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Abstract: We propose a new Mallows’C P type criterion for quantile regression (QR) 

which, unlike AIC or BIC, does not require parametric assumptions on the population 

and by construction is robust against misspecification. We show that our new Mallows 

type criterion for QR (QCp) is not only an asymptotically unbiased estimate of the 

average weighted squared error on the model average fit, but also asymptotically optimal 

in the sense of achieving the lowest possible weighted squared error in a class of discrete 

model sets. We also demonstrate that these asymptotic properties of the QC P estimator 

hold in finite samples with a simulation experiment. 

Key words: Quantile regression, model selection, misspecification, mallows type criterion, asymptotic op-

timality. 

JEL Classification Number: C52. 

1. INTRODUCTION 

We develop a new model selection criterion for quantile regression (QR) based on 

least absolute deviation (LAD). As ordinary least squares (OLS) estimates of the re-

gression coefficients offer convenient summary statistics for the conditional expectation 

function of the model, the QR estimates can be used to infer about the conditional 

quantile function. Compared with OLS, the possibility of model misspecification and 

the importance of model selection has been less emphasized in the literature of QR, 

However, correct specification of the conditional quantile function is hard to find in 

real-world applications. It is safe to say that misspecification is the norm, not an ex-

ception. Therefore we need to devise a model selection criterion for QR. That is the 

purpose of our study. 

Our new model selection criterion is based on Mallows’C P proposed by Mallows 

(1973). We choose Mallows’C P because, unlike Akaike information criterion (AIC; 

Akaike (1973)) or Bayesian information criterion (BIC; Schwarz (1978)), it does not 

utilize the likelihood function and we think it would be a good starting point to derive 
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a more robust model selection criterion for QR. Although the original Mallows’Cp 

is for model selection in OLS, we succeed in deriving a Mallows-type criterion for 

QR which is an asymptotically unbiased estimator of the weighted squared deviation 

from the true model. We also show that selecting a model with our new criterion is 

asymptotically optimal in the sense that the selected model asymptotically achieves the 

minimum weighted squared error as defined in Li (1987). 

The paper is organized as follows. Section 2 presents the model selection problem 

we examine and introduces assumptions required to derive our main results. Section 

3 introduces the new Mallows type C P criterion for quantile regression and shows its 

asymptotic unbiasedness and optimality. Section 4 presents simulation evidence in sup-

port of our new criterion. 

2. DESCRIPTION OF THE恥10DELSELECTION PROBLE恥久 DEFINITIONAND 

ASSUMPTION 

2.1. Basic Framework of Quantile Regression 

Let Yn = (Yl, ... , Yn)' be a vector of n independent responses and Xn 

( x~ , . , x~ )' be an n× Pn matrix whose i th row x; is the value of a Pn -vector of 

explanatory variables associated with Yi . We can consider Pn , the number of regres-

sors, grows as the sample size increases. As a general rule, a letter with subscript is 

used to denote observations of the corresponding random variable (e.g.yi and y). And 

bold letter is used to denote a vector and capital letter denote an matrix. 

ASSUMPTION 1. The sequence {Yi, Xi} is independent and identically distributed 

(i.i.d.). 

The iid assumption is made for clarity and simplicity. As is now standard in the 

quantile regression literature, we define the asymmetric objective function ρτ ：IR→ 
JR+ for givenτε （0, 1) as 

ρτ （z）全 zψ （z)

where 

ψτ （z）会 τ1(z三0)

also known as the “tick”of “check”function in the literature. 

We are interested in the conditional quantile function(CQF) of y given x. The condi-

tional quantile is defined as 

qτ （x）全 inf{ q : F y ( q I x）三 τ｝, (2.1) 

where Fy (q I x) is the distribution function for y conditional on x. 

ASSUMPTION 2. F is assumed to haνe conditional density ん（yIx). 

The CQF solves the minimization problem 

qτ （x) = arg mJn IE ［ρτ （y -q (x))] , 
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and the minimum is over the set of measurable function of x (Fox and Rubin (1964)). 

The CQF satisfies 

IE ［ψτ （y -q (x))] = 0 

The linear quantile regression(QR) vector solves the population minimization prob-

lem 

p；全argm民IE［ρτ （Y -x' P)] 
がεJl{U

We assume integrability and uniqueness of the solution. 

ASSUMPTION 3. There exists p; such that 
p; 二全 arg 血~nJ IE ［ρτ (Y -x' P)] , 。εll{u

equivalently 

IE [ X<pτ（y -x' p;)] = 0. (2.2) 

We want to estimate the conditional τ－quantile vector qτ ＝ (q1τ，... 'qnτ）. We use 

the least absolute deviation (LAD) to estimate the conditional quantile. The QR process 

pτis formally defined as 

ムニargmJnLρτ （Yi -x;p) 

and estimate the conditional quantile as 

Cfrr ＝記｝r‘

REMARK 4. Assumption 3 is more general setup than the traditional quantile re-

gression models. Our setup is the cαse where all models are potentially misspecポedbut

each model has the pseudo-true parameter 13; satisfying (2.2). Our purpose described 

below is to select the most close model to the “true”conditional qunatile. Therefore, 

the consistency ( in the traditional meαning) is out of scope in this article. 

2.2. The Model Selection Problem 

In the standard LAD framework (which is not adopted here), one assumes that the 

conditional quantile regression model is correctly specified. That is, for some p;, one 
has IE ［ψτ （y -x＇陀）] = 0. Furthermore, to achieve identification, one assumes that 

p; is the unique solution to these equations. The pararr削 erp; is then called the “true” 

value ofβIn this case, the standard LAD estimator Fτof p; is defined to minimize 

乞ρτ （Yi-x;p) , overpε ffi.P. 

The LAD estimator P n is consistent for p; under minimal (and well-known) additional 
assumptions. 

Often in empirical applications, however, researchers find that the J test of overi-

dentifying restrictions (see Hansen (1982)) rejects the null hypothesis that all moment 
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conditions are correct. Thus, it seems useful to consider statistical inference in the case 

where not all of the moment conditions are necessarily correct. That is what we do 

here. We presume that the researcher does not know a priori which regression variables 

are correct. (Otherwise he would discard the incorrect variables and be faced with the 

standard situation considered in the literature.) 

Following Andrews (1999), we define the vector of selection variables. We let hε 

JRPn denote a model selection vector. By definition, h is a vector of zeros and ones. If 

the }th element of h is a one, then the }th variable is included. If the }th element is a 

zero, then it is not included. Let 

HPn二｛hεIR

Let dim (h) denote the number of variables selected by h i.e., dim (h) = 2二jh1 for 
hε H Pn. Thus, /3 (h) and x (h) is dim (h) vector of selection variables that are specified 

by hε HPn・Themodel selection vector h selects not only a finite number of parameters 

but also the regression variables x 1. 

For inference pu叩oses,a class of models, indexed by hε H Pn, is to characterize the 

relation between the quantile response qτ，and the explanatory variables. In this paper, 

we use a class of Least Absolute Deviation (LAD) estimators using the regressor matrix 

{Xn (h) hEHpn ,for each hε HPn・Wehave a subvector Xi (h) of Xi and do the LAD 

estimation: 
n 

bτ （h）二叫n？；ρτ （Yi一可 （h)

and estimate the conditional quantile as 。tτ （h)= x; (h）。τ（h). 

If H Pn contains more than one model, then we need to select a model from H Pn using 

the given Xn and the data vector Yn・ The following is a typical example. 

EXAMPLE 5 (Model Selection:). Suppose that Pn = p戸rall n and qn = Xn/3 with 

an unknown pー附tor{3. Write 戸ニ（/31,/32) and Xn二（Xn1,Xn2). It is suspected 

that the sub-vector {32 = 0, i.e., Xn2 is actually not related to qn. Then we may propose 

the following two models: 

Model 1 :qn = Xni/31 
Model 2 :qn = Xn/3. 

In this cαse, HPn = {1, 2}. More generally, we can consider models 

qn (h) = Xn (h) /3 (h) , 

where h is a subset of {1, ... , p｝αnd /3 (h )contains the components of fJ that are 

indexed by the integers in h. In this case H Pn consists of some distinct subsets of 

{ 1, ... , p}. If H Pn contains all nonempηsubsets of {1, ... , p}, then the number of 

models in HPn is 2P - 1. 
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In the previous example, regression vector is specified only by a finite number of 

parameters. This assumption is reasonable for obtaining an estimate of a testing pro-

cedure, but, for the true structure of the population, it is not so easily justified. Even 

if qτ （x) is continuous on some finite interval, we cannot avoid dealing with an infinite 

series expansion, polynomial expansion, orthogonal expansion and so on. Therefore it 

is rather natural to specify qτ （x) using infinitely many parameters. 

EXAMPLE 6 （“Cut-off choice" of series estimation of nonparametric regression:). 

Suppose that we wish to select the best approximation to the true median response sur-

face from a class of linear models. Note that the approximation is exact if the陀 sponse

SUゆceis actually linear and is in H Pn・Theproposed models are qn = Xn (h）戸（h),

hε HPn' where Xn (h) is a sub-matrix of Xn and /J (h) is a sub-vector of a Pn-vector 

fJ (h) whose components have to be estimated. As a more spec｛戸cexample, we consider 
the situation where we tηto approximate a one-dimensional curve by a polynomial, i.e., 

qn = Xn (h) /J (h) wi的 thei川 wザXn( ei I, ti, 

In this Cαse HPn = {hk, k = 1，…， Pn} and hk = {1，…， h} corresponds to a polynomial 

of order h used to approximate the true model. The largest possible order of the poly-

nomial may increαse as n increases, since the more datαwe have, the more terms we 

can afford to use in the polynomial approximation. 

Note that HPn may not contain a correct model (Example 6). A correct model is not 

necessarily the best model, since there may be several correct models in H Pn (Exam-

ple 5) and there may be an incorrect model having a smaller loss than the best correct 

model (Example 6). Here, we allow the maximal dimension of model set HPn• Pn, to 

increase to infinitry with n in order to reduce approximation errors. 

Different loss functions correspond to different optimal model. In this article the 

object of interest is qτ，the conditional trueτ－quantile of the distribution y. In the 

forecasting literature; e.g., Giacomini and Komunjer (2005), they use asymmetric loss 

to provides the best linear predictor for a response variable. This interpretation is not 

very satisfying, however, since prediction under asymmetric loss is typically not the 

object of interest in empirical work. 

In the linear model selection using OLS fitting literature, the mean squared error loss 

is used. OLS estimates provide the minimum mean-squared error linear approximation 

to a conditional expectation function of any shape. The approximation properties of 

OLS have been emphasized by White (1980). On the other hand, QR is the best linear 

approximation to the conditional quantile function using a weighted mean-squared e町or

loss function, much as OLS regression provides a minimum mean-squared error fit to 

the conditional expectation function. The approximation properties of QR have been 

shown by Angrist et al. (2006). 

In the following subsection, we define the loss function for liner model selection 

using QR estimation process. 
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2.3. Dφnition of Loss Function 

As mentioned above, QR is the best linear approximation to the conditional quantile 

function using a weighted mean squared error loss function (cf. Angrist et al. (2006), 

Theorem 1,2). We define the quantile regression specification error as 

ふi(h) = (qriーズi川＊州， !).ri (h) ＝いiーいゆ州、
I 企τ1(h) I 

An (h) = I I 

L Aτn (h）」

I 企τ1(h) I 

企τn(h) = I : I , 

－－－  L Aτn (h）」

Angrist et al. (2006) have shown the following theorem. 

THEOREM 7. Suppose that 

(i）向conditio刷 densityfy (y I X)exists a.s. (ii) IE [Y], IE [ q] and IE [ x'x］αり nite.

(iii) pτuniquely solves. Then 

f3; = ar円inIE [ wτ（x, p;) (qτ一印）2]
where 

内 P*)= { (1一川（u(qτ－ x' p;) I x) duとO

where the weight wτ（x, P*) isψmction ofx onかsowe write Wτ （x, p；） αSWτ（x). 

Proo_戸 SeeAngrist et al. (2006), Theorem 1,2. 口

Theorem states that the population QR coefficient vector f3; minimizes the expected 

weighted mean squared approximation error, i.e., the square of the difference between 

the true CQF and a linear approximation, with weighting function wτ （x). The weights 

are given by the average density of the response variable over a line from the point of 

approximation, x' p, to the true conditional quantile, q. 
We assume in this paper that the models in Hn are linear models and the LAD fitting 

is used under each proposed model. After observing the vector Yn, our concern is to 

select a model h from Hn so that the weighted squared error loss 

L~ (h) ＝；土叫M

= ~ llqτn-<J.τnゆ）｜｜い
be as small as possible. The notations are following way. IIαllwτ（h) = (Wτ （h）α，α）1/2 

is the semi-norm defined by any vector αin Hilbert space /2・。τn(h) = Xn (h) /jτ （h) 

is the LAD estimator of qτn under model h. Wτ（h) is the weight n×n matrix as 
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And en= (e1, e2, ... , en)' and Xn (h) = (x1 (h), x2 (h), ... , Xn (h))'. 

2.4. Mallows’s Cp TヲpeCriterion 

To assess the proposed models, we use the weighted squared error loss. Our concern 

is to select an h from H Pn so that the average weighted squared error 

中 h)= ~ 乞wτ（Xi(h)) ( qτi -x; (h) feτ（h)) 

= ~ llqτn-Q.τnゆ）｜｜い）

or the statistical L2 risk 

R~ (h）ニ IE［山ゎ］
may be as small as possible. 

The scenario is very similar to an estimation problem. We are not able to assess 

the finite sample average weighted squared error. Mallows’s C P type criterion is an 

unbiased estirr附 ofthe loss L~ (h). The original version of C P based on least叩 ares

estimation is an estirr凶 eof mean non-weighted叩 arederror. Let LちLSbe批 average

non-weighted squared error, 

LtLs (h) ＝：工作［YiI Xi] －判んLS川

where fi o LS (h) = ( X~ (h) Xn (h) r 1 X~ (h) y n. The original C p criterion日 tisfies

IE [Cp (h)] = IE [ LtLs叶＋constant. 

The Mallows’s C P criterion may be used to select the quantile regression model h. 

Define 

fi~LS = arg ,m,i,n Cp (h) 
""'" Pn 

the empirical Mallows’s C P selected quantile regression model. 

Our purpose in this paper is to introduce the Mallows type C P criterion which is 

based on LAD estimate and based on an estimate of average weighted squared error 

loss function. Next section develops our new criterion. 

2.5. Basic Assumptions 

We now state the basic assumptions under which the results below hold. This as-

sumption holds quite generally. 

We assume that the true model is the homoskedastic linear model having countably 

infinite regressors Xi = (xli, X2i, ... ). 

ASSUMPTION 8. The true model is the homoskedastic linear regression, write 

Yi= qiτ＋e1 (2.3) 
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0:コ

qiτ＝LXJif3J, i=I,2, ,n, (2.4) 

and we assume that the random errors ei a陀 identicallyindependently distributed and 

independent of Xi, Vi with conditional densiηん（・ I x）αnd 

inf ｛ε：Fe （εI x）と τ｝， = 0, (2.5) 

IE [ei I xi] = m. (2.6) 

Note that there are infinite number of regressors, so all model are misspecified. 

ASSUMPTION 9. We assume 

IE ［叶＜∞
αndqiτ＝I:,1こlx Jif3山 i= 1, 2, . , n, con rges in the mea川

We impose the following quantile version of the orthogonality condition. 

ASSUMPTION 10. For each hε H Pn ( H Pn is the set of models considered by the 

researcher人thereexist f3; (h) such that 

IE[xi(h）ψτ （Yi -x; (h) p; (h))] = 0. (2.7) 

Given the pseudo-true parameters p; (h), assuming that 

IE ［ψτ （Yi -x; (h) p; (h)) I Xi] = 0, which is stronger assumption, is equivalent 

to assuming that the conditional quantile model is correctly specified. 

We assume the asymptotic representations of LAD-estimates (Bahadur form). 

ASSUMPTION 11. Piαrameters pτ （h）α陀 theform 

• n 

bτ （h) ＝院（h)＋ニアT,P)(xi (h)) + RE (h) 
n-

(2.8) 

where r(l) is the influence unction and the matrix form is gii仰 by

げ）川）） = ~Jふ1ψτ （Yi -x; (h）川））川）

where Jτh全IE［ん（企τ（h)lx)x(h）ず（h)]and RE (h) is remainder term. 

We assume that the estimator has the following accuracy. 

ASSUMPTION 12. Remainder term satiポes

lim sup IE I IIX (h) RE (h)l12 I < oo. 
n→∞舵Hn L 」

(2.9) 

I This means 
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3. MODEL SELECTION CRITERION 

3.1. Model Selection Criterion 

In the later of this paper, We will omit subscript τ. The Mallows type criterion for 

quantile regression“QCp”is 

QCp (h) = IIYn -Xn (h) P (h) -mll 
II IIW(h) 

• n 

＋二丈町 （Xi(h）） ρτ （Yi - x~ (h) P*(h)) x~ (h) Jh-1xi (h) 
n』－

where m = IE [e]. We assume the moment of e:m = IE [e] and P*(h) is known. We 

discuss below the replacement of m with an estimate. The Mallows QC P criterion may 

be used to select the quantile regression model h. Define 

hn = arg h~k~n QC p (h) 

the empirical Mallows QC P selected quantile regression model. 

3.2. Asymptotic Unbiasedness 

We present two justifications for the QC P criterion. Our first is the classic observation 

that QC P is an asymptotic unbiased estimate of the expected weighted squared error 

plus a constant. Proofs of the following lemmas are in Appendix. 

LEMMA 13. 円台 have

IE [QCpゆ）］ = R~ (h) +IE[w (xゆ））］ a2 + Opトサ
In practice, m = IE [ e] is unknown, so QC P needs to be computed with a sample 

n 

凶 timate.One choice is ，先K = ＊乞（Yi一Xi(K) fe (K)), wher corres 

full model. If K grow with sample size n, m K is consistent form, which is valid as 

shown next. 

LEMMA 14. If K→oo and K/n→Oas n→oo, then 治K→masn→∞． 
p 

Furthermore，批 unknownparameter /3＊伽 oughLρτ （Yi x; (h) P*(h)) rr削 be

esti削

mators of工ρτ （Yi-x; (h) P*(h)). Then, we附 dto verify 

---v I＊立i{ρτ（Yi一判。川－ Pr (Yi一山）仰））} x; (h) Jh-lxi (h)I→0 

促冗 nR'fi (h) 
(3.1) 



10 KEIO ECONOMIC STUDIES 

川崎山；(h)) (11; （ベハ
：~t 川（h） υ

LEMMA 15.σ治→ m,n,K→∞仰d与→ 0伽 1
p 

｜（治－m) L w ( x; ( h)) ( q; -x; ( h) /3 * ( h)) I 

p ~ SUP I i=l I 

hε長 nR'/:i(h) 

3.3. Asymptotic Optimality 

Our second justification is that this method of QC P is asymptotically optimal in the 

sense that the fitted estimates asymptotically achieve the minimum possible squared 

error in a class of LAD estimators. Note出atminimizing L~ (h) is not related to the 

consist町刈（ん）… estim伽 ofれ i.e.,L~ （ん） ヰ 0.凶 ct,it may no 

bewo伽 hilet scu叫 consist町刈（五n),s in our circums附弘th

／《、 p
no consistent estimator of qτ （e.g., min Ln ( hn) -A 0). The purpose of model selection 

to to minimize the loss L~ (h). The essential asymptotic問 uirementfor a selection 

procedure is 

L~ （ん） /J 1 

iぱhEHnL';i (h） ’A 

(3.3) 

i.e.，ん isasymptotically as efficient as infHPn h in terms of the loss L~ (h). 
Li (1987) established the asymptotic optimality of Mallows’C P criterion for OLS es-

timate under reasonable conditions. But, ordinary Mallows’C P criterion does not work 

in LAD estimate for QR model. This is because the penalty term on Mallows’C Pis for 

estimation noise of OLS estimation. We need to modify the penalty term on Mallows 

C P criterion. However, since QR estimation criter n fun 

dose not have an algebraic solution, modification on penalty need asymptotic analy-

sis. The following result is an analogue of Theorem 2.1 of Li (1987), who showed the 

asymptotic optimality of Mallows’criterion for model selection. 

The primary goal of this paper is to demonstrate that under reasonable conditions, 

these procedures are asymptotically optimal in the sense (3.3). Thus using these pro-

cedures, statisticians may do as well as if they knew the true Qn (but are restricted to 

the use of the LAD estimators <J.n). Appendix proves the asymptotic optimality of QC P 

criterion under condition that 

sup IE Ix' (h) Jh-lx (h) I < oo (3.4) 
hεHpi L 」
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sup IE Iム2Ch) I < oo (3.7) 
hεHn L 」

To explain condition (3.6), which Li (1987) referred to this condition as“reasonable”， 
if all model h is bounded, then very likelyム2(h) is bounded away from 0. If every 

model h, either h→oo or, if企 (h）→0, it dose so slower than 1 / fo. 
we observe that condition (3.6) implies the condition (A.3) in Li (1987). 

LEMMA 16. We have 

nR;, (h) 

hs:£.1 IE [II企n(h)ll与（h)

P，ηQ戸 Therisk R2 (h) i s 

nR~ (h) = IE [11川）｜｜丸心＋IE [ II X n ( h) （仰）一/J*(h川（hi]

-2IE [(w川 n（札州）（。 （h)-/J* (h)) )] 

To see that (3.6) implies nR~ (h）→oo, we need to verify that 

SUD IE[(w(h)An(h), X(h）（仰） -/J* (h))) J 

ふ IIE [ II企n(h) 11い］ + IE [ II x (h) （仰）一川）) 11:(hi] 

IE[(w(h)An（札 Xn(h) （仰）一川）））］

=IE [ ( W (h) An (h）， ん叫

→0. (3.8) 

+lE[(W(h)An(h), Xn(h)RE)]. 

By assumption (3.4),(3.7), we have 

IEl{wch）ム （h),Xn (h) ！す ~Qよlψ （Yi 一川）/J* (h））川）｝｜
I ¥ nι－＇2 n ¥ i ' /I 

＝！土；IEI wτ（xi (h)) ムi(h) x; (h) Q-;;1<p (Yi x; (h 
er snご7ん L

<CXコ．
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2 By Cauchy-Schwarz inequality, we have 

IE [(W (h) An, X (h) RE)] 

!~t I IE [II An (h)IIい］+ IE [ II x ( h）。（h)-/3* (h)) II川
＜一一｜ IE [11An II為（h)

一j弓IIE [ II企nII t (h)] + IE [ II X ( h) （仰） -/3＊叫｜｜い］

IE 111x (h) RE (h) llivch 

三；~t I ( IE [ II An llt(h)]: IE [II X (h) (P (h）一；.(h)) II川）＇／ 2

and by ass叫 tion(2.9) IE [IIX (h) RE (h)IIいJ< oo. Thus (3.8) is es刷 sl凶口

Now we are ready to prove the main result of this paper -the asymptotic optimality 

of QCp・Formally:

PROPOSITION 17. As n → oo, under conditions (3.4)(3.5)(3.6)(3.乃， QCpis 

asymptotically optimal; i.e., 

叫ん） P 咽

iぱhEHnL~ (h) ι 

The proof is in appendix. The following sub section is devoted to the remark on other 

criteria. 

3.4. Remark on Other Criteriα 

The fact that AIC and BIC rely on the likelihood which defines the class of models 

means that these methods suffer from possible misspecification. Since the BIC para-

digm is developed under the assumption that the “true”model is in fact within the class 

of models under consideration, this paradigm may be far off the mark if that is not the 

case. In practice it is more appropriate to think of any models as mere approximations, 

and the “true”model is too complex to be precisely approximated by anything in the 

class of models. 

However, there is an argument that is favor of BIC regardless of the true model’s 

complexity, which is in line with Rissanen (1986), where a BIC-like criterion is shown 

to be optimal from an information theoretic point of view. It is true that statistical 

models are mostly used in areas where the existence of a true model is doubtful. But, 

there is ample reason to choose a simple parsimonious model that might be untrue, 

even if a true model does exist. The goal of statistical analysis in this situation is to 

extract information rather than to identify the true model. In other words, the parsimony 

2 Cross term vanishes. 



TAKANASHI: C p-TYPE CRITERION FOR QUANTILE REGRESSION 13 

principle should be applied not only to candidates for the true model, but the true model 

itself as well. 

The conclusion, of course, depends on the choice of a loss function since it has a 

tremendous bearing on the asymptotic properties of the corresponding model selection 

criterion. If one uses the information theoretic argument of Rissanen ( 1986) or the 

accumulated prediction error, BIC can be shown to be loss-efficient. In any case, we 

need to be careful to define the object of interest (such as prediction error, weighted 

mean-squared approximation error, stochastic complexity, etc) when we evaluate model 

selection criteria. 

In the model selection problem for QR, if we define the object of interest as one 

step ahead forecast, AIC is an optimal procedure. If we define the object of interest as 

accumulated prediction error or consistency under correctly specified condition, BIC is 

a best one. If the object of interest is the best linear predictor for a response variable 

under asymmetric loss, FPE (Burman and Nolan (1995)) is an effective one. These 

object of interest are not very satisfying, however, since prediction is typically not the 

object of interest in typical empirical studies on economics. 

The fact that LAD estimation is as easy to compute as OLS regression coefficients 

and that QR provides a meaningful and well-understood summary statistic for the con-

ditional quantile undoubtedly contributes to the recent popularity of QR as an empirical 

tool. In view of the possibility of interpretation under misspecification, QR estimated 

by LAD implicitly provides a weighted minimum distance approximation to the true 

conditional quantile function. Therefore, we should choose the weighted squared error 

as a loss function for QR model selection estimated by LAD. 

It is useful to compare the QR fit estimated by LAD to an explicit minimum distance 

(MD）且tsimilar to that discussed by Chamberlain (1994). The MD estimator for QR is 

the vector f3 （τ） that solves 

• J 
- 1 －ー／ '¥ 2 

/3 （τ）＝叫n；ザτ（有）ーが）

where dτ （x J) is the sample quantile given xニ xJ. If QR is estimated by MD, the loss 

function should be the average (non-weighted) squared error and selection criterion is 

directly derived from MD residuals. In contrast to LAD, however, this MD estimator 

relies on the ability to estimate 。τ（x J) in a nonparametric fi凶 step,which, as noted by 

Chamberlain (1994), may be feasible only when xis low dimensional, the sample size 

is large, and sufficient smoothness of qτis assumed and the distribution of the vector of 

covariates x have白町 supportwith P ( x = x J) = a J for j = 1, . , J. 

Recently, the least absolute shrinkage and selection operator (LASSO) proposed by 

Tibshirani (1996) is widely used in a high (ultra-high) dimensional circumstance(see 

also Fan and Li (2001), Tibshirani (2011)). The quantile regression case is studied 

in Belloni and Chernozhukov (2011). The LASSO estimator performs the “oracle” 

property in terms of selecting the correct model, when the regularization parameter is 

appropriately chosen. That is, when the true parameters have some zero components, 
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they are estimated as O with probability tending to 1, and the nonzero components are 

estimated as nonzero one. This LASSO scheme and “oracle”property are very useful 

for a regression in high-dimensional sparse models. In such models, the number of re-

gressors is possibly larger than the sample size, but the number of significant regressors 

(nonzero components) is smaller than the sample size. However, the estimated signifi-

cant nonzero regressors are all biased because of the existence of regularization term of 

LASSO. Therefore, the approximation property of LASSO estimation with respect to 

(weighted) L2 loss may be poor. The reason is clear; the objective functions of LASSO 

type quantile regression are under constraint of L 1-regularization, and then, the loss 

function, weighted L 2 loss, is inappropriate. The appropriate loss function for LASSO 

estimate may be the weighted L 2 loss with L 1-penalty. However, statistical meaning of 

this loss is unclear for the pu叩oseof selecting the best approximation by anything in 

the class of models. 

4. FINITE SAMPLE INVESTIGATION 

We now investigate the finite properties of the our model selection criterion in a 

simple simulation experiment. We present two examples. 

The first example is the linear regression (Example 1) with Pn = 16 ; that is 

Yi = f31xi1 + ・ ・ ・ + f316Xil6 + ei , i = 1, ... 50, 100, 400, 1600, 

where ei are independent and identically distributed as N (0, 1), XiJ is the ith value 

of the explanatory variable x J, Xi 1 = 1. For simplicity, we assume that XiJ (j = 

1, ... , 20, i = 1, ... , n) are orthonormal variables. 

figure 4.1 shows the distribution of the number of explanatory variables that are se-

lected using the QC P for the case of an median regression model. The graph on the 

upper left, upper right, lower left, and lower right plots represent the cases in which 

the sample size is 50, 100, 400, and 1600, respectively. The results suggest that when 

the true order is a finite number, the distribution of dimensions converges to a certain 

distribution when the size of n becomes large. 

The second example considered is the series approximation to a possibly nonlinear 

curve (Example 2); that is, we select a model from the following class of models. The 

setting is the in耐1iteo時 rregression Yi ＝工三1f3JXJi + ei. We set Xii = 1 to be the 

intercept; the remaining x 1 i are independent and identically distributed N (0, 1). The 

error ei is N (0, 1) and independent of Xi. The parameters are determined by the rule 
f31 = c必.rl/2-1/2. 

The sample size is varied between n = 50, 100, 400, 1600, and 2400. The number of 

models H Pn is determined by the rule H Pn = 3 ,q万（soHPn = 11, 13, 22, 35, 40 for the 
five sample sizes). To evaluate the estimator, we compute the risk (expected weighted 

squared error). We do this by computing averages across 10,000 simulation draws. 

The risk calculations are displayed in figure 4.2. In this panel, risk (expected 

weighted squared error) is displayed on the Y axis and the sample sizes is displayed on 

the X axis.In this panel, the average loss of model selected by QC P achieves the lowest 

risk as sample size increase. When the sample size is small, QC P selection is dismal 
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n=50 n=lO日
800 800 

600 600 

400 400 

200 200 

。 。。 l口 15 20 。 5 10 15 2日

n=4凹 n=160日
800 800 

600 600 

400 400 
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。
0 

0 l口 15 20 。 5 10 15 20 

Figure 4.1. Distributions of dimension selected by QC p. The upper left, upper right, lower left, and lower 

right plots represent the cases in which the sample size is 50, 100, 400, and 1600, respectively. 

performance because of estimation noise of coefficient parameter and approximation 

noise of criterion. An improvement of small sample performance of this criterion is the 

future study with extra work. 

A.I. ProofイLemmas

A.I.I. Proof of Lemma 13 

Proof First, observe the identity 

；丈W (Xi 

＋主ナ即M
n】 7:'i

APPENDIX 

A. PROOFS 

=Ln(h）十 1士山同州ei一m)2十 2＿！＿士山偶州ei一m)(qi一共 （h
,1 』－ ,1 』－

+H岩山川
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＋：む但i山 τ（Yi一x；川川

+2主W (Xiゆ））(qi一x；幼）fj(h)*

And take the expectation 

IE [Ln刷］＋ IE[w何 （h))a2]

Figure 4.2. 

＝~IE 卜一2さ即（Xi
1ム
-;:;-.~:::>) IX;' h)) Iρτ り－ ：， 刷 F州：： h) '',:--1,:; I 刷

必 同川一川町）x; (h) （仰）一川l
And using the Bahadur representation (2.8), the fourth term bracket on the righthand 

side is as follows: 

First term in the bracket 

~IE 卜富山（xi (h)) (Yi -x; (h) P (h）＊ 一川 （h)（仰）一川

＋~わ阿川τ （Yi 一川仰））制作 （h) I 
n－ 、 l
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is as follows: using Bahadur representation, we have 

か［一2さW (Xi 

必川ρτいイ（h) /3 * ( h)) x; ( h 

刊一2主即川
×（：可；（h）σ1：さ｛伊（Yi一xi（川吟（h)}+ 

＋：土W (Xi (h）） ρτい斗川）x; (h）与1x,(h)J 

か［一2会切（Xi川一x;（的/3(h) 

×：（ ({) (Yi一x;(h) /3 ) ）町（h)＋土（｛） (Yi一x1(h (h) 

＼ j子全i ／ ｜ 

+E［占さw(xi (h 

because the Xi and x J予1::.iare independent, we have 

-E［培W (Xi川－x; （山）) x; （川い一川（h))Xiイ
+E［培同川
世即（Xi(h 

× E ［σ·~ （主ψ（Yi一xi( ）吟j( 
h) ） ］ 

+E［；毛さい可（h)/3 (h)*) 

B山 u叫mp肌 IE[1h-1i（εj/iψ（Yi xi ( 
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term is 

＋さかi一x;(h) /3 （的＊）x; (h) RE (h) l 山

…臼rminthe bra 

is obtained similar way. Calculate the same way and we have 

~E [2吉川Xiゆ）) (qi -x; ( h) /3 ( h) *) x; ( h) （仰）一川））］

刊を川qiイ山）＊）x；川ψ（y；一x;(h) /3* (h)) Xi d h ） 

T 川 qi一x;( h) f3 ( h) *) 

So the second term in the bracket is ・ 

iE ［す2何幼）） (qiイ 山 州 川Xi仇） ］ 

叶守Finally the remainder (A. l) plus (A.2) i s 

去E［む2(x；川－x; ( h) f3 ( h) *) 2 x；川； (h) J 

－司令Xi(h)) (ei一川（…）］
And since 
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 , by assumption (3.5) and (2.9), we have 

IE [n IIREn (h)ll2]2→0 

(A.3) 
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IE [~ IIX' (h 

Thus the閃 maind削 A.3)l附asOp (n一1)rate. 口

A.1.2. Proof of Lemma 14 

Proof Since e K ＝片－x;(K）川）＝引－x;(K) P* (K)-x; (K) (/3 (K)-P* (K)) 

+ei, we see that 

治K 二~） ~ (qi -x; (K) P* (K)) -~) ~x; (K) （。（K)-P* (K)} + ~) ~e1 
n』－ n』－ ¥ I n』－

(A.4) 

We examine the terms on the right side of A.4. 

P { I q ( x) -x; ( K) p * ( K) I > 8} 

MaloJIE IをJif3J一をJif37 
(A.5) 

First, by an application of Section 2.3. of Angrist et al. (2006), (A.5) 

ヱχJif3JーヱχJif3j
j=l J=l 

＝三ンJif3J-IンJif3 
j=l J=l 

I I oo K 、l

-IE ［必（x)x (K）ず（K)rlIEI必（x)x (K) f L XJif3J -L XJiん｜｜

= L XJif3J -IE [ w (x) x (K）ピ（K)rlIE I必（x)x (K) f L XJif3J J I 
J=K I ¥J=K I I 

where w (x) is weight function ofx only. Since k→oo as n→oo and the integrability 

州 mpliesIE I立 KXJif3JI→OasK→oo (A.5) van凶

p (I培x;(K) (/3 (K) -P* (K））い）
IE [ (P (K) -fl＊叫X'(h) X (h) (/3 (K) -P＊叫
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n 

Third, by law of la伊 number,i 2_,ei→m, and we cm叫政thatlnK→m 口
7:i' p p 

A.1.3. Proof of Lemma 15 

Proof Note that 

仇－ m = ~ L Yi -x; (K) /3 (K) -m 

二 ~I::(qi 一〈叫ば））+ ~ ~~>i -m  

ニ；L(qi -x; (K）川））＋判）（山） -/3 (K)) + ~ ε ei -m. 

If we can show the following 

~ 乞( q1 -x1 (K) fi* (K））む 川内iーザ州Iζo  仏

~ ヱx1 (K) (fi* (K) -/3 (K））ヱW (Xi州qi ーザ州I~ 0 (A.7) 

（；さei一恰w(xi (h 

the prove is established. (A.7)(A.8) is similar to the optimality proof of (A.9), so we 

only show (A.8). 

Let＊工（q1 -x1 (K) fi* (K)) = m' We have 
j手i

jエ（qj一〈・（K)fi* (K)) ~ w (Xi (h州ーが（h))

= ( m' + ~ (q； 可（K){J* (K))) ~ w (x; (h)) (q； 山））

By Chebysev’s inequality, we have 

｜工（m＇ー IEm')w (xi (h)) (qi -x; (h) fi*(h))I 

p ~ sup’iニ l i>o 
hEH nR'?-z (h) 



TAKANASHI: C p-TYPE CRITERION FOR QUANTILE REGRESSION 21 

＜ヤ E[Iさ（m＇一IEm＇）即 （Xi(h 

v ~ (nR?:i ( h ） ） 
By Whittle’s inequality, for some constant C we h ve 

L E [l(m' -Em＇）吉川）） (q一正 （h)/3 

IE I乞（w(x(h))(q一州）/3*(h)))
2 

｜ 
W品tl巴C・IElm'I 主L l 」

三C IE lm'I 

IEm' ・ 

E [I吉川町 川一利（川

<C＇・IEm'

→0 

nR?:i (h) 

A.2. Proof of Asymptotic OptimaliηofQCp 

A. 2.1. Proof Strategy 

First, observe the identity 

~ IIYn -Xn仰向一mll:(h)

＋占むτ何i(h）） ρτ （Yi -x; (h）仰）) x; (h) Qh1Xi (h) 

引h）＋ ~llen-mllい＋ 2~ （（en-m), W(h)An的））

＋~［－2(w川n -Xn (h) /3＊叫 Xn(h) （仰）一川）））
+2m(wn仇 Xn(h) （仰）-/3＊川）

口
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恰W (Xi (h））叶

+2(w(h)An（札 Xn(h) （仰）-fi＊ゆ）））］

i I:7=1 ef is independent of h. And using the Bal凶 urrep陀 sen

term bracket on the righthand side is as follows: 

First term in the bracket ,2 ( Wゆ） (Yn -Xn (h) fi＊叫 Xn(h) （仰） -fi* (h)) ), 
is as follows 

2(wゆ） (Yn -Xn (h) fi＊叫 Xn(h) （仰）-fi＊叫）

十）（Yn一川

=LWτ（xi (h)) (Yi -x; (h) fi (h)*) x; (h）石l

~ （ψ（Yi一可 （h)fi* (h) 

＼ j子全l ／ 

二［岩τ川 ρτいイ川つx;(h 

；土叫（X;

十何幼）） (Yiイゆ）fi (h)*) 

叩 htern 帥仙叫W川 n(h Xn (h) (~ (h）一fi*( ),is出 follows； 

2(w川 n(h Xn (h) (fe仇）一 fi*( ) 

十川n(h), Xn (h) 

＝工即τぼi州 fli(h) x; (h）れの（Yi-x；川＊ (h)) Xi (h) + RE (h)) 

十倍…i川）中小jーかげ（h))xj(h))
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=I＿！＿ちτ（Xi(h））ム （h）仰の（Yi-x; (h）川））川）
In』ー

止す Wr(Xi (h)) fli州 i(h）山（YJーぜi川＊刷） ) Xj (h、
n ...... ー ーー ＼ , I 

+2＿！＿れτ川））ムl州向RE(h) I 
n』 － I 

So the bracket term on the righthand side is 

［告τ（Xi(h)) fli 

1ナ初τ（X;
n 』－ ¥ , I 

心 t一川町）］
Finally the h also achieves 

h明11[Ln (h) 

サ乞w例的同

＋与ちはi(h)) fli仰 （Yi一x;(h 
ft ..』－

-A- )~ w（川 ））（ei-m）制） Jーヤ（YJーい）/3* (h)) Xj (h) n .. 』－ •. ¥ , I 

桔 w例的）） (ei一川山（h)]
If we can show that the second term are negligible compared with Ln (h) uniformly for 

any hε Hn, then the asymptotic optimality property (3.3) is established for h. If we 

can show that 

I ( en -m, W ( h) An ( h)) I ハ

SUD 《ー＋υ
hε包 nR~ (h) 

(A.9) 
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n2 R; (h) 

L w (xi (h)) 企i(h) <p (Yi -x; (h) /J* (h)) x; (h) Jh-1xi (h) 

sup 
hε討

(A.IO) 

l(en -m,, W(h)X(h)RE(h))I ハ

：~t 川 （h） り
(A.11) 

2；即（Xi

sup一一一一一
hEH n2 R; (h) 

→0 

(A.12) 

司
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the asymptotic optimality property is established. 

A.2.2. Proof of (A.9) 

We shall prove (A.9) first. Pick any o > 0, by Chebyshev’s inequality we have 

( il(en-m, W(h）企（h))I ] や n-2IE[(en-m, W(h）ム（h))2]
P ~ sup > o ~ 三、

lhEHpn R;(h) J h~n o2(R;(h))2 

which, by martingale inequality of Dharmadhikari, Fabian and Jogdeo (68 annals), is 

no greater than 

I n l 《

co-2 L山 2叶 I:{we川）) (qi -x; ( h) /J （げ）｝21( R~ (h)rL 

hεHpn Li=l 」

for some constant C > 0. The last expression does not exceed 

C'o-1 LhEHpn (nR'?:z (h)f1 for some con蜘 1tC', which tends to Oby (3.6)3,4 

A.2.3. Proof of (A.JO) 

Equation (A.10) can be established similar manner, denote 

h (xi）＝山i( h)) (qi -x; ( h) fJ ＊ゆ） -m) （制） Jh-1sgn (Yi -x; (h）川））川））

noting that, by assumption (3.4)(3.7), 

IE [lh (x)12] < oo. 

Given any o > 0, by Chebyshev’s inequality we have 



TAKANASHI: C p-TYPE CRITERION FOR QUANTILE REGRESSION 25 

｜りさh(x,) l > lh n-2E 同(x,) n 
P sup > o < 

間 R;, (h) 印刷ζ ぷ（R;,(h))2

It is well known inequality that 

【 n引苦h(x,) r I【 n一2

）』－ < ' 
’ ~ 82 (R;, (h))2 -~ 

For some constant C > 0, the last expression does not exceed 

co-2 2コzEHpn(nRn (h)) 2, which tends to 0. 

A.2.4. Proof of (A.11) 

Equation (A. I I) can be established by the following way. First, by Markov’s inequal-

ity, we have 

p J s D i I (en -m,, W (h) X (h) REゆ）) I l 
< UD >-

I hει R;, (h) I 

や n-1E [I（方W(h) X' (h) (en -m), .jnREn (h) )I] 
くち

M品川~n o (R;, (h）、

Now since Cauchy-Schwarz inequality, 

て「 E[l(n-112w (h) X' (h) (en -m), n112 REn (h))I] 

h~n o (nR;, (h)) 

3 Smee 

内 iル 1{ fe (u l:.j(めl司du

sup m_ax w (xi (h）） く∞
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や IE[n IIREn (h)u2] 
＜可

－ 

Cauchy~chwarz h~n 8 (nR'?-iゆ））

and ,by assumption (3.5) and (2.9), we have 

咋｜｜叫ゆ))112r→0

IE I _!_ (eη －m)'X'(h)W2(h)X(h)(en-m)l2 <OO. 
In I 

Thus (A. I I) is proved. 

A.2.5. Proof of (A.12) 

Equation (A. I2) can be established as an application of U-statistics, denote 

h (xi, x J) = { w （い仲J-m) xi (h)} ( Jh-1ψ（Yi -x;/j*) Xi (h)) 

h* (xi,XJ) = ~ [h （い1)+ h （いi)]

The corresponding U-statistic for (A. I2) is obtained by 

Un二 2 うJh* (xi, Xj) 
内－ I) 1三台三n

Exact formula for the second moment of Un may be stated as follows(Serfling 80). 

Writing 

we have 

川（xiXj）ニE[~ [h(x;町） + h (x1町）］ I Xj J 

ニド［｛（e1- m）叶（1山 （Yi-x;p*)xi) I xi] 

+ ~ IE [ { ( e i -m) x; } ( J山 （Y1・ーザドj)I Xi] 

＝ ~lh-1 ψ （Yi -x;p*)xiIE[(e1 -m)x1 I xi] 

+ ~ { ( e i -m) x; } IE [ J山 （Yi一げ）Xj I Xi] 

V訂［u n] = 2 p ( n -2) IE I hr ( Xi ' x j) 2 I + IE I h * ( Xi ' x j) 21 l 
n(n-I) l l 」 L JJ 

We have, by assumption (3.4)(3.5)(3.7), 

IE [hr ( Xi , x 1) 2 J = o 
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Then we can prove the equation (A.12). By Chebyshev’s inequality we have 

k l2k L h (xi, x1) 

PI sup 
hモ礼

l三tくj三n

R'?:i (h) 
>o 

I I 2 τ「 I I 
n 2(n-1)2IEI ~ L h(xi,Xjn I 

一 ｜｜山一 1)1三台 三n I I 
くち 』 ー

Ch均 shevW{, 

which, by variance of U-statistic, is equivalent to 

て「 n2 (n -1)2 
ラ 2 Var [U] ι R'?:i(h) 

て「 n-2(n -1)2 2 f 「 1 「 11ヤ p(n -2) IE Iバ（xi,x1)2 I+ IE I h* (xi, x1)2 I l 
白山川内－ 1) l L J L J J 

= L 2n; (n -1）「 lI h * ( Xi ' x j) 21 
hEH R'?:i (h) L 」

The first term does削 exceedLhEH 4μ2 (o2nRn (h) )-1, which tends to Oby (3.6). 

A.2.6. Proof of (A.13) 

(A.13) is as follow as 

I L~ (h) . I I L~ (h) -R; (h) I 
SUD I－－－＇；；－一一一一 11二 SUDI 内 ｜ 

hε包IRfi (h) I hε包I Rfi (h) I 

＝沼 IIE [11山）｜｜私的］+ IE [ II x (h) （仰）一P*(h 

I IE [11企n刷｜｜い］+ IE [ II x ( h) （仰）一川）｜｜い］

It is clear that (A.13) will follow from the following three statements: 
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1 II川）｜｜九－IE [11川）｜｜川
sup - I→0 

E1-l n IE [ II川）｜｜弘山

(w(h)An（札刊） (~ (h) /J* (h)) 

1 1 IE (w叫的）' x (h) (~ (h) /J* (h ) ] 
sup - I→0 

E1-l n IE ［山）｜｜九］ +IE [llx岬

1 
sup -

llx(h）（仰） -/J* (h)) IIい－IE [ II x ( h) （仰） -/J* (h)) IIい］

IE [11日）｜｜い］ +IE [llx (h) （仰）一川）II :(hi] hε冗 n

A. 2. 7. Proof of (A.15) 

(A.15) is established similar manner as (A.IO), since 

(A.14) 

(A.15) 

→0 

(A.16) 

(w仙（札 X(h）（~ (h)-/J* （州－IE [(w川 悦 x(h) (fe (h) -/J* (h)))] 

=L{wi山 1川市（h)-/J* (h)) -IE [ Wi山 1山；（h)（仰）－/J＊川］｝

＝土 ) : Wi (h) fli (h) x; (h）］ー1<p ( y J -x'; ( h) fJ * ( h) ) x J ( h) 
n - .. ¥ , I 

(A.17) 

+ L { fli (h) x; (h) RE (h) -IE [ fli (h) x; (h) RE (h)]} 

The first term on the right hand side of (A.17) is established similar manner as (A.12). 

Denote 

h （川；） = {w；山i川（h)}( Jh-1ベYJ-x1川＊（h))x1ゆ））

h* （川＝ ~ [ h ( Xi , X j) + h （日）］

Exact formula for the second moment of Un may be stated as follows(Serfling 80). 

Writing 

引い1）斗 ［h(xi，町） + h ( x j, X;)] I X;] 

＝~Wi山i 州（h) IE [ Jh-I<p (Y1・－xi川＊( h)) x j ( h) I Xi] 
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＋ ~IE[w1山j・川ゆ）｜中山 （Yi -x; (h) /3＊川町（h)

=0 

IE ［削川）2]=0 

we have 

Var[Un] = 2 ~ 2 (n -2) IE I hf (xi, x1)2 I+ IE I h* (xi, x1)2 I l 
n(n-1) l L 」 L JJ 

By Chebyshev’s inequality, 
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which, by variance of U-statistic, is equivalent to 

て「 n 2 (n -1)2 
〉 今Var[U] 
た主 82 (R?i (h））ム

て「 n-2(n -1)2 2 r 「 1 「 11γ ？. p ( n -2) IE I hr( Xi , x J) 2 I + IE I h * ( Xi , x J) 21 ~ 
~ 82 (R; (h)t n (n -1) l L 」 L JJ 

＝工 2n-3(n -1）「 lI h * ( Xi ' x j) 21 
hEH 82 R?i (h) L J 

The a凶 termdoes not exceed LhEH 4 (o2nRn (h) )-1, which tends to Oby (3.6). 

The second term on the right hand side of (A.17) is 

I 1 l(W(h）ム（h),X (h) RE (h))I I 
p ~ SUD - - - } 

1問 nIE [11An (h)IIいJ+IElllxch）（仰） -/3* (h)) II…I J 

Y「 IE[l(W(h)An(h),X(h)RE(h))I] 

Malov h~n O相｜｜川｜｜い］ +lE [llx (h) （仰）一/3*(h 

< ＇「 IE[II W (h) An (h) 112]112 IE [IIX (h) RE (h) 112]11 2 

長chwarzh~n O何IIAn(h)IIい］ +lE [llx (h) （仰）川l)11:(h)])
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→0 

A.2.8. Proof of (A.14)(A.16) 

(A.14)(A.16) are by application of Whittle(60) 

P ~ II川）llivch)-IE [11An (h)II川｜

山 IIE [ II川）｜｜い］ +E [llx川仰） -/J* (h札.JIJ 

＜ヤ土 IE [ [ II An (h)llzY(hl一IE[ 11企n(h)lliv(h)]} 

V 包 n2( IE [ 11川）｜｜ん）卜IE[ II X (h) (P (h) -fi* (h)) t(.Jr 82 

て「 1 IE [ IIム（h)11いJ
C ち一 一て

W而d巴悶＂ nL(IE[II山）11t(h) 

C ち一

and 

PL〕o2-l llx (h) (Pゆ）一/J*(h)) II」IE[llx (h 

l r n IE [11ム（h)IIZ.<h IE [llx (h) (P (h）一/J*(h))II；偵）］｜

一工／［｛llx吋 h）一/J*(h)) IIい）叶川刷一/J＊φ今lい）］
一

' "n ( IE [ II山）11t伸）J + IE [ II x (h) (P (h) P* (h)) 11:(h) 

や I IE [llx (h) （。（h） 川 l)t,(hJ
C 予－－

e ~n n 何IIAn(h)II弘中
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<C' h;" ( IE [11川）｜｜弘中
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