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Abstract: In this paper we will conduct theoretical stability analysis and numerical 

analysis of international commercial fishing with two countries under imperfectly com-

petitive condition in the markets for the fish harvested by two countries in an open-
access sea. The sufficient conditions for the fish stock to become extinct, converge to 

a single or double equilibria, or become periodic, double periodic or chaotic are inves-

tigated. Numerical examples are presented for various values of the parameters in the 

fish's biological growth equation, of the harvesting costs and of the demand functions 

for the fish in two countries. 

Keywords: international commercial fishing, imperfect competition, dynamical system, difference equa-
tion. 
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1. INTRODUCTION 

 Many authors have studied different types of commercial fishing. For example Le-

ung and Wang (1976), and Wang and Leung (1978) have analyzed commercial fishing 
of a single species; Solow (1976), May et al. (1979), Okuguchi (1984) and Strobele 
and Wacker (1995) have studied the subject for multi species with prey-predator inter-

action. In most of these and some other papers the case of imperfect competition in 
the market for harvested fish is not considered and the price of the fish is taken to be 
constant. Moreover, partial or complete bifurcation analysis has never been attempted
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in these contributions. Taking into account the recent development in the theory of 

international trade under imperfect competition, Okuguchi (1998) has formulated in-
ternational commercial fishing under imperfect competition. In this paper we will first 

analyze existence and stability of single and double equilibrium points for the fish stock 

in his model. Then we will discuss different types of periodic and chaotic solutions for 
various values of the parameters in his model. This paper is organized as follows. In 

Section 2, we briefly present international fishing model due to Okuguchi (1998) and 
discuss the stability property of the long-run equilibrium fish stock. We then transform 
his system of differential equation into discrete system and consider numerical values 

of the parameters which give rise to different cases considered by Okuguchi. In Section 
3, we will use the maps corresponding to the discrete system and show different types 

of periodic and chaotic behaviors of the fish stock due to changes in the values of the 

parameters of the discrete system. Section 4 concludes.

2. INTERNATIONAL FISHING; STABILITY OF LONG-RUN EQUILIBRIUM

 Let there be two fishing countries and te X  the the fish stock. According to the 
biological growth law, its rate of change in the absence of fishing is formulated as 

follow. 
                   dX 

= X (a — 13X) ,(1) 
di 
 where a and, 3 are intrinsic growth rate and carrying capacity, respectively. Rewriting 

(1), we have 
dX = aX (1 — KX) ,(2) di 

Verhulst logistic equation, where K = . If there is no fishing, the fish stock converges 
to carrying capacity K. 

 If x,1 be the amount of fish harvested by country i and sold in country j, i, j = 1, 2, 
the inverse demand functions for the fish in the two countries are given by 

pi =a, — bl(xii +xji), i j, i, j = 1, 2. (3) 

where p, is the price of the fish in country i ; a, and b, are positive constants. The profit 

hi for country i is 

yr (xii+x'ij)2 hi = pi xi i + p j x, j— 
X—c, , ij ,i,j = 1, 2 , (4) 

where yr and c, are positive constants and c, is the opportunity cost of fishing for country 

i. According to (4), each country's harvesting cost is proportional to the square of its 

harvest rate and inversely proportional to the level of the fish stock. 
 Define X, = x, i +x12 and, Y, = xii +x2,, respectively. If each country maximizes its 

profits under the Cournot assumption about its rival country's harvesting and marketing 
of the fish, we have the following differential equation for the change of the fish stock 

(see Okuguchi (1998) for the detail of the derivation).
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 E/C

Figure 1. There is one positive equilibrium solution whenever  a < E/C and g(X) > f (X) for all 

        X, and the fish stock converges to the zero for any initial value.

d = X(f (X) — g(X)) , 
di

(5)

where

.f(X)=a-8X, (6)

DX + E  
9(X) AX2 + BX + C(~) 

   A = sbibi, B = 4blb2(bl + b2)(Yr + y2), C = 4YiY2(bl + b2)2, 

   D = 2blb2(alb2 + a2bl), and E = 2(bl + b2)(alb2 + a2bi)(yr + Y2) 

Obviously, from biological as well as economic point of view, we are interested only 
in the positive equilibrium points. From equation (5) the non-trivial equilibrium points 
for the fish stock satisfies f (X) = g(X). Note that x and y intercepts of the line f (X) 

are (0, a) and (a/,B, 0), respectively, and that (0, E/C)) is the y-intercept of g(X) and 
the x-axis is its horizontal asymptote. Furthermore, since g' < 0, g" > 0, the curve 

for g(X) is always decreasing and concave. Therefore, this curve does no intersect, 
intersects once or intersects at most twice with the line for f (X). 

 Case 1. As we can see in Fig. 1 , if the harvest rate of the fish is always greater than
itsCase 1. As we can see in Fig. 1 , if the harvest rate of the fish is always greater than  biological growth rate, i.e., no intersection between f (X) and g(X), then obviously 
the fish will become extinct in the long-run. 

 Case 2. If the harvest rate is always greater than the biological growth, the fish will 
become extinct unless the initial fish stock equals X*.
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 EX'

Figure 2. There is one positive unstable equilibrium point whenever a <  E/C and g(X) = f (X) at 
       one point and g(X) > f (X) for all other X.

 LEMMA 1. The equilibrium point X* in the case 2 is unstable and the phase por-

trait around X* always has decreasing direction. 

 Proof To see the stability type of this point note that the derivative of the right hand 

side of the equation (5) is 

F'(X) = [X (f (x) — g(X))J' = f (X) — g(X) + X(f'(X) — g' (X)) . (8) 

Since f (X*) = g(X*), f'(X*) = g' (X*) = — f3, we have F'(X*) = 0. On the other 

hand, F"(X*) < 0, since g"(X) > 0. This means that the right hand side of equation 

(5) has maximum at X*, hence, phase portrait around X* has decreasing direction in 
both sides of X* and the equilibrium X* is unstable (see Hale and Kocak(1990)). 

 Therefore, as we can see in Fig. 2, the fish stock converges to X* if the initial stock 
is greater than X* and vanishes if the initial stock is less than X*. 

 Case 3. In this case we suppose a > E/C. Then there is again one positive equi-
librium point X*. 

 LEMMA 2. The equilibrium point in case 3 is stable and the phase portrait around 

X* has different direction. 

 Proof Since a > E/C and the function f (X) is concave, we easily deduce that 

F(X) > 0 for all X < X*, and F(X) < 0 for all X > X*. This means that the phase 

portrait of equation (5) has increasing direction for X < X* and decreasing direction 
for X > X*. Hence, the non-zero equilibrium point X* is stable. This case is shown by 
Fig. 3. 

 Case 4. In the final case, we suppose the line for f (X) intersects g(X) at two 

points. Then as we can see in the following Lemma 3, these two equilibrium points 
have different stability property.
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 E/C

 X

Figure 3. There is one positive stable equilibrium point for a >  E/C and the fish stock converges to 
        this equilibrium level regardless of the initial stock level.

 LEMMA 3. If equation (5) has two different equilibrium points X* and X** such 
that X* < X** , then X* is unstable and X** is stable. 

 Proof According to Lemma 2, since the function F(X) has the same behavior 
around the point X**, this point is stable. However, this function around X* behaves 
differently, since for X* < X < X**, we have F(X) > 0 and for 0 < X < X*, 
F(X) < 0. That is, X* is unstable. This case is shown by Fig. 4. 

 So far we have analyzed dynamics for changes in the fish stock on the basis of differ-
ential equation. We discretize it to get Euler difference equation as follows. 

Xn+l = hXn (f (Xn) — g(Xn)) + Xn ,(9) 

where h is a discretization parameter. If we take the constants al = a2 = 1, bl = 
b2 = 0.5, yr = 0.3 and Y2 = 0.4, then the corresponding constants in function g(X) 
are A = 0.1875, B = 0.7, C = 0.48, D = 0.5 and E = 1.4. Note that the conditions 
CD — BE = —0.74 < 0 and B(CD — DE) + ACE = —0.196 < 0 are satisfied here, 
as we need them for g'(X) to be negative and g"(X) to be positive. We let /3 = 1 and 
take a as our variable parameter in function f (X). We furthermore let h = 0.5. 

 Taking different values for a to generate the various cases corresponding cases 1-4 
above, we have different types of equilibria as shown in Figs. 5-9. Now, if we take the 
value of a such that a < E/C and g (X) > f (X) for all X > 0, then, as we can see in 
Fig. 5, the fish stock vanishes in the long-run for any initial stock. 

 As a numerical example of case 2 above, we take the value of a such that a < E/C 
and g(X) > f (X) for all X > 0 except at one point X where g(X) = f (X). This value
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Figure 4.
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One dimensional-stair numerical solution of the map (9) together with phase portrait of the 

orbit for parameter value a = 2, which corresponds to the situation of case I.

of a can be calculated by solving  g'(X) = —1 
for solving g' (X) = —1 from (7) we have

(the slope of the line f(X)). Note that

9'(X) =

—ADX2 — 2AEX + CD — BE

(AX2 + BX + C)2
= —1,
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 Xn+1

Figure 6.
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One unstable equilibrium point X* = 0.71833 for a* = 2.3478192, which corresponds to 

the case 2 . The phase portrait is shown on the horizontal axis.
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Figure 7.
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One dimensional-stair numerical solution for the map (9) for the case 3, where 4.5 = a > 
E/C ti 2.917. The result is one stable equilibrium point X* = 3.9534.

which is an equation of degree 4 with the same constant values for A, B, C, D, and E 

as above. Solving this equation numerically gives us X* = 0.71833 as the only positive 
solution. The other solutions are negative and complex. Now finding g(X*) and solving 

equation f (X) = a — ,3X for this X* and /3 = 1 yields a* = 2.3478192. As we can 
see in Fig. 6, in this case the equilibrium point X* is unstable. 

 Now, taking a = 4.5 we will have case 3, where a > E/C and g(X) intersects f (X) 

at X* = 3.9534. In this case the steady state stock X* is stable (see Fig. 7).
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Figure 8.
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Figure 9.

8.0 Xn

Periodic-2 solution at X* ti 3.44 for a = 5.57 of the map (9).

 The last case to be considered is case 4. In this case if we take a such that E/C > 
a > a* (a* = 2.3478192 in case 2), then there should be two equilibrium points. 
Indeed, if we take a = 2.41, then we have two positive equilibria X* = 0.42994 and 

X** = 1.069. As we can see in Fig. 8, the first one is unstable, but the second one is 
stable.
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3. PERIODIC DOUBLING AND CHAOTIC SOLUTIONS

 Since our mathematical model (5) is non-linear and depends on different parameters, 

we can conceive of more complicated solutions other than the ones which we have seen 
in Section 2. This is in fact the case. The existence of such a solution can be established 

by taking different values for the parameter a. Indeed, using the same parameter values 
as in Section 2 and different values for a > E/C we observe different periodic solu-

tions. Note that, by taking the value a > E/C, as we have seen in case 4, the model 
has one non-zero solution. So, if a = 5.57, difference equation (9) for any starting 

point Xe E (0, 7.5) will have periodic solution with period-two (see Fig. 9). Indeed, the 
appearance of the periodic-two for all a E (5, 5.7) is the beginning of other sequence 
of periodic solutions that leads to a complicated dynamics, namely chaos. For example, 
for a = 5.7 we will have periodic solution with period-four, and for a = 5.881 the 

periodic-four orbit loses its stability and gives rise to an asymptotically stable period-
eight. Finally, for the parameter value a = 6.1 the dynamics of the model (9) becomes 

quite complicated. Indeed, for this value of the parameter the system is chaotic and this 
behavior continues until a becomes close to 7 (see Fig. 10). The bifurcation diagram 

for the value a C (2, 7.5) is illustrated in Fig. 11. Of course, there are some periodic 
solutions other than the ones that we have illustrated here. For example, in the area of 

the parameter a for which the system is chaotic, the system becomes again periodic all 
of a sudden in a small window of the parameter. Fig. 12 shows one of these situations 

where in fact a periodic-s solution for the parameter value a = 6.4 emerges.

Xn+1

8.0

6.0

4.0

2.0

 :.

•

•

•

•

•

•

•

0.0 2.0 4.0 6.0 8.0  XII

Figure 10. Chaotic solution for a = 6.1 with starting point X = 2.4.
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 Xn

6.0

6.0

4.0

2.0

Figure I I. Bifurcation diagram for 2  <  a < 7.5. As we can see, there 

2.3478192, different periodic solutions for 2.3478192 < a 

6<a<7.

a

is one solution for 0 < a < 

< 6 and chaotic solution for

Xn+l

8.0

6.0

4.0  Xn

Figure 12. Periodic-s solution for the parameter a = 6.4.

4. CONCLUSION

 In this paper we have summarized international duopoly mode of commercial fish-

ing originally formulated by Okuguchi (1998) as differential equation. We have trans-

formed his equation into Euler difference equation, which has been revealed to have 

more complicated solution paths for the fish stock. We have shown stability types of 

equilibrium points together with the phase portraits of the different orbits. Interestingly, 

periodic solutions with different even periods have been observed. In particular, the
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propagation of these periodic 
chaotic solutions exist.

solutions has led us to find parameter values for which
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