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Abstract: This article aims to provide a formula to calculate the Slutsky matrix. Our
formula uses only the first- or second-order derivatives of the utility function and does
not require any computation process on optimization problem.
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1. INTRODUCTION

In economics, a commodity is a substitute (resp. complementary) good of another
commodity if and only if the corresponding element of the Slutsky matrix is positive
(resp. negative). These notions are widely used and have been applied in many works.
Hence, the signs of the elements of the Slutsky matrix are very important.

In this article, we aim to show that the sign of the (i, j)-th element of the Slutsky
matrix is the same as that of (—1)” x f?i i» where 1§,~ j denotes the (i, j)-th cofactor of the
bordered Hessian matrix. This result follows from a formula to calculate the Slutsky
matrix using only the first- or second-order derivatives of the utility function. Using
this formula, we can calculate the Slutsky matrix without any computation to solve
optimization problems.

In Section 2, we introduce the formal statement of our result and prove it. We discuss
our conclusion in Section 3.

2. THE RESULT

Let @ = R, denote the consumption space and u : 2 — R denote the utility
function. We assume that u is C2-class, Du(x) > 0 for any x € €, and
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ur(x) ..o ow1i(x)  wi(x)

1| Lo L >, (1)
uit(x) ... wii(x)  wi(x)
ur(x) ... ui(x) 0

foranyi = 2,...,n and any x € €2, where uy = ;T“k and uj; = %B”Xj. Note that
if i = n, the matrix in (1) is called the bordered Hessian matrix. Under these condi-
tions, # must be strictly quasi-concave. Define f(p,m) = argmax{u(x)|p - x < m}.
It is well known that under these assumptions, f is single-valued and C'-class on
dom(f) = {(p,m) € R}, x Ryy|f(p,m) # @}. Thus, we can define the Slutsky
matrix S(p,m) = (sij(p,m))} ;_; = Dp f (p,m)+ Dy f (p, m)(f (p, m)T .1 1t is also
well known that S(p, m) is negative semi-definite and symmetric, the rank of S(p, m)
isn—1, pTS(p,m) =0T, S(p,m)p = 0, and the diagonal elements of S(p, m) must
be negative. Usually, we say that good i is substitute (resp. complementary) to good j
if and only if s;; (p, m) > O (resp. s;;(p, m) < 0).
We now introduce our main result.

THEOREM. 2 Suppose n > 3 and (p,m) € dom(f), and let x = f(p, m). For any
i,jel{l, .., n} B
sgn(sij(p, m)) = (=1)"sgn(Bij (x)) ,
where 1§,~j (x) denotes the (i, j)-th cofactor of the bordered Hessian matrix.

Using this theorem, one can decide whether good i is a substitute or complementary
good of good j by calculating a very simple determinant consisting of the first- or
second-order derivatives of the utility function. We think that this result is useful for
many applied researches.

In fact, our theorem arises from the following lemma.

LEMMA 1. Suppose n > 3 and choose any i, j € {1, ...,n}. Fixany k € {1, ..., n}
suchthati #k # j and forany € € {1, ...,n — 1}, define £ = L ift < k and £ = €+ 1
otherwise. Let

—1 |Yem U Ug
—3 |Ukm  Ukk U]
() um ur 0

agm =

forany £,m € {1,...,n — 1} and A = (agm)z;llzl. Let Eij(x) denote the (i, j)-th
cofactor of the bordered Hessian matrix. Then,
-1

! hw.
A® @y o4&

sij(p, m)

1 See Debreu (1972).

2 It can easily be shown that this theorem is correct even if n = 2. In fact, since S(p,m)p = 0, we
have pisi1 + pasip = 0. Since s;; < 0, we have s1p > 0 and thus good 1 must be substitute to good 2.
Meanwhile,

Uiz U

By = (-2 w0

=ujuy >0,

and thus we have sgn(s1p) = sgn(filg).
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Suppose that Lemma 1 is correct. We can then check that the matrix A is negative
definite and symmetric.3 Hence, the sign of |A| is the same as (—1)"~" and our theorem
holds.

PROOF OF LEMMA 1. In this proof, we abbreviate (p, m) and x for notational sim-
plicity. Without loss of generality, we assume that i # n # j and choose k = n. Define
g = %Du. If x = f(p,m), then by the Lagrange multiplier rule, there exists A > 0
such that Du(x) = Ap. Therefore, there exists u > 0 such that g(x) = up. By Walras’
law of f, we have

g&x) - x =pup-x =up- f(p,m)=pum.
Therefore, by homogeneity of degree zero of f,

1 1
x = f(p,m) = f(—p,—m) = f(g(x), gx)-x).
T’

Such a function, g, is sometimes called an inverse demand function.

Now, the matrix (g)% = g%jgm)’l?jnlzl is called the Antonelli matrix of the inverse
demand function g.4 To compute this,
d9¢ 99¢ O = UgmUp — Uglpnm  Ugnlln — UgUpp Um
= g = — =
0Xm 0xp (un)2 ("in)2 Up
— 2
= W[_ulm (tn)” + welpltnm + Ugnltmity — UgUmUnn)
n
-1 Ugm Ugn Ug
=——u u u
3 nm nn n
u
(itn) Uy up O
=dayp.

Hence, we have that A is the Antonelli matrix of g.
Samuelson (1950) showed that,’
511 e Sl
. _ -1
Sn—1,1 cee Sp—1,n—1

Hence, A is negative definite and symmetric. Let Ai ; denote the (i, j)-th cofactor of A.

Then,
1 =~
Sij = S8ji = WAU .

It suffices to show that,

Now, we introduce a lemma.

3 We will verify this result later.
4 See Katzner (1970) or Hurwicz and Richter (1979) for more detailed arguments.
5 See also Hosoya (2010), or Hosoya and Yu (2012).
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LEMMA 2. Foranytl € {l,...,n— 1}, letf =¢ ift <j and b = ¢ + 1 otherwise.
Define
C11 Cln b11 b17n_2

Cn-2,1 .. Cn—2n bp21 .. bpop2
where,
-1 Cém Cen—1 Cen

bem = ——= |Uni Unn Un | »
wn)3 | ™
Uy Un 0
forany €,m € {1, ...,n — 2}. Then,
c11 v Clj—1 c1j . Cln—1 Cln
L -1
(€1, s n—2) = ()" Cn—-2,1 .. Cpn-2.j-1 ©Cpn-2,j -« Cn-2n—-1 Cn-2n
Unl Un,j—1 Up,j+1 ... Upn Up
u1 uj_1 Wigl e iy 0

PROOF OF LEMMA 2. In general, a real-valued function L defined on (V)%, where
V is any linear space, is called an a~tensor on V if for any 8 € {l, ..., ¢} and fixed
Ul, .o, Ug—1, UB+1, ..., Vg € V, the function

vi> L(V1, ..., VB—1, U, VB+1, ..., VUg)
is linear. A tensor L is called antisymmetric if for any 8, y € {1, ..., a} with 8 # y,
L(vi, ey Uy ooy Vyy ooy Vo) = —L(V1, .., Uy o0y VB, oony Vg)

It is known that if V is an n-dimensional space and @ < n, then the space of all «-
antisymmetric tensors is an #ia)!—dimensional linear space.6

Let ex denote the k-th unit vector. Then, the functions Ly, : (c1,...,cp—2)
det(cy, ..., cn—2, e, em) With 1 <m < £ < n are (n — 2)-antisymmetric tensors on R”,
Moreover, the family (Lg, ;) consists of a basis of the space of all (n —2)-antisymmetric
tensors on R”.7 Now, it can easily be shown that £ is also an (n — 2)-antisymmetric
tensor on R”. Therefore, there exists x2,1, 3,1, ..., Xn,n—1 € R such that

h = Z Xe,mLom -

1<m<{t<n
We shall detect the numbers x¢ . At first, to set cg = ¢5 forall s € {1, ...,n — 2}, we
have Ly ,(c1,...,cn2) =0if g #norr #n—1,and Ly n—1(ct,...,cn—2) = —1.
Meanwhile, by, = i if g = r and by, = 0 otherwise. Hence, h(c1, ..., ch—2) =
W. Therefore, we obtain

6 See Ch.4 of Guillemin and Pollack (1974) for more detailed arguments.

7 We can determine that this space is an 2 ("2_ D dimensional linear space using the formula of dimen-

nn—1)
2

sion on the space of antisymmetric tensors. Because (Lg ) is an linearly independent family of

antisymmetric tensors, it is a basis of this space.
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- (up)™
Secondly, let m € {1,...,n — 2} and set ¢y = e if s < m and ¢; = eg41 otherwise.
Then, Ly r(c1,...,cp—2) = 0if g #norr # m,and L, j(c1, ..., cp—2) = (=™,

Meanwhﬂe,hq,:%ifq:rgm—lormngr—l5n—3,bn_2,,=ﬁ,
_ (_l)n—m—

1 .
T s and thus we obtain
n

(n)* .

Xn,n—1

and by, = 0 otherwise. Therefore, h(c1, ..., cp—2)
1
B (un)"
Thirdly, let m € {1,...,n —2}andset ¢y = es if s < m, cy = es+1ifm < s <
n—2and c,—2 = e,. Then, Ly, (c1,...,cp—2) = 0if g #n—1orr # m, and

Xrm Uiy .

Ly—1,m(C1s ..y cn—2) = (=1)"""~1. Meanwhile, by, = ul ifg =r <m-1or
m<qg=r—1<n-=3,by, = ﬁ(un;un — upput;) and by, = 0 otherwise.
Therefore, h(c1, ..., cp—2) = %(unnu,ﬁ — Upynln), and thus we obtain

-1

Xn—1,m = (Upnltp — Upgitn) -

()"
Finally, let £,m € {1,....,.n —2}and m < €, and set ¢; = e if s < m, ¢y = e54+1
ifm <s <€ —1andcy; = ey otherwise. Then, Ly ,(c1,...,cn—2) = 0if g # £ or
r #m,and Lg m(c1, ..., cn—) = (=1)" ¢~ Meanwhile, by, = ML ifg=r<m-—1,
m<qg=r—1<{-=2,ord—-1<g=r—2<n—4,bp,3, = ﬁ,bn_z,r —
ﬁ(un;un — Uppity), and by, = 0 otherwise. Therefore,
(_l)n—l—m—l

h(ct, ..., cn—2) = (s ey pltn — Unnuiy) — ué(um;,un — Unnl))

(un)”H
(_Dn—l—m—l
- W(l{ﬂiu,ﬁ — Uppltp)
and thus, we obtain
—1
X&m = W(unéu,;, o un,;,ué) p

Then, the claim of Lemma 2 can be easily verified by the multilinearity of the deter-
minant. Il

Now, set cgm = ugm if € <iandm < j, com = gm+11f€ <iand j <m < n,
cen = ue if € < i, com = up1,m ifi <Landm < j, com = wpt1,m+1 if i < £ and
Jj <m < n,and cgp = ug4q ifi < €. Then,

Aij = (D" h(cr, oo cn2)
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u11 e WLG—1 Ul j+1 ... Uln u1
(—1)iHiHL (Bl e Mimljl Wisljdl e Bisln o Bicl
_W Uj+1,1 .. Ui41,j—1 Ui+, j+1 ... Ui4ln Ui+l
n
Unl ve Upj—1 Up,j4+l . Unn iy
i1 uj—1 Ujy1 Up 0
-1 5
IO

This completes the proof of Lemma 1. l

3. CONCLUSION

We have provided a formula calculating the sign of the (i, j)-th element of the Slutsky
matrix. This sign can be used to determine whether good i is substitute or complemen-
tary to good j. Hence, our formula is useful for determining whether some good is a
substitute good of another good or not.
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