditions have been derived for the domain to be such that every possible
choice function defined over the domain has a best element (maximal element) ratio-
nalization. Thus the paper provides complete characterization of partition of domains
separately for best and maximal element rationalizable choice functions.
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1. INTRODUCTION

In economics the concept of rational choice appears very prominently. It is generally
assumed that individuals are rational. By rationality it is meant that individual choice
behaviour conforms to two requirements. First requires that individual behaviour is
purposive and second requires it to be consistent1.

The analysis of rational choice behaviour is done using two broad frameworks. In the
first framework it is analysed with the help of a well-defined preference relation2 and
individuals are assumed to choose a best alternative whenever the set of best alternatives
is non-empty.

Acknowledgments. Author wants to thank the anonymous referee and Prof. Satish K. Jain for their com-
ments and suggestions.

E-mail: debabrata@mail.jnu.ac.in; debabrata1234@gmail.com.

1 Purposive behaviour requires a rational agent to choose those alternatives that bring him to the best
attainable position and consistency requires that the preference (“at least as good as”) relation of a rational
agent satisfies the strong consistency property to the effect that if alternative x is no less preferred to alternative
y, and y to z, then x is no less preferred to z. (Suzumura (1983); Chapter-2, p.19).

2 By well-defined preference we mean that the preference relation is an ordering.
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28 KEIO ECONOMIC STUDIES

In the second framework based on revealed preference theory individual choice be-
haviour is analysed only on the basis of observed choices. This approach of revealed
preference theory helps analyse rational choice in the context of set-valued choice func-
tion. It is asked in this context whether it is possible to construct a preference relation
observing choices under different environments, such that the chosen elements of a set
are the same elements as the set of best elements (or no worse elements i.e., maximal
elements)3 of the set according to that preference relation. In the literature of choice the-
ory this problem is known as the rationalizability of choice function. A choice function
is said to be best-element (maximal element) rationalizable when the best (maximal)
elements according to some preference relation are only chosen from the available sets.
This definition of rationality, likewise, reflects the purposive behaviour of an individual
and requires individuals to be consistent in their choice behaviours.

The problem of best element rationalizability can be explained with the help of the
following example. Suppose we observe the following choices:

EXAMPLE 1. Let X be the set of alternatives and C be the choice function.

X = {x, y, z}; C({x, y}) = {x} , C({x, z}) = {x} ,

C({z, y}) = {y}, C({x, y, z}) = {x}
In the above choice environments x is chosen from {x, y}, {x, z} and {x, y, z}, and

y is chosen from {z, y}. It is immediate that the preference relation xPyPz i.e., ‘x is
preferred to y preferred to z’ represents such choice behaviour. x is the best element
of {x, y}, {x, z} and {x, y, z} according to the preference relation xPyPz and it is the
chosen element of the same sets as well. y is also the best element of {z, y} and chosen
element too. Similar example also can be constructed to illustrate maximal element
rationalizability4.

The notion of rational choice, however, has been improvised further in the literature
to capture different aspect of choice. Gaertner and Xu (2004) tries to incorporate the
procedural aspect of choice where the available alternatives are linked to a procedure
by which they came into existence. Manzini and Mariotti (2007), Hung Au and Kawai
(2011) consider an environment where choices are made sequentially. Under such con-
sideration a decision maker uses more than one preference relations in a fixed order to
remove non-preferred alternatives. This procedure sequentially rationalizes the choice
function of the decision maker if a unique choice is made for every set belonging to the

3 Formal definitions of best and maximal elements have been provided in section 2.
4 Consider the following example: X = {x, y, z}; C({x, y}) = {x}, C({x, z}) = {x}, C({x, y, z}) = {x}.

We claim that this choice function is M-rationalizable.
Let the preference relation R be : xPy and xP z. Notice, maximal element in {x, y} with respect to the above
relation is x as no other element in {x, y} is preferred to x. y is not maximal according to R as x is preferred
to y. Thus M({x, y}, R) = {x}. Further, for every set, the set of maximal elements with respect to the given
preference relation is same as the set of chosen elements:
M({x, y}, R) = {x} = C({x, y})
M({x, z},R) = {x} = C({x, z})
M({x, y, z},R) = {x} = C({x, y, z}).

 

 

 
 
 

 

 
 

 

 

 
  

 
 
 

 
 
 

 
 
 

 
 

 
 
 

 



PAL: COMPLETE CHARACTERIZATION OF DOMAINS OF CHOICE FUNCTIONS 29

domain. Apesteguia and Ballester (2013) also considers choices by sequential proce-
dure wherein a decision maker makes a choice by ruling out inferior alternatives through
binary comparisons in a particular order.

It is worth mentioning in this context that all choice functions are not rationalizable5.
A number of choice consistency conditions have been introduced in the literature per-
taining to different notions of rationalizability owing to Uzawa (1957), Richter (1966),
Suzumura (1976, 1983), Arrow (1959), Sen (1970), Bossert et al. (2005), Manzini and
Mariotti (2007) and Hung Au and Kawai (2011) and others.

The development of literature in the context of rationalizability of choice functions, as
evident from preceding discussion, relates to two classes of choice functions, namely ra-
tionalizable and non-rationalizable choice functions. Given this classification of choice
functions, the literature investigates the properties of choice functions which make them
rationalizable. A number of choice consistency conditions thus have emerged. How-
ever, the nature of these consistency conditions is such that they put restrictions on the
choice behaviour of an individual and their implications with regard to rationalizability
also change as domain of choice function changes6.

Therefore, a pertinent question arises: what property should a domain satisfy such
that any choice function defined over that domain would be rationalizable? This ques-
tion has very important implication in the context of rational choice. If it is the case that
over a domain all choice functions are rationalizable i.e., no matter in whichever way an
individual makes his or her choice it always becomes rational then it seems difficult to
find any meaningful interpretation of ‘purposive behaviour’ of an individual in that par-
ticular domain, which, as discussed before, is at the core of the notion of rational choice.
It is, therefore, important to find a complete characterization of such domains. On one
side there is the class of domains over which any choice function is rationalizable and
on the other side there is the class of domains over which not all choice functions are ra-
tionalizable. The ‘purposive behaviour’ of an individual would carry meaningful sense
in those domains where some choice patterns are rational and some are not. Further-
more, choice consistency conditions which deal with the properties of choice functions
restrict choice behaviours of individuals. On the contrary, domain conditions do not

5 Consider following example: X = {x, y, z}; C({x, y}) = {x}; C({x, z}) = {z}; C({z, y}) =
{y}; C({x, y, z}) = {x}.
For this choice function C, x is the only element chosen from {x, y, z}. So any preference relation which
rationalizes this choice function must have the following preference: ‘x is at least as good as x’, ‘x is at least
as good as y’ and ‘x is at least as good as z’. This implies that x belongs to the set of best elements of the
set {x, z} according to the said preference relation; but x does not belong to the choice set of {x, z}. z is the
only element chosen from the set {x, z}. Therefore the choice function C is not best element rationalizable.
Likewise, this choice function is not maximal element rationalizable. Notice, {z} = C({x, z}) implies zPx

but x ∈ C({x, y, z}).
6 Take Arrow’s Axiom (Arrow (1959)) for instance, under full domain (a collection of all nonempty finite

subsets of the set of alternatives) it is necessary and sufficient for a choice function to have an ordering ratio-
nalization. When domain of choice function becomes general (a nonempty collection of nonempty subsets of
the set of alternatives) Arrow’s Axiom fails to be sufficient for ordering rationalization.

 

 

 

 

 
 

 
 

 

 
 
 

 

 
 

  

 
 

 

 
 

  
 

 

  

 
 



30 KEIO ECONOMIC STUDIES

impose any such restrictions7.
In this paper we shall introduce a set of domain conditions-C.1, C.2 and show that

C.1 is necessary and sufficient for a domain over which all choice functions have best
element rationalization, which in turn provides complete characterization of domain for
best element rationalizability and C.1, C.2 together is necessary and sufficient for a
domain over which all choice functions have maximal element rationalization, which in
turn provides complete characterization of domain for maximal element rationalizabil-
ity.

This paper is divided into four sections. Second section contains basic notations and
definitions which have been used in the subsequent sections. Sections three and four
provide the characterization results. Section five concludes the paper.

2. NOTATIONS AND DEFINITIONS

Let X be a non-empty finite set of alternatives and 2X be the power set of X. For a set
S, #S denotes the cardinality of the set S. Let D be a nonempty collection of nonempty
subsets of X, D ⊆ 2X − {∅}. A choice function C is a mapping from D to 2X − {∅},
C : D �→ 2X −{∅} such that C(S) ⊆ S for all S ∈ D. In succeeding sections we denote
D to be the domain of choice function. For any statement ‘A’, ‘∼ A’ denotes negation
of the statement. For statements A and B, ‘A ∧ B’ and ‘A ∨ B’ denote conjunction
(and) and disjunction (or) of two statements respectively.

Let R be a binary relation defined over X. We would often express (x, y) ∈ R as xRy

and R may be interpreted as ‘at least as good as’ relation. xRy, therefore, may be read
as ‘x is at least as good as y’. Let I (R) and P(R) denote symmetric and asymmetric
parts of R respectively.
(∀x, y ∈ S)(xI (R)y ↔ xRy ∧ yRx)

(∀x, y ∈ S)(xP (R)y ↔ xRy∧ ∼ yRx).
Given the interpretation of R, xI (R)y and xP(R)y may be read as ‘x is indifferent to
y’ and ‘x is preferred to y’ respectively.
R defined on S is said to be asymmetric iff (∀ x, y ∈ S)(xRy →∼ yRx).

Given a choice function C on D, define binary relation Rc

Rc = {(x, y) ∈ X × X| (∃S ∈ D)(x ∈ C(S) ∧ y ∈ S)} .

x is said to be a greatest (best) element in a set S with respect to a binary relation R iff
(∀y ∈ S)(xRy) i.e., x is best in S if and only if it is at least as good as all the elements
in S. Let G(S,R) denote the set of greatest (best) elements of a set S with respect to R.

We say that a choice function C is greatest (best) element rationalizable (henceforth
G-rationalization) iff there exists a binary relation R defined over the set of alternatives
such that for every set in the domain the choice set is equal to the set of greatest elements
of the set with respect to R, i.e.,

7 See Pal (2017) for a discussion on the implication of domain conditions for rationalizability of choice
function.
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(∃R ⊆ X × X)(∀ S ∈ D)(C(S) = G(S,R)) .

EXAMPLE 2. Let X = {xo, x1, x2};D = {{xo, x2}, {xo, x1}, {xo, x1, x2}}.Let S1 =
{xo, x2}, S2 = {xo, x1}, S3 = {xo, x1, x2}. Let C be a choice function defined over D

in the following way: C(S1) = {xo}, C(S2) = {x1}, C(S3) = {x1}. Now consider the
following binary relation:

R = {(xo, xo), (x1, x1), (x1, xo), (x1, x2), (xo, x2)}
G(S1, R) = {xo} = C(S1)

G(S2, R) = {x1} = C(S2)

G(S3, R) = {x1} = C(S3) .

So the choice function C is G-rationalizable.
x is said to be a maximal element of S with respect to R iff (∀y ∈ S)(∼yPx) i.e.,

x is maximal element in S if and only if there is no element in S which is preferred to
x. Let M(S,R) denote the set of maximal elements of the set S with respect to binary
relation R.

A choice function is maximal-element rationalizable (henceforth M-rationalization)
iff there exists a binary relation R defined over the set of alternatives such that for every
set in the domain choice set is equal to the set of maximal elements of that set with
respect to binary relation R, i.e.,

(∃R ⊆ X × X)(∀ S ∈ D)(C(S) = M(S,R))

EXAMPLE 3. Let X = {xo, x1, x2}; D = {{x2}, {xo, x1}, {xo, x1, x2}}. Let S1 =
{x2}, S2 = {xo, x1}, S3 = {xo, x1, x2}. Let C be a choice function defined over D in
the following way: C(S1) = {x2}, C(S2) = {xo}, C(S3) = {xo}. Now consider the
following binary relation:

R = {(xo, x1), (xo, x2)}
M(S1, R) = {x2} = C(S1)

M(S2, R) = {xo} = C(S2)

M(S3, R) = {xo} = C(S3) .

So the choice function C is M-rationalizable.
We introduce following notation:

Define DX as follows:

DX = { {x} | x ∈ X};
D2X = { S | S ⊆ X ∧ 1 ≤ #S ≤ 2} .

D2X is the collection of singleton and doubleton sets. Naturally, DX ⊆ D2X.

 

 
 

 
 

 
 
 

 
 

 



32 KEIO ECONOMIC STUDIES

3. G-RATIONALIZABILITY AND DOMAIN CONDITION

We introduce domain condition C.1 which we prove to be necessary and sufficient
for a domain over which every choice function has a G-rationalization.

C.1: ∀S ∈ D − DX, ∀x ∈ S, it should not be the case that ∀y ∈ S − {x}, ∃S
′ ∈

D − {S} such that {x, y} ⊆ S
′
.

Condition C.1 requires that for any set S having at least two alternatives and any
element x belonging to S it is not the case that for every element y in S, distinct from
x, there exists a set S

′
different from S such that x, y belong to that set S

′
. The intuition

behind the condition is as follows. If condition C.1 is violated i.e., there exists a set S

and an element x belonging to S and for every element y not equal to x there exists a set
S

′
different from S such that x, y belong to that set S

′
, then it is possible to construct a

choice function which would induce Rc according to which x would be a best element
in S but x would not belong to the choice set of S. Condition C.1 prevents such cases.

An example may help illustrate this condition. Consider a domain- D =
{{x, y, z,w}, {x, y,w}, {x, z}}. Domain D clearly violates condition C.1 as there exist
a set {x, y, z,w} in D and an element x ∈ {x, y, z,w} such that x has association with
rest of the elements of the sets in other sets belonging to the domain, namely- {x, y,w}
and {x, z}. Given such domain it is easy to construct a choice function which is not
rationaliazable. Let C({x, y, z,w}) = {y}, C({x, y,w}) = {x}, C({x, z}) = {x}. For
this choice function, x is at least as good as x, y, z and w as x is chosen from {x, y,w}
and {x, z} but x is not a chosen element in {x, y, z,w}. Hence the choice function is not
rationalizable. Following theorem shows the necessity and sufficiency of conditon C.1.

THEOREM 1. Every choice function defined over D is G-rationalizable iff D satisfies
condition C.1.

Proof. Suppose D violates the condition C.1, i.e.,
∃S1 ∈ D − DX, ∃x ∈ S1 such that ∀y ∈ S1 − {x},
there exists S

′ ∈ D − {S1} such that {x, y} ⊆ S
′
. (1)

Let S1 = {x, y2, y3, . . . , yn}. (1) → (∃S2, S3, S4, . . . , Sn ∈ D)({x, y2} ⊆
S2 and {x, y3} ⊆ S3 and {x, y4} ⊆ S4 and . . . and {x, yn} ⊆ Sn). Note that
S2, S3, S4, . . . , Sn are not necessarily distinct.

Now, consider the following choice function:

Ĉ(S1) = {y2}
Ĉ(S2) = {x}
Ĉ(S3) = {x}

...

Ĉ(Sn) = {x} and

(∀S ∈ D − {S1, S2, . . . , Sn})(C(S) = S)
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This choice function defined on D is not rationalizable. Since x belongs to the choice
set of each of the sets S2, S3, . . . , Sn and y2, y3, . . . , yn belong to S2, S3, . . . , Sn respec-
tively, any preference relation R which rationalizes the choice function C must have the
following preference: xRx, xRy2, xRy3, . . . , xRyn. This implies that x belongs to the
set of best elements of the set S1; but x does not belong to the choice set of S1. There-
fore, this choice function C is not rationalizable.

Let D satisfy condition C.1. We show that Rc rationalizes every choice function
defined over D. Let C be any choice function defined over D. We Show: C(S) =
G(S,Rc)

Let x ∈ C(S)
→ (∀y ∈ S)(xRcy)

→ x ∈ G(S,Rc)

Let x ∈ G(S,Rc). Suppose x /∈ C(S)

→ (∃y ∈ S)(y ∈ C(S))

→ {x, y} ⊆ S

→ S contains atleast two distinct elements. (2)

Let S = {x, y, x3, . . . , xn}
x ∈ G(S,Rc) → (∀w ∈ S)(xRcw)

→ (∃S2, S3, S4, . . . , Sn ∈ D)8[(x ∈ C(S2) and y ∈ S2)

and (x ∈ C(S3) and x3 ∈ S3)

and . . . and (x ∈ C(Sn) and xn ∈ Sn)]
→ (∃S2, S3, S4, . . . , Sn ∈ D)({x, y} ⊆ S2 and {x, x3} ⊆ S3

and {x, x4} ⊆ S4 and . . . and {x, xn} ⊆ Sn) (3)

It is clear that S2, S3, S4, . . . , Sn are distinct from S.

(2) and (3) imply violation of condition C.1.

∴ x ∈ C(S).

4. M-RATIONALIZABILITY AND DOMAIN CONDITION

The notion of maximal element rationalization is important in the context of rational
choice. It is argued that rational behavior which mostly represents the maximizing
behavior of an individual does not necessarily correspond to choosing best elements
of a set9. In fact, the general discipline of maximization does not necessarily invoke
the concept of choosing best element always; it only requires choice set to be the set
of alternatives which are no worse than others, that is precisely the set of maximal
elements. Sometimes interpreting rational choice by choosing best elements always

8 S2, S3, S4, . . . , Sn are not necessarily distinct.
9 See: Sen (1997), Sugden (1985), Schwartz (1972).
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may run into serious decision problem10.
Likewise, it may well happen that because of limited information available on some

alternatives or due to ‘unsolved value conflict’ among some alternatives a preference
relation over the set of alternatives turns out to be unconnected. Under such circum-
stances best element may not exist in some sets with respect to that preference relation.
Hence, representation of maximizing behaviour of an individual by choosing the set of
best elements may face a serious drawback. Choice of maximal elements, on the other
hand, may carry meaningful sense in some circumstances where the absence of best
elements fails to represent the maximizing behaviour of an individual.

Below we provide a characterization of domains for M-rationalizability. We intro-
duce condition C.2 and prove that C.2 and C.1 together is necessary and sufficient for
a domain over which every choice function has a M-rationalization. Henceforth in this
section rationalizability would mean M-rationalizability.

C.2: ∀S ∈ D − D2X,∀T ⊂ S, it should not be the case that:
(i) #(S − T ) ≥ 2 and,
(ii) ∃x ∈ S −T such that: [∀k ∈ S −T , ∃V ∈ D −{S}({x, k} ⊆ V ) and ∀z ∈
T ,∀w ∈ S − {x}, ∃B ∈ D − {S}({w, z} ⊆ B)]

Condition C.2 requires that for any set S having at least three alternatives and any
subset of S, T (say), it is not the case that S − T would have at least two elements
and there exists an element x in S − T such that for every element k in S − T there
exists a set V distinct from S, which contains x, k; and for any element z,w in T and S

respectively, distinct from x, there exists a set B different from S such that it contains
z,w.

An example may help understand the condition C.2. Consider a domain D =
{{x, y, z,w}, {z,w}, {x, y,w}}. This domain clearly violates condition C.2. Supposing
S = {x, y, z,w} and T = {x, y} there exists an element z ∈ S −T such that {z,w} ∈ D

and for every element in T and every element in S − {z} there exists a set in the domain
containing both the elements namely- {x, y,w}.

Given that D violates C.2 it is now easy to construct a choice function that is not
rationalizable. Let C({x, y, z,w}) = {w}, C({x, y,w}) = {x, y,w}, C({z,w}) = {z}.
Any preference relation that rationalizes this choice function must display w not to
be preferred to z as C({z,w}) = {z}. Likewise due to C({x, y,w}) = {x, y,w} no
element from {x, y,w} is preferred over other in the set. It, therefore, follows that in
the set {x, y, z,w} z has to be preferred to x and y in order to generate the choice set
C({x, y, z,w}) = {w}. Thus, in the set {x, y, z,w} no element is preferred to z. Hence
z should belong to C({x, y, z,w}) but it does not. Above choice function, therefore, is
not rationalizable.

It is to be noted that in the context of M-rationalizability if an element in a set is
not chosen then there has to exist a different element in the same set which is preferred

10 The following quotation from Sen (1997) reflects such concern.
“. . . the tale of the donkey that dithered so long in deciding which of the two haystacks x or y was better, that
it died of starvation."
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to that element i.e., the former is defeated in preference by the latter. For a choice
function to be M-raionalizable it is, therefore, necessary that every unchosen element
has an association with some other element in the set that defeats it. Furthermore, if
an element defeats other element in a set then under no circumstances the defeated
element should be chosen in presence of the element that defeats it. This association
can be expressed by a single valued function defined below.

For S ∈ D and (S − C(S) �= ∅), define: fS : S − C(S) �→ S,

such that (∀(x, y) ∈ fS)(∼ xRcy ∧ x �= y)

(x, y) ∈ fS i.e., fS(x) = y11 may be interpreted as y defeats x. Notice, ∼ xRcy

ensures that the defeated element x is not chosen in presence of y.
Let D = {S1, S2, S3, . . . , Sk} and D̄ ⊆ D contain all the sets from D such that for

every set, S, C(S) �= S. Let D̄ = {S1, S2, S3, . . . , Sn}; clearly, (∀S ∈ D̄)(S − C(S) �=
∅). Let F be a class of functions defined above with respect to D̄:

F = {fS1, fS2 , fS3, . . . , fSn}
Define a binary relation R

′

R
′ = {(x, y) ∈ X × X | ∼ (xRcy ∨ yRcx) ∧ (∃S ∈ D)(fS(y) = x)∧

(∀T ∈ D)(x, y ∈ T → fT (x) �= y)}
Now consider,

R̄ = Rc ∪ R
′

Above definitions are illustrated with an example below:

EXAMPLE 4. Let D = {{x, y, z,w}, {z,w}, {x, y}}.
C({x, y, z,w}) = {w}, C({x, y}) = {x}, C({z,w}) = {z,w}.
D̄ = {{x, y, z,w}, {x, y}}.
Let S1 = {x, y, z,w}, S2 = {x, y} and S3 = {z,w}.
Rc = {(x, x), (w,w), (z, z), (x, y), (z,w), (w, x), (w, y), (w, z)}.
F = {fS1, fS2}.
Let, fS1 : fS1(x) = w, fS1(y) = x, fS1(z) = y

fS2 : fS2(y) = x

R
′ = {(y, z)}

R̄ = {(x, x), (w,w), (z, z), (x, y), (z,w), (w, x), (w, y), (w, z), (y, z)}.
PROPOSITION 1. Conditions C.1 and C.2 are independent and none of them alone

is sufficient for a domain to ensure rationalizability for all choice functions.

Proof. Consider two domains of choice function namely D1 and D2 given below.
Let D1 = {{x, y}, {x, y, z}} and D2 = {{x, y, z,w},{y, z, a}, {y,w, b}, {x, z, c},
{x,w, d}}. It can be verified, while D1 satisfies C.2 and violates C.1, D2 satisfies
C.1 and violates C.2. In D1, for x ∈ {x, y}, x, y belong to {x, y, z}, thus it violates C.1.
To show that C.2 is satisfied, consider T ⊂ {x, y, z} such that #({x, y, z} − T ) ≥ 2.

11 Since any function can be written in form of a binary relation, (x, y) ∈ fS and fS(x) = y, therefore,
have the same interpretation.
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T , therefore, can be {x}, {y}, {z} or ∅. It can be easily checked that for any T , the re-
quirements of C.2 are satisfied. To show D2 violates C.2 consider S = {x, y, z,w}
and T = {x}. Now, for y ∈ S − T = {y, z,w} there exist sets in the domain namely
{y, z, a},{y,w, b} where y, z ∈ {y, z, a} and y,w ∈ {y,w, b}. Again for every element
in T and every element in S − {y} there exists a set in the domain containing both the
elements namely-{x, z, c}, {x,w, d}. This is a violation of condition C.2. Additionally,
it can be verified that D2 satisfies C.1.

Notice, none of the domains ensure that all choice functions defined over it are ratio-
nalizable. Define choice functions Ĉ and C on D1 and D2 respectively as follows:

Ĉ({x, y, z}) = {x, y}, Ĉ({x, y}) = {y}; and

C({x, y, z,w}) = {z}; C({y, z, a}) = {y, z};
C({y,w, b}) = {y,w}; C({x, z, c}) = {x, z}; C({x,w, d}) = {x,w}

Choice functions Ĉ and C are not rationalizable. For choice function Ĉ,
Ĉ({x, y, z}) = {x, y} implies that y is not preferred to x. Thus, x should belong to
Ĉ{x, y} but it does not. Again, for the choice function C, C({y, z, a}) = {y, z} and
C({y,w, b}) = {y,w} imply that z,w are not preferred to y. C({x, z, c}) = {x, z},
C({x,w, d}) = {x,w} imply w, z is not preferred to x. Notice, x, y /∈ C({x, y, z,w})
as C({x, y, z,w}) = {z} and w, z are not preferred to x and y. This implies that
for choice function C to be rationalizable there have to be some elements which are
preferred to x and y respectively. If x is preferred to y then there is no element
in {x, y, z,w} that is preferred to x, which in turn imply that x should belong to
C({x, y, z,w}) but it does not. So is true for y. Both the choice functions, there-
fore, are not rationalizable. It follows that neither C.1 nor C.2 is sufficient to guarantee
rationalizability of all choice functions.

We now show that conditions C.1 and C.2 together is necessary and sufficient for
domain to be such that all choice functions defined over it are rationalizable.

LEMMA 1. Let choice function C be defined over D. Let ∃S ∈ D and C(S) �= S. If
D satisfies condition C.1 then there exists a class of functions F .

Proof. Let choice function C be defined over D. Let ∃S ∈ D and C(S) �= S.
Suppose, there does not exist any F . This implies the following,
∃S ∈ D, ∃x ∈ S, such that x ∈ S − C(S) and (∀y ∈ S − {x})(xRcy).
This again implies by definition of Rc that- ∀y ∈ S − {x}, ∃S

′ ∈ D − {S}({x, y} ⊆ S
′
).

This is a violation of condition C.1.

Lemma 1 ensures that for any set S in the domain if C(S) �= S, then fS exists. It
may be noticed that fS is not unique. Consider, D = {{x, y, z,w}, {x, y,w}, {z,w}}.
C({x, y, z,w}) = {w}, C({x, y,w}) = {w}, C({z,w}) = {z,w}. D̄ =
{{x, y, z,w}, {x, y,w}}. Let S1 = {x, y, z,w}, S2 = {x, y,w} and S3 = {z,w}
F = {fS1, fS2}

fS1 , fS2 are not unique.
Consider the following two cases:
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Case (i)

fS1 : fS1(x) = y, fS1(y) = w, fS1 (z) = y

fS2 : fS2(y) = x, fS2(x) = w

and,
Case (ii)

fS1 : fS1(x) = w, fS1 (y) = w, fS1(z) = y

fS2 : fS2(y) = w, fS2 (x) = w .

Since, as discussed before, fS(x) = y has the interpretation that y defeats the uncho-
sen element x in S, in order for a choice function to be rationalizable it should not be
the case that in any other set, T , x defeats y i.e., we must not have fT (y) = x. Notice,
fS1 and fS2 as defined in case (i) do not satisfy this property but they satisfy under the
case (ii).

In lemma 2 we shall show, if the domain of choice function satisfies C.1 and C.2 then
it is possible to construct fS ∈ F such that it satisfies the above property.

LEMMA 2. Let choice function C be defined over D which satisfies C.1 and C.2.
Let ∃S ∈ D and x ∈ S − C(S), then it is possible to find z ∈ S such that (fS(x) =
z ∧ (∀K ∈ D)(fK(z) �= x)).

Proof. Let ∃S ∈ D and x ∈ S − C(S). By lemma 1, fS exists. Suppose
fS(x) = y ∧ y ∈ C(S). Then yRcx and hence (∀K ∈ D)(fK(y) �= x) (by defini-
tion of fS). Suppose, it is not possible to find y ∈ C(S) such that fS(x) = y i.e.,
(∀y ∈ C(S))(fS(x) �= y). This implies (∀y ∈ C(S))(xRcy).

Let (S − (C(S) ∪ {x})) = {w1, w2, . . . , wn} (4)

Without loss of generality, suppose fS(x) = w1. If (∀K ∈ D)(fK(w1) �= x) then
we are through. Suppose (∃K1 ∈ D)(fK1(w1) = x). (fK1(w1) = x) → (∀z ∈
K1 − {x})(w1Rcz). Because, if (∃z ∈ K1 − {x})(∼ w1Rcz) then it is possible to have

fK1(w1) = z and hence fK1(w1) �= x . (5)

Analogous argument holds for w2, w3, . . . , wn−1 and finally, if fS(x) = wn and
(∀K ∈ D)(fK(wn) �= x) then we are through. Suppose (∃Kn ∈ D)(fKn(wn) = x).

(fKn(wn) = x) → (∀z ∈ Kn − {x})(wnRcz)) . (6)

Let T = {w1, w2, . . . , wn} and (∀wi ∈ T )(wi ∈ Ki). Now we have the following
cases:

Case (i): (∀K ∈ {K1,K2, . . . ,Kn})(S = K)

Case (ii): (∃K ∈ {K1,K2, . . . ,Kn})(S �= K).

Case (i): Let (∀K ∈ {K1,K2, . . . ,Kn})(S = K)

Now, (4) ∧ (5) ∧ (6) → (∀k ∈ S − T )(xRck) ∧ (∀z ∈ T )(∀w ∈ S − {x})(zRcw)

→ [[(∀k ∈ S − T )(∃V ∈ D − {S})({x, k} ⊆ V )] ∧ [(∀z ∈ T )(∀w ∈ S − {x})(∃B ∈
D − {S})({w, z} ⊆ B)]] → a violation of condition C.2.
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Case (ii): ∃K ∈ {K1,K2, . . . ,Kn})(S �= K)

Let wk ∈ {w1, w2, . . . , wn} ∧ wk ∈ K . Now, (4) ∧ (5) ∧ (6) → (∀z ∈ K −
{x})(wkRcz) → (∀z ∈ K−{x})(∃B ∈ D−{K})(wk, z ∈ B). Again, wk, x ∈ S∧S �= K

→ violation of condition C.1.

PROPOSITION 2. The binary relation R
′

is asymmetric.

Proof. Proof is straight forward and follows from the definition.

THEOREM 2. Any choice function defined over D is M-rationalizable iff D satisfies
conditions C.1 and C.2.

Proof. Suppose D violates the condition C.1, i.e.,

∃S1 ∈ D − DX, ∃x ∈ S1 such that ∀y ∈ S1 − {x},
there exists S

′ ∈ D − {S1} such that {x, y} ⊆ S
′
. (7)

Let S1 = {x, y2, y3, . . . , yn}.
(7) → (∃S2, S3, S4, . . . , Sn ∈ D)12({x, y2} ⊆ S2 ∧ {x, y3} ⊆ S3 ∧ {x, y4} ⊆
S4∧, . . . ,∧{x, yn} ⊆ Sn)

Now, consider the following choice function:

Ĉ(S1) = {y2}
Ĉ(S2) = {x}
Ĉ(S3) = {x}

...

Ĉ(Sn) = {x} and

(∀S ∈ D − {S1, S2, . . . , Sn})(Ĉ(S) = S)

This choice function defined on D is not rationalizable. Since x is chosen from
S2, S3, S4, . . . , Sn no element is preferred to x. Therefore, x should belong to S1 but it
does not. The reason for this kind of choice function not to be rationalizable has been
discussed with an example at length in proposition 1.

Suppose D violates the condition C.2, i.e., ∃S ∈ D − D2X, ∃T ⊂ S, such that:
(i) #(S − T ) ≥ 2 and,
(ii) ∃x ∈ S − T such that: [∀k ∈ S − T , ∃V ∈ D − {S}({x, k} ⊆ V ) and ∀z ∈

T ,∀w ∈ S − {x}, ∃B ∈ D − {S}({w, z} ⊆ B)].
Let S = {x, y, y3, y4, . . . , yn} ∧ #(S − T ) ≥ 2 ∧ x, y ∈ (S − T ).

Now Consider a choice function Ĉ such that:

Ĉ(S) = {y}
(∀k ∈ S − T )(∃V ∈ D − {S})({x, k} ⊆ V ∧ Ĉ(V ) = {x})

(∀z ∈ T )(∀w ∈ S − {x})(∃B ∈ D − {S})({w, z} ⊆ B ∧ Ĉ(B) = {w, z}) .

This choice function defined on D is not rationalizable. The reason for this kind of

12 S2, S3, S4, . . . , Sn are not necessarily distinct.
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choice function not to be rationalizable has been discussed with an example at length in
proposition 1.

Let D satisfy condition C.1 and C.2. Let C be any choice function defined over D.
Now consider, R̄ = Rc ∪ R

′
We show that R̄ rationalizes the choice function C i.e., we

show that C(S) = M(S, R̄). Let x ∈ C(S) → (∀y ∈ S)(xRcy). (∀y ∈ S)(xRcy) →∼
yP(Rc)x and ∼yP(R

′
)x (by definitions of Rc and R

′
) → x ∈ M(S, R̄)

Let x ∈ M(S, R̄).

Suppose x /∈ C(S).

Since x ∈ S − C(S), by lemma 2, it is possible that

(∃z ∈ S)(fS(x) = z ∧ (∀K ∈ D)(fK(z) �= x)) . (8)

Furthermore, since we have now fS(x) = z, xRcz is not possible i.e., ∼xRcz by
definition of fS .
Suppose zRcx.
We then have ∼xRcz ∧ zRcx i.e., zP (Rc)x and hence zP (R̄)x.
In view of the fact x ∈ M(S, R̄) this is not possible.
We, therefore, have ∼ xRcz∧ ∼ zRcx. (9)
Again, ((fS(x) = z) ∧ (8) ∧ (9)) → zR

′
x.

By proposition 2, R
′

is asymmetric and hence zP (R
′
)x.

→ zP (R̄)x

Notice, x ∈ M(S, R̄) →∼ zP (R̄)x.
A contradiction.
Therefore, x ∈ C(S).

5. CONCLUSION

In the literature of choice theory the problem of rationalizability has been addressed
solely on the basis of imposing conditions on the choice behaviour, generally known
as choice consistency conditions. These conditions are of the nature that if a choice
function satisfies these conditions it becomes possible to construct a preference relation
which generates the choice sets. Eventually we see that in the literature a number of
choice consistency conditions have emerged which provide characterization of rational-
izable choice functions.

Unlike the approach followed in the literature in connection to the problem of ra-
tionalizability, this paper adopts a different approach to this problem. This approach
deals with this problem without invoking any choice consistency condition and thereby
does not put any restriction on the choice behaviour. It deals with the domain of choice
function. The question it asks is: what condition does a domain need to satisfy in order
to make every choice function defined on it rationalizble? The paper provides domain
conditions for both maximal element and best element rationalizable choice functions,
which in turn provide complete characterization of a partition of domains for the said
classes for choice functions. On one hand there is a class of domains over which any
choice function is G-rationalizable (M-rationalizable) and there is a class of domains
over which not all choice functions are G-rationalizable (M-rationalizable) on the other.
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The merit of considering domain conditions lies in many respects. First, as said
before, choice consistency conditions deal with the properties of choice functions and
restrict choice behaviours of individuals. On the contrary, domain conditions do not
impose any constraint on the ‘act of choice’. It ensures that no matter whichever way
an individual makes choices, the choice function always becomes rational.

Second, the ‘purposive behaviour’ of an individual seems to carry meaningful sense
in those domains where some choice patterns are rational and some are not. If over a
domain all choice patterns are rational then it becomes difficult to identify any objective
in the choice behaviour.

Third, we observe a clear partition among the whole range of choice functions
namely- rationalizable and non-rationalizable choice functions. The existing literature
has characterized this partition by invoking choice consistency conditions. Unlike parti-
tioning class of choice functions, the domain condition provides a partition of domains
for rationalizability.

Finally, in social choice theory, domain condition plays an important role. Many
paradoxes that exist in the literature are resolved through domain conditions. The para-
dox of voting does not arise under a domain that restricts the preferences of individuals
to single-peakedness. Likewise, the inconsistency in liberal rights also disappears if
domain is suitably restricted13. Since rationalizability is considered to be a desirable
property for a choice function in social choice theory, domain conditions here also pro-
vide a new set of conditions which ensure the rationalizability of all choice functions.
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