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Abstract: In this paper, we propose a simple methodology for investigating how shocks
to trend and cycle are correlated in unidentified unobserved components models, in
which the correlation is not identified. The proposed methodology is applied to U.S.
and U.K. real GDP data. We find that the correlation parameters are negative for both
countries. We also investigate how changing the identification restriction results in dif-
ferent trend and cycle estimates.
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1. INTRODUCTION

In business cycle analysis, it is often supposed that real GDP consists of two un-
observed components (UC): a permanent and a transitory component. Shocks to the
permanent component have long-lasting effects, whereas shocks to the transitory com-
ponent are temporary and vanish in the long run. We refer to these two components as
“trend” and “cycle”, respectively. Estimating these two components has been an im-
portant issue in business cycle analysis. The UC model is one of the most commonly
used models for this purpose (see, for example, Watson (1986), Clark (1987), Basistha
(2007), Basistha and Nelson (2007), Oh, Zivot, and Creal (2008), Sinclair (2009) and
references therein for applications of UC models).

In this model, the trend is assumed to be a random walk process and the cycle is
assumed to be a stationary process. It is conventional to assume that shocks to the
trend and cycle are uncorrelated for the identification of model parameters although this
assumption is unreasonable, as argued by Clark (1987, pp. 800–801) and Zarnowitz

Acknowledgments. The author thanks Charles R. Nelson, Kum-Hwa Oh, Don Percival, Richard Startz,
Eric Zivot, and workshop participants at Hitotsubashi University for providing valuable comments. The
author also thanks an anonymous referee for valuable comments. Any remaining errors are entirely the
author’s own.

E-mail: nagakura@z7.keio.jp

Copyright c©2019, by the Keio Economic Society

1

 

 
 

 

_  

 

 
 

 

 

 

 
 

 

 

 
 
 
 

 
 

 

 



2 KEIO ECONOMIC STUDIES

and Ozyildirim (2006). Morley, Nelson, and Zivot (2003) (2003, henceforth MNZ)
estimate a UC model with a stationary AR(2) cycle process, for U.S. quarterly real
GDP. They show that one can identify and estimate the correlation parameter under
this specification of cycle. Their estimate of the correlation parameter of −0.9062 is
significantly different from zero according to their likelihood ratio test. They show also
that the trend and cycle estimates with and without the zero correlation restriction are
very different.

The main objective of this paper is to reinvestigate how shocks to these two com-
ponents are correlated by applying unidentified UC models, in which a correlation is
not identified unless we impose an identification restriction. We investigate how differ-
ent identification restrictions lead to different values of the correlation between the two
shocks. We also demonstrate how changing identification restriction results in different
trend and cycle estimates. The empirical analysis in Section 4 shows that the trend and
cycle estimates with different identification restrictions can be substantially different.

We call a UC model with ARMA(p, q) cycle a UC-ARMA(p, q) model. In ex-
plaining our methodology in Sections 2 and 3, we mainly consider a UC–ARMA(2, 1)
model, for ease of exposition. The proposed methodology can, in principle, be extended
to UC models with higher order ARMA cycles although the related calculations become
more involved. In Section 2, first, we show that the UC–ARMA(2, 1) model is observa-
tionally equivalent to MNZ’s UC–AR(2) model in the sense that these two UC models
have the same autocovariance structure. A difficulty in applying the UC–ARMA(2, 1)
model is that, unlike the UC–AR(2) model, it has a correlation parameter that cannot
be identified (and hence estimated) unless we impose an identification restriction. Next,
however, we show that for the correlation parameter, there is an upper bound implied by
an unrestricted ARIMA(2, 1, 2) model, which is an observationally equivalent alterna-
tive representation of the UC–ARMA(2, 1) model. We propose a simple methodology
for finding the implied upper bound. The basic idea of the methodology is to exam-
ine how the value of the correlation implied by an unrestricted ARIMA model changes
when we impose different identification restrictions. In this way, we can obtain an im-
plicit relationship between the identification restrictions and the resulting values of the
correlation.1 See Section 3 for more details.

The proposed methodology is applied to U.S. and U.K. real GDP data.2 For both
countries, it is found that the upper bounds of the correlations are negative. This im-
plies that the two shocks are negatively correlated. We use UC-ARMA(2, 1) models,
estimated under different identification restrictions, to estimate the trend and cycle. We
find that estimates of the trend and cycle can vary substantially depending on the iden-
tification restrictions imposed. We also find that setting the MA(1) parameter equal to

1 Oh, Zivot, and Creal (2008) do a similar analysis. They focus on comparing the estimates of trend and
cycle obtained through the Beveridge-Nelson decomposition (Beveridge and Nelson, 1981) with the estimates
of trend and cycle obtained from UC models with correlated shocks. By contrast, our focus is an investigation
of the correlation.

2 In the previous version of the paper, we do the same analysis to G7 countries except for Japan (Nagakura,
2007), and obtained results qualitatively similar to U.S. and U.K.
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NAGAKURA: HOW ARE SHOCKS TO TREND AND CYCLE CORRELATED? 3

zero, or specifying the cycle as an AR(2) process, which has been one of the most com-
monly used specification for the cycle in the UC model literature, is not supported by
the data on U.K. real GDP.

Our empirical analysis suggests that it is important to impose an appropriate iden-
tification restriction for properly estimating the trend and cycle. We discuss also on
what is an appropriate identification restriction. In fact, it is confirmed empirically that
the trend (and cycle) estimates obtained under (different but) appropriate identification
restrictions are identical.

The identification problem we deal in this paper is conceptually different from the
identification problem known as a weak identification problem. Andrews and Cheng
(2012) considered a model in which some parameters are not identified in the sense
that a criterion function does not depend on those parameters if another parameters,
that we call identifying parameters, take certain points, that we call non-identification
points. Andrews and Cheng (2012) call a model weakly identified when the identify-
ing parameters are close to the non-identification points. On the other hand, the some
parameters of the model we consider in this paper are not identified in the sense that
there are infinitely many sets of parameters that result in the same autocovariance func-
tions, regardless of the values of other parameters. See Andrews and Cheng (2012) and
references therein for other sorts of identification problems.

The rest of the paper is organized as follows. In the next section, we briefly overview
the identification problem of UC models. In Section 3, we propose a simple methodol-
ogy to find an upper bound of the correlation for unidentified UC models. In Section 4,
we apply the proposed methodology to U.S. and U.K. real GDP data. The final section
provides a summary and concluding remarks.

2. OVERVIEW OF THE IDENTIFICATION PROBLEM OF UC MODELS

Let {yt }Tt=0 be an observed time series, such as the log of real GDP. We suppose that
yt is the sum of two unobserved stochastic processes, a random walk process τt and
a stationary finite order ARMA(p, q) process ct ; these processes are conventionally
termed “trend” and “cycle”, respectively, in the literature on business cycle analysis.
The model is known as a UC model (hereafter, a UC-ARMA(p, q) model). Formally,
the model is defined as follows:

yt = τt + ct , τt = μ+ τt−1 + ηt , φ(L)ct = θ(L)εt ,

ηt ∼ i.i.d.(0, σ 2
η ), εt ∼ i.i.d.(0, σ 2

ε ) , cov(ηt , εt±s) =
{
σηε for s = 0 ,

0 otherwise,
(1)

where φ(L) = 1 − φ1L − · · · − φpL
p and θ(L) = 1 + θ1L + · · · + θqL

q are pth
order AR and qth order MA polynomials, respectively, that satisfy the stationarity and
invertibility conditions; that is, the modulus of the roots of φ(z) = 0 and θ(z) = 0 are
all outside the unit circle.

From (1), we have

 

 
 
 

 

 

 

 
 

 

 

 

  
 
 

 

{    

      
 

 



4 KEIO ECONOMIC STUDIES

φ(L)(1 − L)yt = φ(1)μ+ φ(L)ηt + (1 − L)θ(L)εt . (2)

The right-hand side of (2) is the sum of two MA processes whose innovations are corre-
lated.3 However it can be shown that this part can be expressed by an MA(q∗) process
with a single innovation ut , where q∗ = max{p, q + 1} (see, for example, Granger and
Morris, 1976). This implies that yt can alternatively be represented as an ARIMA(p,
q∗) process, as follows:

φ(L)(1 − L)yt = μ∗ + θ∗(L)εt , ut ∼ i.i.d(0, σ 2
u ) , (3)

where μ∗ ≡ φ(1)μ, and θ∗(L) ≡ 1+θ∗
1L+· · ·+θ∗

q∗Lq
∗
. Note that the AR coefficients

in (2) and (3) are the same. This representation of the UC–ARMA(p, q) model is
commonly referred to as the ARIMA (p, 1, q∗) reduced form.

MNZ point out that if one sets p = 2 and q = 0, then the parameters of the resulting
UC–AR(2) model are uniquely identified from its ARIMA(2, 1, 2) reduced form pa-
rameters. To see this, let γj denote the j th order autocovariance of the MA part of (3).
The first three autocovariances, γ0, γ1 and γ2, in terms of the ARIMA(2, 1, 2) reduced
form parameters, are given by γ0 = σ 2

u (1 + θ∗2
1 + θ∗2

2 ), γ1 = σ 2
u θ

∗
1 (1 + θ∗

2 ), γ2 = σ 2
u θ

∗
2

and γj = 0 for j ≥ 3. Given that the MA processes on the right-hand sides of (2) and
(3) must be identical, we can express these autocovariances in terms of the UC model
parameters, σ 2

η , σ 2
ε , and σηε , as:

γ0 = (1 + φ2
1 + φ2

2)σ
2
η + 2σ 2

ε + 2(1 + φ1)σηε ,

γ1 = (φ1φ2 − φ1)σ
2
η − σ 2

ε + (φ2 − φ1 − 1)σηε ,

γ2 = −φ2σ
2
η − φ2σηε . (4)

(See MNZ for a detailed derivation of the equations in (4)). Thus, given the ARIMA(2,
1, 2) reduced form parameters, which include φ1 and φ2, we can solve the three equa-
tions in (4) for the three unknown UC model parameters, σ 2

η , σ 2
ε , and σηε , uniquely. The

correlation ρ is calculated as ρ = σηε/(σεση).
A problem occurs when p = 2 and q = 1; then yt follows a UC–ARMA(2, 1)

process, and there is one additional parameter, namely, θ1, the MA(1) coefficient of the
ARMA(2, 1) cycle process. Although it is easy to show that its reduced form is also an
ARIMA(2, 1, 2) process, the four UC model parameters, σ 2

η , σηε , σ 2
η and θ1 cannot be

uniquely identified from its ARIMA(2, 1, 2) reduced form parameters. To show this, we
compare the autocovariances of the MA parts of the models. In terms of the UC model
parameters, the autocovariances γj , j = 0, 1, 2 are:

γ0 = (1 + φ2
1 + φ2

2)σ
2
η + 2(1 − θ1 + θ2

1 )σ
2
ε + 2[1 + φ1 + θ1(φ2 − φ1)]σηε ,

γ1 = (φ1φ2 − φ1)σ
2
η − (1 − θ1)

2σ 2
ε + [φ2 − φ1 − 1 − θ1(φ2 − φ1 − 1)]σηε ,

γ2 = −φ2σ
2
η − θ1σ

2
ε − (θ1 + φ2)σηε , (5)

3 The sum of two MA processes with correlated innovations can be expressed as the sum of two MA
processes with uncorrelated innovations. Let θi (L)εi,t i = 1, 2 be two MA processes with εi,t ∼ i.i.d.(0, σ 2

i
)

and cov(ε1,t , ε2,t ) = σ . Define ε̃t ≡ ε2,t − (σ/σ 2
1 )ε1,t . Then, cov(ε1,t , ε̃t ) = 0 and

∑2
i=1 θi (L)εi,t =

θ̃ (L)ε1,t + θ2(L)̃εt , where θ̃ (L) = θ1(L)+ (σ/σ 2
1 )θ2(L).
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NAGAKURA: HOW ARE SHOCKS TO TREND AND CYCLE CORRELATED? 5

where θ1 is the MA (1) coefficient of the ARMA(2, 1) cycle process.
Note that there are only three equations for the four unknown UC model parameters,

σ 2
η , σηε , σ 2

η and θ1. Thus, the equations in (5) cannot be uniquely solved for these four
UC model parameters. To solve these equations, we must impose a restriction, which
we term an “identification restriction”, on θ1. For example, setting θ1 = 0 reduces
the model to a UC–AR(2) model. This restriction is not testable because under the
alternative hypothesis the model parameters are not identified. In general, the order
condition for identification of the UC–ARMA(p, q) model is satisfied when p ≥ q+ 2.
The model parameters are just identified when this equality holds. Thus, although UC-
ARMA(p, p−2) and UC-ARMA(p, p−1) models both have an ARIMA(p, p) reduced
form, the former model is identified while the latter model is not identified.

MNZ apply a UC–AR(2) model to U. S. quarterly real GDP data and find that the esti-
mated correlation ρ is significantly negative. However, the point of our paper is that the
true data generating process may be the UC–ARMA(2, 1) model that is observationally
equivalent to the UC–AR(2) model. In that case, one cannot identify ρ.

3. METHODOLOGY

In this section, we illustrate a simple method for finding an upper bound for the cor-
relation given the unrestricted ARIMA model parameters. The basic idea is to examine
how the value of the correlation implied by an unrestricted ARIMA model changes
when we impose different identification restrictions.

Lengthy calculations can be used to solve the equations in (5) to obtain the following
expressions for the three UC model parameters (we briefly argue how to derive the
solutions in Appendix A):

σ 2
η= γ0 + 2γ1 + 2γ2

(1 − φ1 − φ2)2
,

σ 2
ε =−2(1 − φ1θ1 + φ1 + φ2θ1)(γ2 + φ2σ

2
η )− (θ1 + φ2)[γ0 − (1 + φ2

1 + φ2
2)σ

2
η ]

2θ1(1 − φ1θ1 + φ1 + φ2θ1)− 2(θ1 + φ2)(1 − θ1 + θ2
1 )

,

σηε=
θ1[γ0 − (1 + φ2

1 + φ2
2)σ

2
η ] + 2(1 − θ1 + θ2

1 )(γ2 + φ2σ
2
η )

2θ1(1 − φ1θ1 + φ1 + φ2θ1)− 2(θ1 + φ2)(1 − θ1 + θ2
1 )

. (6)

Note that the variance of the trend shock, σ 2
η , is identified and is equivalent to the long-

run variance of the first differences of {yt }. This result holds in general: for any UC–
ARMA(p, q) model, the variance of the trend shock is always identified as the long-run
variance of the first differences; that is, σ 2

η = ψ(1)2σ 2
u , where ψ(1) = θ∗(1)/φ(1).

This was first pointed out by Cochrane (1988, p. 908).
Note that given the ARIMA(2, 1, 2) reduced form parameters, the three UC model

parameters above are functions of θ1. Hence, given θ1, these functions determine the
values of the three UC model parameters that satisfy the equations in (5), from which
we can calculate ρ. In this way, we can obtain an implicit relationship between the
“identification restrictions” imposed on θ1 and the resulting values of the correlation ρ.
Figure 2(a) plots such pairs of values for θ1 and ρ, given estimates of the ARIMA(2,
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6 KEIO ECONOMIC STUDIES

Table 1. Estimates of the ARIMA(2, 1, 2) parameters

U.S. U.K.

φ1 1.3635 0.5605

(0.1447) (0.0972)

φ2 −0.7789 −0.2564

(0.1729) (0.0981)

θ∗
1 −1.1068 −0.1361

(0.2148) (0.0651)

θ∗
2 0.6187 0.7560

(0.2234) (0.0692)

μ 0.8299 0.6189

(0.0725) (0.0661)

σ 2
u 0.8253 0.1645

σ 2
lrv

1.253 0.892

σ 2
ucv 0.970 0.301

ψ(1) 1.2293 2.3278

L −315.04 −105.14

Note: The following ARIMA(2, 1, 2) model was estimated by the exact maximum likelihood estimation:

φ(L)(�yt − μ) = θ(L)ut , ut ∼ NID(0, σ 2
u ) ,

where φ(L) = 1−φ1L−φ2L
2, and θ∗(L) = 1+θ∗

1L+θ∗
2L

2. Standard errors are in parentheses. The

rows with σ 2
lrv

, σ 2
ucv and ψ(1) display estimates of the long-run variance, the unconditional variance

and the (cumulated) impulse response measure, namely, ψ(1) = θ∗(1)/φ(1), respectively. The last
row reports the log-likelihood.

1, 2) model for U.S. quarterly real GDP, which are reported in the second column of
Table 1.

The implied values of the correlations are all negative, and the upper bound of the
correlation is around −0.75. The dashed line shows that if we restrict θ1 to be 0, in
which case the UC–ARMA(2, 1) model reduces to the UC–AR(2) model, then the re-
sulting implied correlation is around −0.95, which is lower than the estimate obtained
by MNZ. This is because our data are different from theirs; in particular, our data cover
a longer sample period (more details on the data set are given in the next section). Note
that there are ranges of values for θ1 that imply correlations of less than −1, which thus
violate the condition for positive definiteness of the covariance matrix. This means that

 

 

 

                       
 

                           

 

 

 

           

      
  

 
 

        

 

 

 

 

 

 
 

  
 

 

 
 

 
 
   
 



NAGAKURA: HOW ARE SHOCKS TO TREND AND CYCLE CORRELATED? 7

UC–ARMA(2, 1) models with values of θ1 in such ranges are inconsistent with the es-
timated unrestricted ARIMA(2, 1, 2) model. We refer to such values of θ1 as “improper
identification restrictions”; values of θ1 at which |ρ| ≤ 1 constitute “proper identifica-
tion restrictions”. In the figure, we display values of ρ based only on values of θ1 in a
particular range; this is because we confirmed that values for θ1 outside of the range are
inconsistent with |ρ| ≤ 1.

In this way, we can find an upper bound for the correlation parameter. The method-
ology can be easily extended for other unidentified UC models.

4. EMPIRICAL APPLICATIONS

In this section, we apply the proposed methodology to U.S. and U.K. quarterly real
GDP data. These quarterly real GDP data cover the period from 1946:4 to 2006:3
(yielding 238 observations) for the U.S. and the period from 1955:4 to 2006:2 (yielding
202 observations) for the U.K. For these periods, Figure 1 shows the percentage growth
rates in GDP.

Table 1 reports the estimates of the unrestricted ARIMA (2, 1, 2) model for each
(logged) GDP series. Figure 2 graphs the implied relationships between θ1 and ρ for
these GDP data, obtained by using the methodology described in the previous section.
The implied values of the correlations are all negative for both countries. The upper
bound for the correlation differs between the two countries; it is about −0.75 for U.S.
and −0.993 for U.K. This implies that the two shocks are highly negatively correlated.
Note that because these values are upper bounds, the actual correlations may be lower
than these values. For the U.K. GDP data, the range of θ1 values that satisfies the
condition for positive definiteness of the the covariance matrix (i.e., |ρ| ≤ 1) does not
include θ1 = 0. This implies that, for the U.K., the restriction that θ1 = 0, under
which the model reduces to the UC–AR(2) model, is inconsistent with the estimated
unrestricted ARIMA models. In other words, the U.K. real GDP data do not support the
UC–AR(2) specification.

The results show that for both countries, in particular U.K., the correlations of two
shocks are highly negative. One hypothesis for explaining these strong negative corre-
lations is that although we assumed that the real GDP is driven by two different shocks,
namely, trend and cycle shocks, the real GDP is actually driven by only one shock that
affects oppositely to trend and cycle. Another possible hypothesis is that the trend is not
a random walk process. As shown in Nagakura (2008) and Nagakura and Zivot (2007),
if the trend is not a random walk process but follows a certain class of I(1) process, then
estimates of the correlation in the UC model in that the trend is assumed to be a random
walk process tends to be negative. See Nagakura (2008) and Nagakura and Zivot (2007)
for more details.

If we set the value of θ1 a priori to, for example, θ1 = 0, we can directly estimate

 

 

 
 

 

 

 

 

 
 
 
 
 
 

 

 
 

 
 
 

  



8 KEIO ECONOMIC STUDIES

Figure 1. Growth rates of U.S. and U.K. real GDP

the other three UC model parameters from a state space representation.4 However, the
above result suggests that we should not arbitrarily choose the value of θ1. One would
expect UC models estimated under different identification restrictions, particularly im-
proper identification restrictions, to produce different trend and cycle estimates. To
address this concern, we estimate the UC–ARMA(2, 1) model directly under different
identification restrictions, including proper and improper restrictions, and then estimate
the cycle and trend from these estimated UC models. In the estimation of UC models,
we impose the positive definiteness condition on the covariance matrix parameters and
impose the stationarity conditions on the AR(2) coefficients.

Table 2 reports the estimation results for the UC–ARMA(2, 1) model. The values of
θ1 in the first row are the restrictions imposed in advance. The asterisks denote improper
restrictions. When we impose proper restrictions, the values of the log-likelihoods are

4 From footnote 4, it is obvious that if θ1 is fixed, γ0, γ1, and γ2 are uniquely determined from σ 2
η , σ 2

ε ,

and σηε , which implies that if θ1 is fixed, we can estimate σ 2
η , σ 2

ε , and σηε by the MLE under Gaussian

assumption for εt and ηt .
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NAGAKURA: HOW ARE SHOCKS TO TREND AND CYCLE CORRELATED? 9

Figure 2. Implied relationship between the correlation and the MA(1) parameter

the same as those of the unrestricted ARIMA model and are higher than those obtained
under improper restrictions. Figures 3 and 4 display the cycle estimates for U.S. and
U.K. real GDP, respectively. These are estimated by using Kalman filtering on the
state space representation of the UC–ARMA(2, 1) model with estimated UC model
parameters. For the U.S., Figures 3(a), (b) and (c) illustrate the cycle estimates from
the UC models estimated under the restrictions θ1 = 0, θ1 = −0.5 and θ1 = 0.5,
respectively. The restrictions, θ1 = 0 and θ1 = −0.5, are consistent with the estimated
unrestricted ARIMA(2, 1, 2) model, whereas the restriction θ1 = 0.5 is not. The cycle
estimates based on θ1 = 0 and θ1 = −0.5 are identical; however, the cycle estimates
based on θ1 = 0.5 are substantially different from the other two. From Figure 4, findings
for U.K. GDP are similar. Figures 4(a) and (b) illustrate the cycle estimates under proper
identification restrictions and Figures 4(c) and (d) present the cycle estimates based on
improper restrictions.

The cycle estimates in (a) and (b) are identical. Although it is difficult to see visually,
the cycle estimates in (c) differ from those in (a) and (b).
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10 KEIO ECONOMIC STUDIES

Table 2. Estimates of the UC–ARMA(2, 1) parameters

U.S. U.K.

θ1 0.0 −0.5 0.5∗ 0.16 0.22 0.0∗ −0.5∗

φ1 1.3635 1.3635 1.4277 0.5605 0.5605 0.6462 1.6709

φ2 −0.7789 −0.7789 −0.6051 −0.2564 −0.2564 −0.3342 −0.7547

σ2
η 1.2533 1.2533 0.8733 0.8914 0.8914 0.8751 0.7535

σ2
ε 0.3170 0.3798 0.4211 0.3276 0.3780 0.2864 0.7405

ρ −0.9483 −0.7429 −0.9517 −0.9937 −0.9948 −0.9983 −0.9381

μ 0.8299 0.8299 0.8337 0.6189 0.6189 0.6186 0.6192

ση/σε 1.9883 1.8165 2.0741 1.6495 1.5356 3.0557 1.0087

L −315.04 −315.04 −316.69 −105.14 −105.14 −105.63 −111.35

Note: The following UC–ARMA(2, 1) model was estimated by the exact maximum likelihood estimation:

yt = τt + ct , τt = μ+ τt−1 + ηt , φ(L)ct = θ(L)εt

ηt ∼ i.i.d.N(0, σ 2
η ) , εt ∼ i.i.d.N(0, σ 2

ε ) , corr(ηt , εt±k)=
{
ρσησε for k = 0 ,

0 otherwise,

where φ(L) = 1 − φ1L − φ2L
2, and θ(L) = 1 + θ1L. The value of θ1 was set before estimation.

For estimation, we imposed the condition for positive definiteness on the covariance matrix parameters
and imposed the stationarity conditions for the AR(2) coefficients. The last row reports the value of
the log-likelihood.

5. CONCLUSION

In this paper, we proposed a simple methodology for investigating the correlation
between permanent and transitory shocks for unidentified UC models. Although one
cannot estimate the correlation in this case, our methodology can be used to obtain an
upper bound for the correlation. We applied our methodology to U.S. and U.K. real
GDP data. It was found that the upper bounds of the correlations are negative for both
countries. This implies that for these two countries, permanent and transitory shocks
are strongly negatively correlated.

Our results raise questions about the conventional identification scheme for UC mod-
els, which involves setting the correlation parameter to zero. As argued by MNZ in
the context of U.S. GDP, imposing such a restriction distorts the estimates of trend and
cycle from UC models. Our results confirm this for the case of U.K. GDP. We also
showed that the UC model with a stationary AR(2) cycle process is not supported by
U.K. real GDP data.
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Figure 3. Percentage deviation from trend of U.S. real GDP

Note: These figures represent the cycle estimates from the UC models estimated under the following restric-
tions on θ1: (a) θ1 = 0; (b) θ1 = 0.5 ; and (c) θ1 = −0.5.

Figure 4. Percentage deviation from trend of U.K. real GDP

Note: These figures represent the cycle estimates from the UC models estimated under the following restric-
tions on θ1: (a) θ1 = 0.16; (b) θ2 = 0.22; (c) θ1 = 0; and (d) θ1 = −0.5.
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Appendix

A: Derivation of Equation (6)
Here, we briefly argue how to derive the solutions given in Eq. (6).

Note that we can rewrite (5) as⎡⎢⎣ γ0

γ1

γ2

⎤⎥⎦=
⎡⎢⎣1 + φ2

1 + φ2
2 2(1 − θ1 + θ2

1 2[1 + φ1 + θ1(φ2 − φ1)

φ1φ2 − φ1 −(1 − φ1)
2 [φ2 − φ1 − 1 − θ1(φ2 − φ1 − 1)]

−φ2 −θ1 −(θ1 + φ2)

⎤⎥⎦
⎡⎢⎣ σ 2

η

σ 2
ε

σηε

⎤⎥⎦ .

We can show that the 3 by 3 matrix on the right hand side is non-singular if φ1+φ2 �= 1,
θ1 �= 1, and θ1(θ1 + φ1) �= φ2 (and we assume it). Then we can uniquely solve the
equation for σ 2

η , σ 2
ε , σηε as in (6).

B: State space representation of the UC–ARMA(2, 1) model
We adopt the following state space representation of the UC–ARMA(2, 1) model for
estimation of the model parameters and the cycle:

(Observation equation)

yt =
[

1 1 0 0
]⎡⎢⎢⎢⎣

τt

ct

ct−1

εt

⎤⎥⎥⎥⎦ ,

(State equation)

⎡⎢⎢⎢⎣
τt

ct

ct−1

εt

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
μ

0
0

0

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
1 0 0 0

0 φ1 φ2 θ1

0 1 0 0

0 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
τt−1

ct−1

ct−2

εt−1

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
1 0

0 1
0 0

0 1

⎤⎥⎥⎥⎦
[
ηt

εt

]
,

for t = 1, ..., T with E(ηt ) = E(εt) = 0, var(ηt ) = σ 2
η , var(εt ) = σ 2

ε , and
cov(ηt , εs) = ρσησε if t = s and 0 otherwise. We set the initial conditions, namely,
the mean vector and covariance matrix of (τ1, c1, c0, ε1)

′, for starting the Kalman fil-
ter recursion, as the stationary mean vector and covariance matrix of (ct , ct−1, εt )

′ for
(c1, c0, ε1)

′, and E(τ1) = y1 and var(τ1) = 107 for τ1. The covariances between τ1 and
(c1, c0, ε1)

′ are set to zero.
If our objective is only to estimate parameters, it is more convenient to use the fol-

lowing state space representation of the first difference of yt
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(Observation equation)

�yt =
[

1 1 0 0 0
]
⎡⎢⎢⎢⎢⎢⎣

�τt

�ct

�ct−1

εt

εt−1

⎤⎥⎥⎥⎥⎥⎦ ,

(State equation)

⎡⎢⎢⎢⎢⎢⎣
�τt

�ct

�ct−1

εt

εt−1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
μ

0

0

0
0

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 φ1 φ2 θ1 − 1 θ1

0 1 0 0 0

0 0 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
�τt−1

�ct−1

�ct−2

εt−1

εt−2

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎣
1 0
0 1

0 0

0 1
0 0

⎤⎥⎥⎥⎥⎥⎦
[
ηt

εt

]
.

This is because then all state variables are stationary and we can avoid the problem of
initialization. The same technique can be used for higher order UC-ARMA models. See
Durbin and Koopman (2001) for more details of state space models.
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