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Abstract: 'We propose a new Mallows’ C), type criterion for quantile regression (QR)
which, unlike AIC or BIC, does not require parametric assumptions on the population
and by construction is robust against misspecification. We show that our new Mallows
type criterion for QR (QC)) is not only an asymptotically unbiased estimate of the
average weighted squared error on the model average fit, but also asymptotically optimal
in the sense of achieving the lowest possible weighted squared error in a class of discrete
model sets. We also demonstrate that these asymptotic properties of the QC), estimator
hold in finite samples with a simulation experiment.
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1. INTRODUCTION

We develop a new model selection criterion for quantile regression (QR) based on
least absolute deviation (LAD). As ordinary least squares (OLS) estimates of the re-
gression coefficients offer convenient summary statistics for the conditional expectation
function of the model, the QR estimates can be used to infer about the conditional
quantile function. Compared with OLS, the possibility of model misspecification and
the importance of model selection has been less emphasized in the literature of QR,
However, correct specification of the conditional quantile function is hard to find in
real-world applications. It is safe to say that misspecification is the norm, not an ex-
ception. Therefore we need to devise a model selection criterion for QR. That is the
purpose of our study.

Our new model selection criterion is based on Mallows’ C,, proposed by Mallows
(1973). We choose Mallows’ C), because, unlike Akaike information criterion (AIC;
Akaike (1973)) or Bayesian information criterion (BIC; Schwarz (1978)), it does not
utilize the likelihood function and we think it would be a good starting point to derive
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a more robust model selection criterion for QR. Although the original Mallows’ C)p,
is for model selection in OLS, we succeed in deriving a Mallows-type criterion for
QR which is an asymptotically unbiased estimator of the weighted squared deviation
from the true model. We also show that selecting a model with our new criterion is
asymptotically optimal in the sense that the selected model asymptotically achieves the
minimum weighted squared error as defined in Li (1987).

The paper is organized as follows. Section 2 presents the model selection problem
we examine and introduces assumptions required to derive our main results. Section
3 introduces the new Mallows type C, criterion for quantile regression and shows its
asymptotic unbiasedness and optimality. Section 4 presents simulation evidence in sup-
port of our new criterion.

2. DESCRIPTION OF THE MODEL SELECTION PROBLEM, DEFINITION AND
ASSUMPTION

2.1. Basic Framework of Quantile Regression

Let y, = (y1,...,ys) be a vector of n independent responses and X, =
(x}, ...y x;)/ be an n x p, matrix whose ith row X! is the value of a p, — vector of
explanatory variables associated with y; . We can consider p, , the number of regres-
sors, grows as the sample size increases. As a general rule, a letter with subscript is
used to denote observations of the corresponding random variable (e.g.y; and y). And
bold letter is used to denote a vector and capital letter denote an matrix.

ASSUMPTION 1. The sequence {y;,X;} is independent and identically distributed
(i.i.d.).

The iid assumption is made for clarity and simplicity. As is now standard in the
quantile regression literature, we define the asymmetric objective function p; : R —
R™ for given T € (0, 1) as

pr (2) £ 29 (2)
where
P () 2T —1(z<0)

also known as the “tick” of “check” function in the literature.
We are interested in the conditional quantile function(CQF) of y given x. The condi-
tional quantile is defined as

g x) £inf{g: Fy(q|x) =1}, 2.1
where Fy (g | x) is the distribution function for y conditional on x.
ASSUMPTION 2. F is assumed to have conditional density fy (y | X).

The CQF solves the minimization problem

gz (x) = argmin B [o: 0 —qx)] .
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and the minimum is over the set of measurable function of x (Fox and Rubin (1964)).
The CQF satisfies

Ele: (y —q x)] =0.

The linear quantile regression(QR) vector solves the population minimization prob-
lem

* A 5 I
B —argéglﬂg,E[pr (Y —x'B)] .
We assume integrability and uniqueness of the solution.

ASSUMPTION 3. There exists B such that
* A 53 -
B = mg min I [0: (Y —6)]

equivalently
E [x¢c (v —xB7)] =0. 2.2)

We want to estimate the conditional t-quantile vector q; = (q1¢, ..., gnr). We use
the least absolute deviation (LAD) to estimate the conditional quantile. The QR process
B, is formally defined as

n
B = argmin > pr (i —x;B)
i=1
and estimate the conditional quantile as
éi‘( = X:ﬂr .

REMARK 4. Assumption 3 is more general setup than the traditional quantile re-
gression models. Our setup is the case where all models are potentially misspecified but
each model has the pseudo-true parameter B} satisfying (2.2). Our purpose described

below is to select the most close model to the “true” conditional qunatile. Therefore,
the consistency (in the traditional meaning) is out of scope in this article.

2.2. The Model Selection Problem

In the standard LAD framework (which is not adopted here), one assumes that the
conditional quantile regression model is correctly specified. That is, for some B}, one
has E [¢; (y —x'B%)] = 0. Furthermore, to achieve identification, one assumes that
B% is the unique solution to these equations. The parameter 7 is then called the “true”
value of B. In this case, the standard LAD estimator /§ . of B% is defined to minimize

n
Z Pt (yi - XQ,B) ,overf € R” .
i=1

The LAD estimator ﬁn is consistent for % under minimal (and well-known) additional
assumptions.

Often in empirical applications, however, researchers find that the J test of overi-
dentifying restrictions (see Hansen (1982)) rejects the null hypothesis that all moment
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conditions are correct. Thus, it seems useful to consider statistical inference in the case
where not all of the moment conditions are necessarily correct. That is what we do
here. We presume that the researcher does not know a priori which regression variables
are correct. (Otherwise he would discard the incorrect variables and be faced with the
standard situation considered in the literature.)

Following Andrews (1999), we define the vector of selection variables. We let h €
RP» denote a model selection vector. By definition, % is a vector of zeros and ones. If
the jth element of 4 is a one, then the jth variable is included. If the jth element is a
zero, then it is not included. Let

Hpnz[he]Rp” thj=00r1V1 < j < py, whereh:(hl,...,hpn)/] .

Let dim (k) denote the number of variables selected by A i.e., dim (k) = ) ; h; for
h € Hp,,. Thus, B (h) and x (h) is dim (%) vector of selection variables that are specified
by h € Hp,. The model selection vector & selects not only a finite number of parameters
but also the regression variables x ;.

For inference purposes, a class of models, indexed by & € H),, is to characterize the
relation between the quantile response (., and the explanatory variables. In this paper,
we use a class of Least Absolute Deviation (LAD) estimators using the regressor matrix
{X, (h)}her,, ,foreach h € H),, . We have a subvector x; (h) of x; and do the LAD
estimation:

n
mmbmw?Zm@—ﬁwm
i=1
and estimate the conditional quantile as
Gie () = (h) B (h) -
If H,, contains more than one model, then we need to select a model from H),, using
the given X, and the data vector y,. The following is a typical example.

EXAMPLE 5 (Model Selection:). Suppose that p, = p forall n and q,, = X, B with
an unknown p—vector . Write B = (ﬂl,ﬂz) and X, = (Xn1, Xu2). It is suspected
that the sub-vector 8, = 0, i.e., Xp2 is actually not related to q,. Then we may propose
the following two models:

Model I :q, = Xn1B8

Model 2 :q, = X, .
In this case, Hy, = {1, 2}. More generally, we can consider models

G (h) = X, () B (h) |
where h is a subset of {1, ..., p} and B (h)contains the components of B that are
indexed by the integers in h. In this case Hp, consists of some distinct subsets of
{L,..., p}. If Hy, contains all nonempty subsets of {1, ..., p}, then the number of
models in Hp, is 2P — 1.
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In the previous example, regression vector is specified only by a finite number of
parameters. This assumption is reasonable for obtaining an estimate of a testing pro-
cedure, but, for the true structure of the population, it is not so easily justified. Even
if g (X) is continuous on some finite interval, we cannot avoid dealing with an infinite
series expansion, polynomial expansion, orthogonal expansion and so on. Therefore it
is rather natural to specify g, (X) using infinitely many parameters.

EXAMPLE 6 (“Cut-off choice” of series estimation of nonparametric regression:).
Suppose that we wish to select the best approximation to the true median response sur-
face from a class of linear models. Note that the approximation is exact if the response
surface is actually linear and is in Hy,,. The proposed models are q, = X, (h) B (h),
h € Hp,, where X, (h) is a sub-matrix of X, and B (h) is a sub-vector of a p,-vector
B (h) whose components have to be estimated. As a more specific example, we consider
the situation where we try to approximate a one-dimensional curve by a polynomial, i.e.,

qn = X, (h) B (h) with the i-th row of X,, (h) being (1, ti, tiz, s tl-h_l)l Ji=1,..,n
In this case Hp, = {hi, k=1, ..., pp} and hy = {1, ..., h} corresponds to a polynomial
of order h used to approximate the true model. The largest possible order of the poly-
nomial may increase as n increases, since the more data we have, the more terms we

can afford to use in the polynomial approximation.

Note that H),, may not contain a correct model (Example 6). A correct model is not
necessarily the best model, since there may be several correct models in Hp, (Exam-
ple 5) and there may be an incorrect model having a smaller loss than the best correct
model (Example 6). Here, we allow the maximal dimension of model set H,,, p,, to
increase to infinitry with # in order to reduce approximation errors.

Different loss functions correspond to different optimal model. In this article the
object of interest is ¢, the conditional true t-quantile of the distribution y. In the
forecasting literature; e.g., Giacomini and Komunjer (2005), they use asymmetric loss
to provides the best linear predictor for a response variable. This interpretation is not
very satisfying, however, since prediction under asymmetric loss is typically not the
object of interest in empirical work.

In the linear model selection using OLS fitting literature, the mean squared error loss
is used. OLS estimates provide the minimum mean-squared error linear approximation
to a conditional expectation function of any shape. The approximation properties of
OLS have been emphasized by White (1980). On the other hand, QR is the best linear
approximation to the conditional quantile function using a weighted mean-squared error
loss function, much as OLS regression provides a minimum mean-squared error fit to
the conditional expectation function. The approximation properties of QR have been
shown by Angrist et al. (2006).

In the following subsection, we define the loss function for liner model selection
using QR estimation process.
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2.3.  Definition of Loss Function

As mentioned above, QR is the best linear approximation to the conditional quantile
function using a weighted mean squared error loss function (cf. Angrist et al. (2006),
Theorem 1,2). We define the quantile regression specification error as

Aci () = (qui =X, W B*0) . Ac (h) = (qu =X ) BW)) .
{ Aci (h) ] [ Aci (h) W
Ay (h) = : , A, (h) = : :
Ay (h) J Acn ()

Angrist et al. (2006) have shown the following theorem.

THEOREM 7. Suppose that
(i) the conditional density fy (y | X)exists a.s. (i) E[Y], E [q] and E [X’X] are finite.
(iii) B, uniquely solves. Then

pr = argmin [ x.87) g 8]
where
we (o8 = [ (=0 fe e ~XB2) 1X) du =0
where the weight wy (X, B*) is a function of X only, so we write wr (x, B%) as wr (X).

Proof. See Angrist et al. (2006), Theorem 1,2. O

Theorem states that the population QR coefficient vector g minimizes the expected
weighted mean squared approximation error, i.e., the square of the difference between
the true CQF and a linear approximation, with weighting function w, (x). The weights
are given by the average density of the response variable over a line from the point of
approximation, X', to the true conditional quantile, g.

We assume in this paper that the models in H,, are linear models and the LAD fitting
is used under each proposed model. After observing the vector y,, our concern is to
select a model & from H, so that the weighted squared error loss

= 3 we ) (45— % ) B, )’

1 5
; ||qrn — (h) ”%Vr (h)

be as small as possible. The notations are following way. [let|lyw, ) = (Wr (h) @, oe)l/2

is the semi-norm defined by any vector e in Hilbert space . G.n (h) = X, (h) /Air (h)
is the LAD estimator of q;, under model 4. W; (h) is the weight n x n matrix as

" wr (x1 (1) 0 0 —|
W (h) = 0 =, 0
L 0 0 we Xy (h)) J
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Ande, = (e1,e2,...,e;) and X,, (h) = (x1 (h) , X2 (h), ..., X, (h)).

2.4. Mallows’s C,, Type Criterion
To assess the proposed models, we use the weighted squared error loss. Our concern
is to select an i from H),, so that the average weighted squared error

Ly (h) = % ; we (x; (1) (qei = %] () Bxh))2

1 5 2
= - ”qrn —Yon (h)H Wy (h)
or the statistical L risk
R2() =E|L} ]

may be as small as possible.

The scenario is very similar to an estimation problem. We are not able to assess
the finite sample average weighted squared error. Mallows’s C, type criterion is an
unbiased estimate of the loss Lﬁ (h). The original version of C,, based on least squares
estimation is an estimate of mean non-weighted squared error. Let L20 g be the average
non-weighted squared error,

1< L. 2
Lrs )= — 3 (E[w 1 x:] =% () Bors )

i=1
where B 5 (h) = (X, (h) X, (h))_1 X, (h) yn. The original C), criterion satisfies
E[C, ()] =E [L%) s (h)] + constant.

The Mallows’s C), criterion may be used to select the quantile regression model A.
Define
hOLS = arg min C, (h

n gheH,,n P ( )
the empirical Mallows’s C,, selected quantile regression model.

Our purpose in this paper is to introduce the Mallows type C, criterion which is
based on LAD estimate and based on an estimate of average weighted squared error
loss function. Next section develops our new criterion.

2.5. Basic Assumptions

We now state the basic assumptions under which the results below hold. This as-
sumption holds quite generally.

We assume that the true model is the homoskedastic linear model having countably
infinite regressors X; = (x1;, X2;, . . .).

ASSUMPTION 8. The true model is the homoskedastic linear regression, write

Yi =qir t e 2.3)
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o0
qlT:ijlﬂja i=1727"'7n7 (2'4)
j=I

and we assume that the random errors e; are identically independently distributed and
independent of X;, Vi with conditional density f, (- | X) and

inf{fe: F,(¢|x)>1},=0, (2.5)
Ele | xi]l=m. (2.6)
Note that there are infinite number of regressors, so all model are misspecified.
ASSUMPTION 9. We assume
E [qizr] < o0
and gir = Zjil xjiBj, i=1,2,...,n, converges in the mean squarel.
We impose the following quantile version of the orthogonality condition.

ASSUMPTION 10. For each h € Hp, (H), is the set of models considered by the
researcher), there exist B (h) such that

E [xi (h) ¢r (yi —x; () By ()] = 0. 2.7

Given the pseudo-true parameters B (h), assuming that
E [(pf (yi — x; (h) B (h)) | xi] = 0, which is stronger assumption, is equivalent
to assuming that the conditional quantile model is correctly specified.

We assume the asymptotic representations of LAD-estimates (Bahadur form).

ASSUMPTION 11. Parameters ﬁt (h) are the form
5 1<
Br () =B () +— > TV (xi () + RE (h) 28)
i=1
where TV is the influence function and the matrix form is given by
1 _
TV (i (1) = 5T 0e (vi =X, () B* () xi (h)
where J;, 2 F [fe (A (h) | x)x(h) X (h)] and RE (h) is remainder term.
We assume that the estimator has the following accuracy.
ASSUMPTION 12. Remainder term satisfies
lim sup E [||X (h) RE (h)llz] < 0. 2.9)

n—o0 g

! This means

j=1

0 k 2
W1 E {(Zxﬁﬂj _,-;xﬁﬂj) =0.
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3. MODEL SELECTION CRITERION

3.1.  Model Selection Criterion
In the later of this paper, We will omit subscript T. The Mallows type criterion for
quantile regression “QC,” is

~ 2
Yo = Xu () B () = m|

Qcp (h) = W)

¢ _
+ ) w i () pe (i =X} () B* () X () Iy 'xi ()
i=1
where m = E[e]. We assume the moment of e:m = E[e] and B*(h) is known. We
discuss below the replacement of m with an estimate. The Mallows QC), criterion may
be used to select the quantile regression model /. Define

hy = arg ,min OC) (1)

pn

the empirical Mallows QC), selected quantile regression model.

3.2.  Asymptotic Unbiasedness

We present two justifications for the QC), criterion. Our first is the classic observation
that QC), is an asymptotic unbiased estimate of the expected weighted squared error
plus a constant. Proofs of the following lemmas are in Appendix.

LEMMA 13. We have
E[QC, (] = R% (h) + E[w (x (W) o> + O, (n_1> .

In practice, m = E[e] is unknown, so QC, needs to be computed with a sample

n
estimate. One choice is mg = %Z (y,- —x; (K) [§ (K)), where K corresponds to a
i=1
full model. If K grow with sample size n, mg is consistent for m, which is valid as
shown next.

LEMMA 14. IfK — cocand K/n — Qasn — oo, thenmg — masn — Q.
p

n
Furthermore, the unknown parameter 8* through pr (vi — x! (h) B*(h)) must be

i=1
n
estimated based on observed data. Let Z D1 (y,- —X; (h) ﬁ(h)) be the consistent esti-
. i=l
mators of pr (yi — x! (h) B*()). Then, we need to verify
i=l

Ly {oe (3 =% ) B®) = e (i — x5 00 B=00) ) x5 () 7751 ()
sup
heH nR,% (h)

—-0

3.1
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‘(n% —m) Y w(xi (h) (Ai(h))‘

i=1
sup
heH nR% (h)

-0
(3.2)

LEMMA 15. Ifm — m, n, K — ooand% — 0 then
14

(rfz —m) Zw (x; (h)) (qi —X; (h) ﬂ*(h))|
i=1

>8¢: >0

P { sup
heH nRy (h)

3.3.  Asymptotic Optimality

Our second justification is that this method of QC), is asymptotically optimal in the
sense that the fitted estimates asymptotically achieve the minimum possible squared
error in a class of LAD estimators. Note that minimizing L2 (h) is not related to the

consistency of g, (iAzn> as an estimator of ¢, i.e., L% (fzn) & 0. In fact, it may not
be worthwhile to discuss the consistency of g, (fzn), since in our circumstance, there is

no consistent estimator of ¢, (e.g., min L, (fzn) EA 0). The purpose of model selection

to to minimize the loss L,% (h). The essential asymptotic requirement for a selection

procedure is
L% (hn)

— (3.3)
infpen, L2 (h)

ie., hy is asymptotically as efficient as infy,, £ in terms of the loss L% (h).

Li (1987) established the asymptotic optimality of Mallows’ C), criterion for OLS es-
timate under reasonable conditions. But, ordinary Mallows’ C), criterion does not work
in LAD estimate for QR model. This is because the penalty term on Mallows’ C), is for
estimation noise of OLS estimation. We need to modify the penalty term on Mallows
C) criterion. However, since QR estimation criterion function )/ pr (yi —x:(h)B )
dose not have an algebraic solution, modification on penalty need asymptotic analy-
sis. The following result is an analogue of Theorem 2.1 of Li (1987), who showed the
asymptotic optimality of Mallows’ criterion for model selection.

The primary goal of this paper is to demonstrate that under reasonable conditions,
these procedures are asymptotically optimal in the sense (3.3). Thus using these pro-
cedures, statisticians may do as well as if they knew the true q, (but are restricted to
the use of the LAD estimators q,). Appendix proves the asymptotic optimality of QC),
criterion under condition that

sup E [x/ (h) Jh_lx(h)] < o0 (3.4)
heH)p,
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E[e?] <00 (3.5)

lim ) 1/(E[||An<h>n%v(h)]+E[HX<h>(B<h>—ﬂ*<h>)H;W]) -0 (3.6)
heH),

sup E [A2 (h)] <00 3.7)

heH,

To explain condition (3.6), which Li (1987) referred to this condition as “reasonable”,
if all model % is bounded, then very likely A% (k) is bounded away from 0. If every
model h, either h — oo or, if A (h) — 0, it dose so slower than 1//7.

we observe that condition (3.6) implies the condition (A.3) in Li (1987).

LEMMA 16. We have

nR; (h)
up

i<t | (180 )1y | +E [H Xa 0 (B ) }

W(h)

-1 — 0.

Proof. The risk R? (h) is
nR2 (1) = E[ 1Ay )1y | +E [Hx i (B -8 )| (h)]
—2E (W Ay ), X () (B~ B )]
To see that (3.6) implies nR,% (h) — oo, we need to verify that
| (W anmy, x (B -8 <h>)>]2
IR 1A, 0IRyg | +E [HX(h) (B - ) ]

W (h)

- 0. (3.8)

By assumption (2.9), we have

E[(W o A, Xa ) (B -8 1))]
i 11

=E <W () A (), X () =3 =0 (vi =X () B* () xi (h)ﬂ
L i=1

+E[W (h) Ap (h), Xn(h) RE)] .
By assumption (3.4),(3.7), we have

1 &1
E [<W () An (), X () =~ =0 (vi = X; (h) B* () x; (h)ﬂ
i=l1

11
o 2 5E [we 06 ) A ) x; (1) @3 (v = X () B () xi ()]
i=l

<OQ.
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2 By Cauchy-Schwarz inequality, we have

E[(W (h) An, X (h) RE)]

sup

"I (140 01| +E [Hx i (B - )| }

W (h)

12 12
E[I8nln ]| E[1X ) RE W1y
< sup

PR [ Al | +E [HX(h) (B -8 ). ]

W (h)

172
E[IX (h) RE ()1},
< sup

- (IE 1800y | +E [HX o (B =8 ), Dl/z

W (h)

and by assumption (2.9) E [llX (h) RE (h)ll%v(h)] < 00. Thus (3.8) is established. I

Now we are ready to prove the main result of this paper - the asymptotic optimality
of QCp. Formally:

PROPOSITION 17. As n — oo, under conditions (3.4)(3.5)(3.6)(3.7), OQC, is
asymptotically optimal; i.e.,
L2 (izn)

infpep, L2 (h)
The proof is in appendix. The following sub section is devoted to the remark on other
criteria.

3.4. Remark on Other Criteria

The fact that AIC and BIC rely on the likelihood which defines the class of models
means that these methods suffer from possible misspecification. Since the BIC para-
digm is developed under the assumption that the “true” model is in fact within the class
of models under consideration, this paradigm may be far off the mark if that is not the
case. In practice it is more appropriate to think of any models as mere approximations,
and the “true” model is too complex to be precisely approximated by anything in the
class of models.

However, there is an argument that is favor of BIC regardless of the true model’s
complexity, which is in line with Rissanen (1986), where a BIC-like criterion is shown
to be optimal from an information theoretic point of view. It is true that statistical
models are mostly used in areas where the existence of a true model is doubtful. But,
there is ample reason to choose a simple parsimonious model that might be untrue,
even if a true model does exist. The goal of statistical analysis in this situation is to
extract information rather than to identify the true model. In other words, the parsimony

2 Cross term vanishes.
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principle should be applied not only to candidates for the true model, but the true model
itself as well.

The conclusion, of course, depends on the choice of a loss function since it has a
tremendous bearing on the asymptotic properties of the corresponding model selection
criterion. If one uses the information theoretic argument of Rissanen (1986) or the
accumulated prediction error, BIC can be shown to be loss-efficient. In any case, we
need to be careful to define the object of interest (such as prediction error, weighted
mean-squared approximation error, stochastic complexity, etc) when we evaluate model
selection criteria.

In the model selection problem for QR, if we define the object of interest as one
step ahead forecast, AIC is an optimal procedure. If we define the object of interest as
accumulated prediction error or consistency under correctly specified condition, BIC is
a best one. If the object of interest is the best linear predictor for a response variable
under asymmetric loss, FPE (Burman and Nolan (1995)) is an effective one. These
object of interest are not very satisfying, however, since prediction is typically not the
object of interest in typical empirical studies on economics.

The fact that LAD estimation is as easy to compute as OLS regression coefficients
and that QR provides a meaningful and well-understood summary statistic for the con-
ditional quantile undoubtedly contributes to the recent popularity of QR as an empirical
tool. In view of the possibility of interpretation under misspecification, QR estimated
by LAD implicitly provides a weighted minimum distance approximation to the true
conditional quantile function. Therefore, we should choose the weighted squared error
as a loss function for QR model selection estimated by LAD.

It is useful to compare the QR fit estimated by LAD to an explicit minimum distance
(MD) fit similar to that discussed by Chamberlain (1994). The MD estimator for QR is
the vector S (t) that solves

B 1 N2

B(r) = argmin-— ,2_; (qf (xj) — xjﬁ)
where ¢, (x J-) is the sample quantile given x = x;. If QR is estimated by MD, the loss
function should be the average (non-weighted) squared error and selection criterion is
directly derived from MD residuals. In contrast to LAD, however, this MD estimator
relies on the ability to estimate g, (x j) in a nonparametric first step, which, as noted by
Chamberlain (1994), may be feasible only when x is low dimensional, the sample size
is large, and sufficient smoothness of ¢ is assumed and the distribution of the vector of
covariates x have finite support with P (x = xj) =agjforj=1,...,J.

Recently, the least absolute shrinkage and selection operator (LASSO) proposed by
Tibshirani (1996) is widely used in a high (ultra-high) dimensional circumstance(see
also Fan and Li (2001), Tibshirani (2011)). The quantile regression case is studied
in Belloni and Chernozhukov (2011). The LASSO estimator performs the “oracle”
property in terms of selecting the correct model, when the regularization parameter is
appropriately chosen. That is, when the true parameters have some zero components,
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they are estimated as 0 with probability tending to 1, and the nonzero components are
estimated as nonzero one. This LASSO scheme and “oracle” property are very useful
for a regression in high-dimensional sparse models. In such models, the number of re-
gressors is possibly larger than the sample size, but the number of significant regressors
(nonzero components) is smaller than the sample size. However, the estimated signifi-
cant nonzero regressors are all biased because of the existence of regularization term of
LASSO. Therefore, the approximation property of LASSO estimation with respect to
(weighted) L? loss may be poor. The reason is clear; the objective functions of LASSO
type quantile regression are under constraint of L'-regularization, and then, the loss
function, weighted L? loss, is inappropriate. The appropriate loss function for LASSO
estimate may be the weighted L loss with L!-penalty. However, statistical meaning of
this loss is unclear for the purpose of selecting the best approximation by anything in
the class of models.

4. FINITE SAMPLE INVESTIGATION

We now investigate the finite properties of the our model selection criterion in a
simple simulation experiment. We present two examples.
The first example is the linear regression (Example 1) with P, = 16 ; that is

yi = Bixit +---+ Biexite +ei i =1,...50,100, 400, 1600,

where ¢; are independent and identically distributed as N (0, 1), x;; is the ith value
of the explanatory variable x;, x;1 = 1. For simplicity, we assume that x;; (j =
1,...,20,i = 1,..., n) are orthonormal variables.

figure 4.1 shows the distribution of the number of explanatory variables that are se-
lected using the QC), for the case of an median regression model. The graph on the
upper left, upper right, lower left, and lower right plots represent the cases in which
the sample size is 50, 100, 400, and 1600, respectively. The results suggest that when
the true order is a finite number, the distribution of dimensions converges to a certain
distribution when the size of n becomes large.

The second example considered is the series approximation to a possibly nonlinear
curve (Example 2); that is, we select a model from the following class of models. The
setting is the infinite order regression y; = Zi’;] Bjxji +ei. We set x1; = 1 to be the
intercept; the remaining x;; are independent and identically distributed N (0, 1). The
error e¢; is N (0, 1) and independent of x;. The parameters are determined by the rule
B; = NI V)

The sample size is varied between n = 50, 100, 400, 1600, and 2400. The number of
models Hp, is determined by the rule Hp,, = 3.3/n (so H,, =11,13,22, 35, 40 for the
five sample sizes). To evaluate the estimator, we compute the risk (expected weighted
squared error). We do this by computing averages across 10,000 simulation draws.

The risk calculations are displayed in figure 4.2. In this panel, risk (expected
weighted squared error) is displayed on the Y axis and the sample sizes is displayed on
the X axis.In this panel, the average loss of model selected by QC), achieves the lowest
risk as sample size increase. When the sample size is small, QC, selection is dismal
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n=50 n=100
200 800
600 - 00
400 g 400
200 200
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u] L L i} . N L
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Figure 4.1. Distributions of dimension selected by QC . The upper left, upper right, lower left, and lower
right plots represent the cases in which the sample size is 50, 100, 400, and 1600, respectively.

performance because of estimation noise of coefficient parameter and approximation
noise of criterion. An improvement of small sample performance of this criterion is the
future study with extra work.

APPENDIX

A. PROOFS

A.l.  Proof of Lemmas
A.1.1.  Proof of Lemma 13
Proof. First, observe the identity

S w s () (31 =) 0 By —m)’

i=1

1 n
+ ﬁ;“’ (i () pr (i — X} () B*(W)) X, () T "x; (h)

_ J; . . L 2 }_ . . L R %
=Lo(t)+ — 3w (xi () (e —m) + 2= “w (xi (h)) (ei = m) (qi = x; (h) B (1))

i=1 i=1

1 g .
= [ =2 (i () (i =] () B ()* —m) x; () (B ) — B* ()

n :
i=1
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\. ==& Min Loss

\ -.=QC,

Average Loss

0
50 100 400 1000 1600 2400
Sample Size

Figure 4.2. The solid and dotted lines correspond to minimum loss and QC), selection respectively.

! - ; , ! * / —1,.
+;i§w x; () o (yi — x| () B*(W)) X, () J;”"x; ()

+23 w (% () (g1 =X, () B () x; () (B () — B* (h))} :
i=1
And take the expectation

B [Ly )] +E [ (x; (1) 0]

1 " .
=;E [—2Zw i (h) (yi — X (h) B (h)* —m) X} (h) (B (h) — B* (h))

1=l

1 n
= w % () pe (i =} () B* () X; (h) T xi (h)
i=1

n
+23 " w (xi () (a; = %] () B (0)*)x; () (B () — B (h))} :
i=1
And using the Bahadur representation (2.8), the fourth term bracket on the righthand
side is as follows:

First term in the bracket

1 - N
~E [—2Zw (¢ (1)) (v = ] () B (0" = m) x; (k) (B (k) = B* ()

i=1

1 n
= w (i () pr (vi =%} (1) B* () X; () Ty % (h)}

i=1
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is as follows: using Bahadur representation, we have

1 " .
;E [—ZZw i (h) (yi — X (h) B (h)* —m) X} (h) (B (h) — B* (h))

i=1

1 n
3w (5 () pe (i = x; () B* (W) x; () Jj ' (h)}

i=1

1 n
=-E [—2210 xi (h)) (yi =X () B (h)* —m)

i=l1

j=l1

x (%x 77" =3 o (35 = X 00 B ) x; 0 | + RE (h))

1 n
LS ) e (= () B 0) 5 ) I, (h)}
i=1

and calculate

1 . / * / 1 —
~E [—2Zw (i (1) (vi = x; () B (0)*) X () = !

i=1

1 n
X («) (v = X} (1) B* () % () + Y ¢ () =X (1) B* (W) x; (h) + RE (h))]
J#

1 n
+E L—ZZw (x; () pr (yi — x} () B* () X, () J; 'x; (h)}
i=1
because the x; and X j; are independent, we have
Lo
—E n—ZZw x; () (i —x} (h) B* (W)X} (h) J; "o (vi — X} (h) B* () x; (h)]
L i=(

1 n
+E n_ZZ;w (xi (1)) pr (yi —x; () B*()) X () I ' xi (h)}

“E Y w i () (v — %} (1) B (0)*)x] (h)}
Li=1

x E l:JhI% (Zw (yj —x (h) B* (h)) X; (h)):|
J#

1 n
+E [—;22 (vi = x; (h) B (1)*) x; (h) RE Uﬂ} :
i=1

By assumption, E [J}l_]% (Z?# 7 (yj — x/j (h) B* (h)) X (h))] = 0. Then, the first
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term is

K [%zg (v — X} (h) B (W)*) X} (h) RE (m} : (A

Second term in the bracket, l]E|:22w(x, (h)) gi—x;(h)B(h)* )x (h)(ﬂ(h) B* (h)):|

is obtained similar way. Calculate the same way and we have

'E [2Zw (x; () (gi = x; (h) B (0)*) x] () (B (k) — B* (h))}

i=1
1 {1
=-E [;Zw x; (1) (g —x} (h) B (W)*)x} (h) I @ (i — X, (h) B* () x; ()
i=1
+2Zw i (h)) (gi — X} () B (h)*) X (h) RE (h)} (A2)

i=1
So the second term in the bracket is ;

+E [%sz i () (g — X, () B (W)*)* X} () ;7' <h>}

+iE [2Zw i () (¢ — X} (h) B (W)*) x{ (h) RE (h)}
1=l
Finally the remainder (A.1) plus (A.2) is

1 n
—E [;wz xi () (gi — %} () B (W)*)* X, (h) J; ' (h)]

g |:22w (xi (h)) (ei —m)x, (k) RE (h)i| . (A.3)
i i=1
And since

%E [2;w (x; (h)) (e —m) X, (h) RE (h)}
1
§—E [2

< —2E[nREh2] E[n X ) e = m) 2
Cauchy- -Schwarz ! | ( )” ” ( )( " )H W2(h)

<%W (h) X" (h) (e, —m), /nRE, (h)m

1
2

, by assumption (3.5) and (2.9), we have

=

E[nIRE, ]2] — 0



TAKANASHI: Cp-TYPE CRITERION FOR QUANTILE REGRESSION 19

1

1 2 2
E [; |X" (h) (e —m)| wz(m} < 00.
Thus the remainder (A.3) has O, (n™!) rate. O
A.1.2.  Proof of Lemma 14

Proof. Since éx =y—x| (K) B (K) = qi—x; (K) B* (K)=x| (K) (B (K)—B* (K))
~+e;, we see that

. T A IS o (3 * Ly
. ;; (41 — X (K) B* (K) — ;Exi (K) (B (K) - B (K)) + ;;ei

(A9
We examine the terms on the right side of A.4.
P {lq ) —x; (K) B* (K)| > &}
1 0o K
< SE\Y xjiBj =) xjif] (A.5)
Markov 7=l =1

First, by an application of Section 2.3. of Angrist et al. (2006), (A.5)

00 K
Y xjiBi— Y _xjiB}
J=1 J=1
00 K

= xjiBj— Y _xjib;
=1 j=1

fole) K
~E[@®x(K)x (K)] " E| & ®)x(K) (Z x5 — Zx,-,-ﬁ,-)
j=1

j=1

j=K

=" wjib; — E[D 0 x (K)x (O] E | 8 ) (K) (Z Xﬂﬁf)
j=K

where w (x) is weight function of x only. Since K — oo as n — oo and the integrability
of ¢ implies E |Z;’;K le-ﬁj’ — 0as K — 00 (A.5) vanish.

Second,
P (‘%Zx; (K) (B (K) = B*(K))| > 8)
i=1

E [(ﬁ (K) = B (K)) X' () X () (B (K) - ° <K))]

52n?

<

—0.
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n

Third, by law of large number, %Zei — m, and we conclude that m g — m.
p

p
i=1

A.1.3.  Proof of Lemma 15
Proof. Note that

= —1 PR / Q —
m—m—;Xijy, x, (K) B (K)

=%Z(qi—x;(K>B(K))+%Zei—m

= %Z (a: =X (K) B* (K)) +x (K) (B* (K) = B(K)) + Zel —m.

If we can show the following

% > (4 =X K B* (K)) Yow ki () (i = x;B* )| £ 0

j=1 =

1 n R n
=" (K) (B (K) = B (O) Y w (xi (h)) (45 = x{B* ()| 5 0
j=1 =l

1 & .
(; Zej — m) Zw i (h)) (qi — x;B*(h)) -0
j=1 i=l

(A.6)

(A7)

(A.8)

the prove is established. (A.7)(A.8) is similar to the optimality proof of (A.9), so we

only show (A.8).
n

Let 13" (q, — ¥, (K) B* (K)) — m’. We have
J#i
! (4 =X, () B* (K)) D w (xi () (i — ;B ()
j=1

n .
i=1

/! 1 / * . ! @*
= (m (g — X[ (K) B (K))) 3w xi (h) (i — x;B* (k)
i=1
By Chebysev’s inequality, we have

n

‘Z (m' —Em') w (x; (h)) (gi — X (h) B*(h))

i=1
P sup

5 >4
heH an (h)
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L T

Chebysev /= (nR2 (h))*

n

Z (m’ — Em/) w (x; (h)) (qi —x; (h) ﬂ*(h))

i=1

By Whittle’s inequality, for some constant C we have
n
E [ (m" —Em') Y "w (x (h) (g — X (h) B*(h))

i=l1

2

oy nR% (h)
E [Z (w (x () (g — X (h) ﬁ*(h)))z}
< C-E / i=1
Whittle e |}§1 (nR2 (h))2
<C-E|m|
—0

and for some constant C’, we have

a6l

> w (xi (h) (qi —x} (h) B*(R))
Em’ - i=1

|

nR2 (h)

<C'-Em'’

—0

A.2.  Proof of Asymptotic Optimality of QC)
A.2.1. Proof Strategy
First, observe the identity

2

C v 0 0 B =

W (h)
1 ¢ 5
=5 we (5 () pr (35 =X} (1) B ) %} () ;" ()
i=1
1 1
=L (h) + - llew = mly sy + 2 ((en —m) W () A ()

. % [=2(w ) (v = X0 ) B* ), X0 () (B ) — B* ()
+2m (W () X () (B () — 8" ()
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1 n
= w (i () pre (vi =X () B* () - i () Ty 'xi ()

i=1
+2(W () An (), Xo () (B ) = B* () )]

,]1— Y el.2 is independent of /. And using the Bahadur representation (2.8), the fourth
term bracket on the righthand side is as follows:

First term in the bracket ;2 <W (h) (¥n = Xn () B* (), X (1) (ﬁ (h) — B* (h))>,
is as follows

2(W ) (v = X 0 B* ), X () (B () = B ()

1 1 n
=2 <W(h>(yn—xn (DB () , X (h) (5 5 =Y e (X m ) x; (h)+RE(h))>
j=1

=Y we (x; () (yi = X} (1) B (W)*) x; (h) T,

i=1

1
-;( (=X, G B* )% )+ Y g (v - (h)ﬁ*(h))x,(h)+RE(h))
J#i

1
=[; we (% (1) pe (i =X (1) B (0)*) X () J;7"x; ()
1
. Z o (s () (31 = X; (1) B () X () I () = X () B* ()} x; ()

Z ¢ (xi () (v —x;(hm(h)*)x;(h)RE(h)]

Fourth term in the bracket ,2{W (h) A, (h), X, (h) A( ) — B* (h))) ,is as follows;
in the brack < A (ﬂh g* )> foll

2w () Ay ), X, () (B (1) — " ()

=2<W(h>An(h>,Xn<h>( Z ot (vi- x;<h>ﬂ*<h>)x,-(h)+RE<h>)>

" 1
=Y we (% () Ar ()X, (1) — (4,0 (0 = X{ (1) B* (1)) x; () + RE (b))

i=1

(wa (x; (1) A; (h) ] (h) - —ZJ,, Yo (v —x; () B () x; (h))

i=1 VES)
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1 n
= [;wa i (1) Ai ()X} () Iy (vi = X} () B* () xi (h)
i=1

1 n
D we () A X} () I (v =X () BT () x; ()

I<i<j<n

T /
+2;§wr (x; (h)) Ai (h) x; (h) RE (h)}

So the bracket term on the righthand side is

1 n
[;wa (xi () Ai (h) @ (yi — X} () B* (W) X (h) J,, ' (h)
i=1

n

1
- D we (xi () (e —m)x; (h) - T g (y,- — X (h) B~ (h)) x; (h)

I<i<j<n

—2) " (ei —m)x; (h) RE (h)]

i=1
Finally the h also achieves

min [L, (h)

E€Hp,

1 n
=23 w (% () (ei = m) A (h)

i=1

1 n
3w i (1) Ai () @ (3 =] () B* () x; () Jj'xi ()

i=1
n

1
—— 2w () @ —mx (- Iy (v =X () B () x; ()
1<i<j<n

1 <& ,
—2;i§w (xj (h)) (e; —m)x; (h) RE (h)}

If we can show that the second term are negligible compared with L, (%) uniformly for
any h € H,, then the asymptotic optimality property (3.3) is established for A. If we
can show that

|(€n —m, W (h) A, (h))]
sup

heH nRr21 (h)
(A.9)
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> wxi () A; (h) @ (yi — X} () B* (W) X} () J,,”'x; (h) ‘

i=1

e 0] -0
(A.10)
[(en =, W () X (h) RE ()
sup -0
heH nR3 (h)
(A.11)
> wexi ) e —myx; - Iy e (v = x] () B () x; (h)
1<i<j<n
en ZRE () -0
(A.12)
Ly (h)
55%‘1%30:) } 1‘ -0
(A.13)

the asymptotic optimality property is established.

A.2.2.  Proof of (A.9)
We shall prove (A.9) first. Pick any § > 0, by Chebyshev’s inequality we have
1 =2 2
< (e, —m, W(h)A (h n~“E|(e, —m, WHh)A
p Supn|<n i (h) ()>|>552 [(en (2) (h)?]
hEHI’n Rn (h’) hern 52 (R% (h))

which, by martingale inequality of Dharmadhikari, Fabian and Jogdeo (68 annals), is
no greater than

" )
cs? Y n—zn%—lE[Z{w(xi ) (g =, (h)ﬂ(h)*)}z} (&)

heHp, i=l

for some constant C > 0. The last expression does not exceed
C's7' Yhen,, (nR; (h)) ™" for some constant C’ , which tends to 0 by (3.6)**.

A.2.3. Proofof (A.10)
Equation (A.10) can be established similar manner, denote

() =w (i (1) (gi = X (N B* () — m) (%] () J;"sen (v = %] () B (1) x; ()
noting that , by assumption (3.4)(3.7),
E [|h (x)|2] < oo.
Given any § > 0, by Chebyshev’s inequality we have
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2
n n
-2 L .
3o | el | e |
— =
P { sup + >4 < .
heH R (h) Chebyshev , = 82 (R% (h))

It is well known inequality that

2
n n
- 1
n’E { w2 h i) } n~2n)y LE[{h (x))]
i=l i=1
<
> ; <> ;
heH 82 (erz (h)) heH 82 (Rt% (h))
For some constant C > 0, the last expression does not exceed
C82 Y hen,, (R (1)) ~%, which tends to 0.

A.2.4. Proof of (A.11)
Equation (A.11) can be established by the following way. First, by Markov’s inequal-
ity, we have

==

P{ up |wn—m”‘vuoxanREm»|>3}

heHp, R% (h)
n—E H<\/LEW (h) X' (h) (¢, —m), «/nRE, (h)>H
Maﬁ(oV heHp, ’ (R% (h)) |

Now since Cauchy-Schwarz inequality,

E[|(n=1>W (h) X' (h) (e, —m), n'/>RE, (h))[]
5 (nR3 ()

2

hEHPn

3 Since
1 1
w (x; (h) = 5/0 Je (u-Aj (h) | x)du

supmax w (x; (h)) < oo
X h

4 Note that

E [Z {w i @) (4 =7 w8 (h)*)}z} -E [ZE [or (3 —x8*) | Xﬂ
i=1 i=1
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2

1
E[n IRE, IP] E [+ |W () X' (h) e = m)*]
8 (nR3: (1)

=
Cauchy-Schwarz

hEHPn

and ,by assumption (3.5) and (2.9), we have

E[nI(RE, )I*]* — 0
E [% (en —m) X' (W) W? (h) X (h) (e, — m)]7 < o0.
Thus (A.11) is proved.

A.2.5. Proofof(A.12)
Equation (A.12) can be established as an application of U-statistics, denote

h (X,‘,Xj) = [w (Xj (/’l)) (ej —m) X/j (h)} (J;l(p (y,- —X;ﬂ*) X; (/’l))

1
W (xiuxj) = 5 [0 (xio %)) + R (xjxi) ]
The corresponding U-statistic for (A.12) is obtained by
2

U, Zm Z h*(Xi,Xj).

n
1<i<j<n
Exact formula for the second moment of U, may be stated as follows(Serfling 80).
Writing

1 60) =[S Do) 63 3
—3E[{(es =mx;} (570 (= xi8")x) 1]
N %E [{(ei —— (thl(p (yj - X *)xj) |Xi]
=% o (yi —x;B*)x;E [(ej —m)X; |Xi]
. % (e _m)x;}E[Jh_1§0<yf _x’jﬂ*>xj | Xi]
=0

we have
2 « *
Var[Up] = ——— =D {Z(n -2)E [hl (Xi,Xj)2:| +E [h (xi,xj)z]} .
We have, by assumption (3.4)(3.5)(3.7),

E [hT (xi,xj)z] =0
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E [h* (xi, xj)2] <E [e?] E [{x/]]E [f (A1 X) xx/]_1 xi}z]

< Q.

Then we can prove the equation (A.12). By Chebyshev’s inequality we have

r2E Y h(xix;)

p I<i<j<n s

sup -2

heM R3 (h)

2
2
-2 2
n2n—1)>~E T > h(xi.x))
I<i<j<n
=

Chebyshev ) = 52 (R,% (h))

which, by variance of U-statistic, is equivalent to

Z MVar[U]
pen DRI

=2 ;Zézh?z - (nz_ 5 {200 = 2B 1} (xi. %)) +E [ (xi.x,)7]}
heH
= Z 2n623R(; (;)1) [ (e x)°]

The first term does not exceed Y5 41” (8>n R, (h))_l, which tends to 0 by (3.6).
A.2.6. Proof of (A.13)
(A.13) is as follow as

Su ‘Lﬁ(h)_l o | L2 = (h)’
pert | RE0) | henl RE()
L2 (h) — R2 (h)
= sup
PEHIE 1Ay Wy | +E | | X () (B (h) — B* ()
W (h)

E 140 01| +E [HX ) (B - g m)| W(m}
R (h)

It is clear that (A.13) will follow from the following three statements:
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X 1An W13y = E [ 140 )13 0 (Al4)
sup — ~ '
heH M | [”An (h)ll%m)] +E [Hx (h) (B (h) — B* (h)) \iv(h)}

(wn aniy. x @ (Bn -8 m))
wl| E [<W (h) An (h), X (h) (3 (h) — B* (h))2>] 50 (AI5)
heH M | g [llAn (h)||%v<h)] +E [Hx (h) (B (h) — B* (h)) \W(h)]
[ o or-r o)l -=[ko@o-rw);, ]
sup —
e £ [IIAn (h)”%l/(h)] +E [HX *) <’§ " -8 (h)) Hiwm]

(A.16)

A.2.7. Proofof (A.15)
(A.15) is established similar manner as (A.10), since

(wana . xan (B - m))—E[(wm am. xm(Bm -8 m))]
= ) s 0 x; (B — B7 ) = [wi () & () x; ) (B =B () ]

1 n
= Y wi A X () I (v = X () B () x; () (A17)

1<i<j<n

+ ) {Ai (W)x; () RE (h) — E[A; ()X} (h) RE ()]}

The first term on the right hand side of (A.17) is established similar manner as (A.12).
Denote

B (xioxj) = {wi () Ay xt ) (570 (7= %, ) B* ) x; ()
1
h* (Xi,xj) — 5 [h (Xl‘,Xj) +I’l (Xj, Xi)]

Exact formula for the second moment of U, may be stated as follows(Serfling 80).
Writing

B svxy) =B [ [ )+ 1))

1 / — / ES
=i () A () x; W E [ 59 (3 =, ) B* ) x; () | xi]
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1
+ 5E [ () & )X () x| T (3 = X () B* () xi ()

—0
E I:hT (X,’, Xj)2:| =0
we have
Var [U] = - (nz_ 7 {2(n ~2)E [hT (x,-,xj)z] +E :h* (x,-,xj)2]} .

By Chebyshev’s inequality,

2
2n2(n —1)>2
1l Z h(xi, X)) —A—T E Z h(xi,X;)
15 aof I<i<j<n
<i<j<n
P|sup 5 >4 SZ 2
heM R (h) heH 82 (R2 (h))
which, by variance of U-statistic, is equivalent to
n2(n—1)>
Y ———SVar[U]
hert 8% (RE ()
-2 2
n“(n—1) 2 2 2
= 2(n —2)E | (xi,x;)" | +E [ 1* (xi, %)
2 _ J j
by 52 (R,% (h)) nn-—1) [ [ ] [ ]}
2n3(n—1) 2
=Y B ex)’]
heH n
The first term does not exceed Y, .5, 4 (821 R, (h))_l, which tends to 0 by (3.6).
The second term on the right hand side of (A.17) is
p 1 |(W (h) Ay (h), X (h) RE (h))|
sup — >4

"HE (18 1)y +E
E[[(W (h) An (h), X (h) RE ()]
~ 2
X (k) (B ) - 8* )| D

W(h)

[x iy (B — 8+ )| ]

W(h)

<

MarkothH" S <]E [|| A, (h)”%i/(h)] +E

1

E[IW (h) Ay I2] " E[I1X (h) RE ()12]'"?
% 2
X (k) (B ) - 8" 1)| ])

W (h)

<
Cauchy-SchwarzheHn s <E [“ A, (h)”%}v(h)] +E

1
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1/2
szcé E[IIX (h) RE (ff>ll2] :
heH, E [l’An (h)ll%y(h)] +E [HX (h) (/3 (h) — B (h)) HW(h):I
—0

A.2.8. Proofof (A.14)(A.16)
(A.14)(A.16) are by application of Whittle(60)

140 Iy — B [182 I3
P | sup 1 W (i) [ W(h)]
heH 1
2
E [{nAn Wy —E 180 01y ]} }

E [0 01y | +E [HX () (B ) - B* () H2 ]

> 8]
W(h)
y L
net, ™ <E [llAn (h)||%v(h)] +E [HX (] (’3 Chtd (h)) HTV(MDZ ”

. nl—z E[1A, (h)II%i,z(h)] _—
e (E[”An (h)II%wh)] +E [‘X(h) (ﬂ (e} _ﬂ*(h)>H W(h)]) g
1 1

S <E [llAn (h)”%V(h)] \E [HX (h) (fi (h) — B* (h))H2 ]) 52

W(h)

Cheb_yshev

and

[Pxw G- )| = [|rarpw-snl,]|
P{sup — " =

A sz o po-s @)l

W (h)
2

. . 2
1 E[{HX w (B -8 m)] Wm)—E[HX(h)(ﬁ(h)—ﬂ* (h))\liw)“ }

<
Chebyshev, = n? (IE: [||An (h)II%V<h)] +E [HX (h) (I} (h) — B* (h)) Hz DZ 52

W (h)

2
W2(h)

(]E [||An (h)ll%v(h)] +E [Hx (h) (B (h) — B* (h)) Hz DZ 52

W (h)

E [Hx ) (Bt — ")

1

= Z 2
' n

Whittle heH,
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<C’ Z 1 2
hett, (E (18 0y | +E [HX ) (B - B* )| D 52

W(h)
—0

REFERENCES

Akaike, H. (1973): “Information Theory and an Extension of the Maximum Likelihood Principle,” Second
International Symposium on Information Theory, 267-281.

Andrews, D. W. (1999): “Consistent Moment Selection Procedures for Generalized Method of Moment Esti-
maton,” Econometrica, 67, 543-564.

Angrist, J., V. Chernozhukov, and I. Fernandez-Val (2006): “Quantile Regression under Misspecification,
with an Application to the US Wage Structure,” Econometrica, 74, 539-563.

Belloni, A. and V. Chernozhukov (2011): “1-penalized quantile regression in high-dimensional sparse mod-
els,” The Annals of Statistics, 39, 82-130.

Burman, P. and D. Nolan (1995): “A general Akaike-type criterion for model selection in robust regression,”
Biometrika, 82, 877-886.

Chamberlain, G. (1994): “Quantile Regression, Censoring, and the structure of Wages,” Advances in Econo-
metrics, Sixth World Congress, 1, 171-209.

Fan, J. and R. Li (2001): “Variable selection via nonconcave penalized likelihood and its oracle properties,”
Journal of the American statistical Association, 96, 1348-1360.

Fox, M. and H. Rubin (1964): “Admissibility of Quantile Estimation of a Single Location Parameter,” The
Annals of Mathematical Statistics, 35, 1019-1030.

Giacomini, R. and I. Komunjer (2005): “Evaluation and Combination of Conditional Quantile Forcasts,”
Journal of Business and Economic Statistics, 23, 416-431.

Hansen, L. P. (1982): “Large Sample Properties of Generalized Method of Moment Estimators,” Economet-
rica, 50, 1029-1054.

Li, K.-C. (1987): “Asymptotic Optimality for C}, Cr,, Cross-Validation and Generalized Cross-Validation:
Discrete Index Set,” The Annals of Statistics, 15, 958-975.

Mallows, C. (1973): “Some Comments on Cp,” Technometrics, 15, 661-675.

Rissanen, J. (1986): “Stochastic Complexity and modeling,” The Annals of Statistics, 14, 1080-1100.

Schwarz, G. (1978): “Estimating the Dimension of a Model,” The Annals of Statistics, 6, 461-464.

Tibshirani, R. (1996): “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical
Society. Series B (Methodological), 267-288.

(2011): “Regression shrinkage and selection via the lasso: a retrospective,” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 73, 273-282.

White, H. (1980): “Using Least Squares to Approximate Unknown Regression Functions,” International
Economic Review, 21, 149-170.




