<table>
<thead>
<tr>
<th>Title</th>
<th>On the conditions that preclude the existence of the lerner paradox and the metzler paradox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Title</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>遠藤, 正寛(Endoh, Masahiro)</td>
</tr>
<tr>
<td></td>
<td>Hamada, Koichi</td>
</tr>
<tr>
<td>Publisher</td>
<td>Keio Economic Society, Keio University</td>
</tr>
<tr>
<td>Publication year</td>
<td>2005</td>
</tr>
<tr>
<td>Abstract</td>
<td>The Lerner paradox is the possibility that a tariff on an import good might worsen a country's terms of trade, and the Metzler paradox is the possibility that a tariff on an import good might reduce a country's import price. In a general equilibrium framework with multiple goods, this paper shows that the combination of the invertibility of the Slutsky matrix for the world economy and its similarity across countries will preclude both of the paradoxes. Also the combination of the gross-substitutes assumption for the world demand and a similarity assumption on the demand of an import country to the world will preclude the Lerner paradox. A modified similarity condition for the Slutsky matrix combined with the gross substitute for the world demand will preclude the Metzler paradox. A concept of non-surpassed diagonal is introduced to derive the result.</td>
</tr>
<tr>
<td>Notes</td>
<td>Special issue in honor of Professor Michihiro Ohyama</td>
</tr>
<tr>
<td>Genre</td>
<td>Journal Article</td>
</tr>
</tbody>
</table>

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.
ON THE CONDITIONS THAT PRECLUDE
THE EXISTENCE OF THE LERNER PARADOX
AND THE METZLER PARADOX

Masahiro Endoh

Faculty of Business and Commerce, Keio University, Tokyo, Japan

and

Koichi Hamada

Department of Economics, Yale University, New Haven, USA

First version received December 2005; final version accepted January 2006

Abstract: The Lerner paradox is the possibility that a tariff on an import good might worsen a country’s terms of trade, and the Metzler paradox is the possibility that a tariff on an import good might reduce a country’s import price. In a general equilibrium framework with multiple goods, this paper shows that the combination of the invertibility of the Slutsky matrix for the world economy and its similarity across countries will preclude both of the paradoxes. Also the combination of the gross-substitutes assumption for the world demand and a similarity assumption on the demand of an import country to the world will preclude the Lerner paradox. A modified similarity condition for the Slutsky matrix combined with the gross substitute for the world demand will preclude the Metzler paradox. A concept of non-surpassed diagonal is introduced to derive the result.

Key words: Lerner paradox, Metzler paradox, terms of trade, gross substitutes, dominant diagonal matrix.

1. INTRODUCTION

The Lerner paradox and the Metzler paradox have appealed to the intellect of economists for a long time both in their theoretical curiosity as well as their practical policy significance. The Lerner paradox (Abba Lerner, 1936) refers to the possibility that a tariff on an import good might worsen a country’s terms of trade. The Metzler paradox (Lloyd Metzler, 1949a) refers to the possibility that a tariff on an import good

Acknowledgements. We are much indebted to Masanao Aoki, Donald Brown, Kazuharu Kiyono, T. N. Srinivasan, Makoto Yano, and, in particular, to Koji Shimomura for valuable suggestions.

Copyright © 2005, by the Keio Economic Society
might reduce a country’s import price. Metzler examined thoroughly the effect of tariff on domestic relative price in a general setting, showed his “paradox,” and investigated what conditions might cause it.

“If the world demand for the tariff-imposing country’s exports is inelastic and if the tariffs reduce the demand for imports in the tariff-imposing country to a considerable extent, the fall in world prices of imports, relative to world prices of exports, may be so large that domestic prices of imports are relatively lower than before the tariffs were imposed, even after the tariffs are added to the world prices.” (Metzler, 1949b, p. 345)

This paper shows that, if one starts from the state of no tariffs in the world, the Metzler Paradox is precluded by two set of conditions: (1) the invertibility of the Slutsky matrix for the world demand and a condition of similarity of the matrix across countries, or (2) the combination of the gross-substitutes for the world demand and a similarity condition of the demand of the country that impose a tariff on its import to that in the world. The Lerner paradox is precluded by condition as described in (1), or by a condition imposed on the importing country as (2).

Indeed, the concept of gross-substitutability itself was noticed by Metzler (1945). Here it is found to be a useful tool for analyzing the paradox proposed by himself, as Mundell (1964) explored the link of the tariff question to the concept of gross-substitutability. The similarity condition to be required here concerns the similarity of trade structures in terms of the Slutsky matrix. When the income effects are moderate in each country, this condition is satisfied. This seems to be one of the reasons that Chipman (1990) considered the Metzler paradox along with the transfer paradox, because transfers may generate different income effects across countries.

2. MODEL

Suppose the world consists of two countries, A and B, and there are \(n + 1 \) commodities, \(j = 0, 1, 2, \ldots, n \). The non-negative vector of domestic prices for country \(K \) is expressed as \(p^K = (p^K_0, p^K_1, \ldots, p^K_n)' \) for \(K = A \) and \(B \), with \(' \) being the symbol for transposition. Good 0 is the numeraire so that \(p^K_0 = 1 \) for all \(K \). \(W \) refers to the total world.

\(E^K(p^K, u^K) \) is the expenditure function of country \(K \) (\(K = A \) and \(B \)), \(R^K(p^K) \) is the revenue function of country \(K \), and \(u^K \) is country \(K \)’s utility level, all defined on price vector in country \(K \), where \(p^K = (p^K_1, p^K_2, \ldots, p^K_n)' \), and \(t^K = (t^K_1, t^K_2, \ldots, t^K_n)' \). Good 0 is a numeraire. Let \(S^K(p^K, u^K) = E^K(p^K, u^K) - R^K(p^K) \), then each country’s budget constraint and the market clearing condition are as follows:

\[
S^K(p + t^K, u^K) - t^KS'_p(p + t^K, u^K) = 0, \quad K = A, B,
\]

\[
\sum_{K=A,B} S^K_p(p + t^K, u^K) = 0,
\]

\footnote{Lerner (1936) already mentioned this “Metzler” situation but only in a particular context where the government spends the most of tariff revenues.}
where $S^K_p = \left(\frac{\partial S^K}{\partial p_1}, \frac{\partial S^K}{\partial p_2}, \ldots, \frac{\partial S^K}{\partial p_n} \right)$. We start from the situation where not tariffs exist for country A and B, and suppose Country B increases t^B from 0 to dt^B. Then, p^A is equal to the international price p.

$$p + t^B = p^B$$

(1)

Noting that $t^A = t^B = dt^A = 0$, we obtain,

$$[\Omega] \begin{bmatrix} du^A \\ du^B \\ dp \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -S^B_{pp} dt^B \end{bmatrix},$$

where

$$(n + 2) \times (n + 2) \text{ matrix } [\Omega] = \begin{bmatrix} S^A_u & 0 & S^A_p \\ 0 & S^B_u & S^B_p \\ S^A_{pu} & S^B_{pu} & S^A_{pp} + S^B_{pp} \end{bmatrix},$$

$$S^A_u = \frac{\partial S^K}{\partial u^K}, \text{ and } S^A_{pu} = \left[\frac{\partial^2 S^K}{\partial p \partial u^K} \right].$$

If we eliminate the du^A and du^B, solving from the first two equations and substitute to the latter n equations, we obtain the relationship between dp (international vector) and dt^B (vector) such that,

$$\sum_{K=A, B} \left(S_{pp}^K - \frac{S_{pu}^K S_{pu}^K}{S_u^K} \right) dp = -S^B_{pp} dt^B$$

(2)

$$\sum_{K=A, B} \left(S_{pp}^K - \frac{S_{pu}^K (S_{pu}^K)}{S_u^K} \right),$$

which we will denote later as X^W, is the Slutsky matrix of the total world demand, that is the combination of substitution effect and the income effect. If this Slutsky matrix has the negative entries in the diagonal elements and negative elements in the off-diagonal elements, then goods are called gross substitutes.

The reader may wonder why dt^B is multiplied not by the Slutsky matrix but by the pure substitution matrix S^B_{pp}. The reason is that the income effect is cancelled by the envelope property in the duality approach.

Excess demand, import minus export, of those countries and of the world for i'th commodity are defined as the functions of domestic prices,

$$x^K_i (p^K_0, p^K_1, \ldots, p^K_n), \quad K = A \text{ and } B, \quad x^W_i = x^A_i + x^B_i$$

(3)

with price derivatives with the following familiar properties of gross substitutes explicitly defined for n goods except the numéraire. It is true that x^K_{ij} and x^W_{ij} may be defined for all commodities from 0 to n, but X^K and X^W are defined for commodities 1 to n, since commodity 0 is numéraire. Define the Slutsky matrix, or the matrix of the changes in demand in response to changes in prices, X^K and X^W.
The concept of gross substitutability in this paper can be related to the (now) standard analysis utilizing the duality properties of using expenditure and revenue functions above. One can see, for example,

\[X^K = \left[\frac{\partial x^K_{ij}}{\partial p^K_{ij}} \right] = [x^K_{ij}] \quad i, j = 1, \ldots, n, \quad K = A \text{ and } B, \quad (4) \]

\[X^W = \left[\frac{\partial x^W_{ij}}{\partial p^K_{ij}} \right] = [x^W_{ij}] \quad i, j = 1, \ldots, n \quad (5) \]

Here we introduce the concept of gross substitutability on the Slutsky Matrix.

DEFINITION (Gross Substitutability: GS). The goods are gross substitutes if and only if

\[x^K_{ij} > 0, \quad x^W_{ij} > 0, \quad \text{for } i \neq j, \quad K = A \text{ and } B. \]

These conditions imply, as well known, that

\[x^K_{ii} < 0, \quad x^W_{ii} < 0, \quad \text{for } i = 1, 2, \ldots, n, \quad K = A \text{ and } B. \]

ASSUMPTION I (Gross Substitutes). All the goods are gross substitutes.

According to studies by Arrow-Hurwicz (1958), Hahn (1958), and Negishi (1958), matrices \(X^K \) and \(X^W \) are non-singular and their inverses are with all negative elements. We call this property “a negatively invertible.” Needless to say, Assumption I implies Assumption IA below but not vice versa. The following condition of invertibility of \(X^W \) is implied by the Walrasian stability condition of the world market.

ASSUMPTION IA (Invertibility of \(X^W \)). \(X^W \) is non-singular.

For simplicity, we assume that the transportation costs are negligible, and that the specific duties are used as tariffs. Moreover, in order to obtain the insight into the simplest case, we assume that at the beginning no tariffs are levied in the world. We examine the conditions for the absence of the Lerner as well as the Metzler paradox when we start the situation where no tariffs exist. Suppose good \(k \) is an import of country \(B \). If a tariff on good \(k \) is imposed by country \(B \), that is, \(t^B_k = dt^B_k > 0 \), then under what conditions does it increase the international or exporter country’s price, that is, \(dp^A_k > 0 \) [Lerner paradox] or under what conditions does it decrease the importer country’s price, that is, \(dp^B_k < 0 \) [Metzler paradox]?

One can see below that this analysis may be extended to the world where transportation costs exist but constant, where subsidies exist, and where the tariffs take the ad-valorem tariffs. One can also analyze similarly the world where the initial levels of tariffs in both countries are not zero, except that the similarity condition of gross substitute matrix in equation (14) below should be in terms of international prices.
Definition: the Lerner Paradox occurs if $\frac{dp_k}{dt_k} > 0$; the Metzler Paradox occurs if $\frac{dp_k}{dt_k} < 0$. A Strong Form of the Lerner paradox occurs if the relative international price of the import to any other commodity increases (Lerner paradox), or the price of the import relative to any other commodity decreases (Metzler paradox).

Since $dp_k = dp^A + dt_k$, and $dt_k > 0$, (7)
both paradoxes never coexistent at the same time. Please note that, in the model of multiple goods, the terms of trade is not simply defined as the price ratio of a single import and a single export, but defined as the price of import or export in terms of the numéraire. The strong definition comes to counter this problem. Fortunately, the gross-substitute assumption among all the goods and the similarity assumption to be defined below is invariant to the choice of a numéraire.

3. THE CASE WITH IDENTICAL OR SIMILAR NET DEMAND STRUCTURE

In this section, we examine the effect of tariff reduction on terms of trade in the case with identical substitute structure as a preliminary analysis. As we have started, we consider the commodity k being exported from country A to country B, and suppose only the tariff on good k from country A to country B is increased from zero. An element k of t^B is changed. Let dt^B indicate the vector of changes in specific tariffs on goods imported from country A to country B. Specifically, we concentrate on the kth commodity on which the tariff rate is reduced. $dt^B = (0, \ldots, 0, dt_k^B, 0, \ldots, 0)'$. In the two countries we are taking account of, by the introduction of tariff concession, a wedge is introduced between the price of k in country A and country B. $dp^A + dt_k^B = dp_k^B$ always holds, then equation (2) implies,

$$X^W dp^A = -s^B_{pp} dt^B$$
(8)

or,

$$X^W dp^B = (X^W - s^B_{pp}) dt^B$$
(9)

Suppose that X^W and s^B_{pp} are proportionate, then the comparative statics of the model are simple. Assume $s^B_{pp} = \alpha X^W$ and $X^W - s^B_{pp} = (1 - \alpha)X^W$. Then, equations (8) and (9) equal to, respectively,

$$dp^A = -\alpha dt^B$$
(10)

$$dp^B = (1 - \alpha)dt^B$$
(11)

For the increase in the tariff in such a form that $dt^B = (0, \ldots, 0, dt_k^B, 0, \ldots, 0)'$, these equations indicate that $\frac{dp_k^A}{dt_k^B} = -\alpha < 0$ and $\frac{dp_i^A}{dt_i^B} = 0$ for $i \neq k$, and that $\frac{dp_k^B}{dt_k^B} = 1 - \alpha > 0$ and $\frac{dp_i^B}{dt_i^B} = 0$ for $i \neq k$. The domestic price of the k'th goods rises and the international price falls. Thus neither the Metzler paradox nor the Lerner paradox do
emerge. When α is close to zero, that is, the country A play the role of a large country and country B absorbs the most of a shock. The increase in import tariff on commodity k by country B increases its domestic price in country B by almost the same amount. On the other hand, the increase in import tariff on commodity k by country B decreases very little the price in country A, which is equal to the international price and accordingly the terms of trade for country A. A contrasting story can be told when α is close to 1. The international price takes care of most of the shock. This characteristic of the results for the case of the identical excess supply among countries is interesting, since the change of tariff on commodity k does not affect the price of other commodities.

Proposition 1. Suppose the excess supply structure of each country is identical. Then, under Assumption I A (invertibility of world trade structure matrix), neither the Metzler paradox or the Lerner paradox will occur. One unit of tariff increase for a commodity by country B will increase the price of the commodity in country B by the relative weight of country A, $1 - \alpha$, and decrease its price in country A by the relative weight of country B, α.

Our analysis can be extended to the case where trade structures S_{pp}^A and S_{pp}^B are not exactly similar, with employing an approximation. The effect of t^B_k on export country A without the assumption of proportionate substitution matrix above. From equation (8), it can be written as

$$dp^A = -(X^W)^{-1}S_{pp}^B dt^B$$

$$= -(X^W)^{-1}[\lambda_B X^W + (S_{pp}^B - \lambda_B X^W)] dt^B,$$ \hspace{1cm} (12)

where $\lambda_B = \text{augmin}_k \|S_{pp}^B - \lambda X^W\|$ and the norm of square matrix $A_{ij} = (a_{ij})$ of order $n \times n$, and the norm of a vector p with n-element are defined in this paper as (See, Bellman, 1960, p.165)

$$\|A\| = n \cdot \max_{i,j}(|a_{ij}|),$$

$$\|p\| = \max_j(|p_j|).$$

This definition of the norm is easily shown to satisfy regular triangle inequalities attached to the norm. Then, equation (12) is rewritten as

$$dp^A + \lambda_B dt^B = -(X^W)^{-1}(S_{pp}^B - \lambda_B X^W) dt^B.$$ \hspace{1cm} (13)

Considering the norm of equation (13),

$$\|dp^A + \lambda_B dt^B\| \leq \|(X^W)^{-1}\| \|(S_{pp}^B - \lambda_B X^W)\| \|dt^B\|.$$ \hspace{1cm} (14)

Here we introduce a Similarity Condition I.

Similarity Condition I. For a positive value of ε, $\|(S_{pp}^B - \lambda_B X^W)\| \leq \varepsilon/\|(X^W)^{-1}\| \leq \varepsilon/n(\max x_{ij}^*)$, where x_{ij}^* is the (i, j) element of $(X^W)^{-1}$.

Then, if Similarity Condition I is satisfied, equation (14) equals to

\[\text{In particular, } \|A + B\| \leq \|A\| + \|B\| \text{ and } \|AB\| \leq \|A\| \|B\|.\]
\[\| dp^A + \lambda_B dt^B \| \leq \varepsilon \| dt^B \|. \]

When only \(t^B_k \) is changed, namely
\[dt^B = (0, \ldots, 0, dt^B_k, 0, \ldots, 0)', \]
then, \(\pi^A_{ik} = \frac{dp^A_{ik}}{dt^B_k} \) is expressed as follows.

\[\pi^A_{kk} = \frac{dp^A_k}{dt^B_k} = -\lambda_B + \mu \]
\[\pi^A_{ik} = \frac{dp^A_{ik}}{dt^B_k} = \mu \quad \text{for } i \neq k, \]

where \(\lambda_B \) is a positive value not exceeding unity and defined by \(\lambda_B = \text{augmin}_\lambda \| S_{pp}^B - \lambda X^W \| \), and \(\mu \) is a scalar that can take either sign, but limited by \(|\mu| < \varepsilon \). The range of \(\pi^A_{kk} \) is \((-\lambda_B - \varepsilon, -\lambda_B + \varepsilon)\), and the range of \(\pi^A_{ik} (i \neq k) \) is within \((-\varepsilon, \varepsilon)\). This shows that the Lerner paradox does not occur. Similarly, for country \(B \),

\[\pi^B_{kk} = \frac{dp^B_k}{dt^B_k} = \lambda_A + \mu \]
\[\pi^B_{ik} = \frac{dp^B_{ik}}{dt^B_k} = \mu \quad \text{for } i \neq k, \]

where \(\lambda_A + \lambda_B = 1 \). As long as \(\mu \) is constrained by \(\varepsilon \), that is smaller than \(\lambda_A \), then \(\frac{dp^B_k}{dt^B_k} > 0 \). This is exactly the condition that excludes the Metzler paradox. The range of \(\pi^B_{kk} \) is \((\lambda_A - \varepsilon, \lambda_A + \varepsilon)\), and the range of \(\pi^B_{ik} (i \neq k) \) is within \((-\varepsilon, \varepsilon)\).

Proposition II. Under assumptions IA and Similarity Condition I with a sufficiently small \(\varepsilon \), neither will the Lerner paradox nor the Metzler paradox emerge.

The results above indicate the importance of the similarity of excess supply patterns in assessing the possibility of those paradoxes. If the trade structure is similar enough to give a small \(\varepsilon \), one can neglect the effect of a tariff change to a commodity on the price of other commodities.

4. **Gross Substitutability and the Absence of the Metzler Paradox**

In this section, we will discuss our questions under Assumption I, that is, the assumption of gross substitutes among goods. Also, we will show that if goods are gross substitutes, and if another similarity condition prevails, then there will be no Lerner paradox nor Metzler Paradox. Assumption I assures the invertibility of \(X^W \) (Assumption IA). In order to prove our main result, we utilize a lemma on the inverse of a dominant diagonal matrix which, to the best of our knowledge, is unfamiliar in textbooks or in their exercises.

For the world as a whole, the Warlas law ensures...
where the international \(n + 1 \) dimensional price vector is written as \(\bar{p} \) including the numéraire, that is, \(\bar{p} = (1, p)' \) and the augmented supply vector of \(n + 1 \) dimension as \(\bar{x}^W = (x_0^W, x_1^W, \ldots, x_n^W)' \), \(x_k^W \) being the net excess supply of good \(k \) in the world market as defined at the beginning of the paper. As Hahn (1958) showed in light of the fact that in equilibrium the excess supply equals zero, i.e.,

\[
\bar{x}^W = 0,
\]

this implies in terms of the \(n \times n \) Slutsky matrix for the world excess demand \(X^W = [x_{ij}^W], i, j = 1, \ldots, n, \)

\[
\bar{p}'X^W < 0.
\]

Thus for the world Slutsky matrix equation (2) holds exactly, and Hahn successfully used this property to prove the stability of general equilibrium market.

On the other hand, let us posit the following assumption on the pure substitution term of demand function of country B.

Assumption II. In country B, Goods are pure substitutes.

Then, starting from zero tariff situation, and utilizing the zero’th homogeneity of the demand function with respect to price vector and the symmetry of pure substitution matrix \(S_{pp}^B \), we obtain,

\[
p' S_{pp}^B < 0
\]

Proposition III. Gross Substitutability of the world total demand and the pure substitutability of country B sustain the absence of the Lerner Paradox.

Proof: The proof goes with several steps. We start with the fact that the international price weighted column sum of \(X^W \)’s positive off-diagonal elements has a smaller absolute value than the corresponding (negative) diagonal element (Step I). Next, we prove the lemma stating that the inverse of a simple (not weighted sum) dominant diagonal matrix in terms of the column has the non surpassed diagonal so that the the diagonal element is always equal or larger in absolute value than its corresponding off-diagonal row element (Step II). Finally, combining this unsurpassed property with the Euler’s relation for the compensated demand function, we can state a set of conditions to preclude the Lerner paradox and the Metzler paradox.

Step I

\(\bar{x}_i^W \) is homogenous of zero degree in terms of prices including the numéraire. Then, by Euler’s equation, \(\sum_{i=0}^{n} x_{ji}^W p_i = 0, \) for \(j = 0, \ldots, n. \) Good 0 is numeraire and \(p_0 = 1, \) then \(\sum_{i=1}^{n} x_{ji}^W p_i = -x_{j0}^W < 0, \) or

\[
|x_{ii}^W| p_i \geq \sum_{j \neq i} x_{ij}^W p_j, \quad \text{for } i = 1, \ldots, n
\]
Define $Y^W = PX^W$ and $Y^K = PS^K_{pp}$, where P is a diagonal matrix whose diagonal elements correspond to the element of international price vector p.

$$P = \begin{bmatrix}
 p_1 & 0 & \cdots & 0 \\
 0 & p_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & p_n
\end{bmatrix}$$

Accordingly, this gross-substitutability property of the world excess demand response matrix assures the stability of the market, invertibility of X^W and the fact that $(X^W)^{-1}$ is a negative matrix. Then, equation (19) is rewritten as the row sum condition for the element of $V = [v_{ij}] = [x_{ij} p_j]$

$$|v_{ii}^W| \geq \sum_{j \neq i} v_{ji}^W, \quad \text{for } i = 1, \ldots, n$$

(20)

In terms of $Y = [y_{ij}] = [p_i x_{ij}]$

$$y_{jj}^W \geq \sum_{i \neq j} |y_{ij}^W|$$

(21)

By those preparations, we will show below that the diagonal elements of $(X^A + X^B)^{-1} S^K_{pp}$ are all positive by utilizing the following curious lemma.

Step II (Lemma)

If $Y^W = [y_{ij}^W]$ is a matrix $y_{ii}^W < 0$, $y_{ij}^W > 0$ ($i \neq j$), and $|y_{ii}^W| > \sum_{i \neq j} y_{ij}^W$ (or $\sum_{i=1}^n y_{ij}^W < 0$), for all i, then Y^W is negatively invertible, i.e. $(Y^W)^{-1} = Y^W^* = [y_{ij}^W^*] < 0$, where the asterisk indicates the elements of the inverse matrix. And each non-diagonal element of any row is smaller than its diagonal element, that is, $|y_{ii}^W^*| > |y_{ij}^W^*|$ for $i \neq j$.

The first statement on the negativity of the inverse is generally known as the result under the column-sum condition, a special case of the dominant diagonal condition. The second condition that the diagonal of the matrix is larger than each off-diagonal matrix is perhaps new. We call the property of the inverse matrix as the matrix of “unsurpassed” diagonal.

Proof of the Lemma

We prove this lemma by induction on the order n of the matrix, and by partitioned multiplication of the matrix. Since the gross substitutability ensures the existence of a negative inverse Y^W_{n-1} of Y^W_{n-1}. Here asterisks indicate the fact that the element is a component of the inverse matrix.

$$Y^W^* = \begin{bmatrix}
 y^W_{n-1}^* & \cdots & y^W_{n-1}^* \\
 \vdots & \ddots & \vdots \\
 y^W_{n-1}^* & \cdots & y^W_{n-1}^*
\end{bmatrix} = \begin{bmatrix}
 y^W_{n-1} & y^W_{n+1} \\
 \vdots & \vdots \\
 y^W_{n-1} & y^W_{n+1}
\end{bmatrix}$$

(22)
where \(y_n^{W*} = (y_{n1}^{W*}, \ldots, y_{n,n-1}^{W*}) \) and \(y_n^{W*+} = (y_{n1}^{W*}, \ldots, y_{n,n-1}^{W*})' \). Then, \(Y^{W*}Y^W = I \), or,

\[
\begin{bmatrix}
Y_{n-1}^{W*} & y_{n-1}^{W*+} \\
y_{n-1}^{W*} & y_{nn}^{W*}
\end{bmatrix}
\begin{bmatrix}
Y_{n-1}^W & y_n^{W*+} \\
y_{n-1}^W & y_{nn}^W
\end{bmatrix} =
\begin{bmatrix}
I & 0 \\
0 & 1
\end{bmatrix} \tag{23}
\]

where \(Y_{n-1}^W \) is partitioned matrix. \(y_n^{W*} = -y_{nn}^W y_n^{W*} (y_{n-1}^W)^{-1} \).

\[
-y_n^W (y_{n-1}^W)^{-1} = -(y_{n1}^W, y_{n2}^W, \ldots, y_{n,n-1}^W) \begin{bmatrix}
y_{11}^W & y_{12}^W & \cdots & y_{1,n-1}^W \\
y_{21}^W & y_{22}^W & \cdots & y_{2,n-1}^W \\
\vdots & \vdots & \ddots & \vdots \\
y_{n-1,1}^W & y_{n-1,2}^W & \cdots & y_{n-1,n-1}^W
\end{bmatrix}^{-1}
\]

\[
< \left(\sum_{k=1}^{n-1} y_{k1}^W, \sum_{k=1}^{n-1} y_{k2}^W, \ldots, \sum_{k=1}^{n-1} y_{k,n-1}^W \right) \begin{bmatrix}
y_{11}^W & y_{12}^W & \cdots & y_{1,n-1}^W \\
y_{21}^W & y_{22}^W & \cdots & y_{2,n-1}^W \\
\vdots & \vdots & \ddots & \vdots \\
y_{n-1,1}^W & y_{n-1,2}^W & \cdots & y_{n-1,n-1}^W
\end{bmatrix}^{-1}
= (1, 1, \ldots, 1) \tag{24}
\]

The inequality above in (24) comes from the assumption \(\sum_{i=1}^{n} y_{ij}^W < 0 \), and the fact that all the element of the accompanying inverse of order \(n - 1 \) are negative by the assumption of induction. The last equality comes from the fact that each column of the inverse matrix is orthogonal to the elements in the form of summation in the preceding vector except one item with the synchronized index.

Since all the elements of \(y_n^{W*} \) and \(y_{nn}^{W*} \) are negative, \(|y_{nn}^{W*}| > |y_{nj}^{W*}| \) for \(n \neq j \).

(Q.D.E. of the Lemma.)

Step III

We show that the diagonal element of the matrix

\[
dp^A = -(X^A + X^B)^{-1}S_{pp}^B dt^B = -(X^W)^{-1}S_{pp}^B dt^B \tag{25}
\]

is positive under the assumption of gross-substitutes assumption for the world economy and substitutes assumption for country B. Define \(Y^W = PX^W \) and \(Y^B = PS_{pp}^B \). Because of the Lemma, \((Y^W)^{-1} \) has a “unsurpassed” diagonal such that \(|y_{ii}^{W*}| > y_{ij}^{W*} \) for \(i \neq j \). Then we show that the increase in tariff rate in country B produces the increase in domestic price in country B. Let \(dt^B = (0, \ldots, 0, dt_k^B, 0, \ldots, 0)' \), \(dp^B = (X^W)^{-1}S_{pp}^B dt^B = (Y^W)^{-1}Y^B dt^B \).

\[
(Y^W)^{-1} = Y^{W*} = [y_{ij}^{W*}]
Y^B = [y_{ij}^B] \tag{26}
\]
We are interested in the k'th column of \(dp^B \), which is the k'th element of

\[
-(Y^W)^{-1}Y^B dt^B = -\left[y_{k1}^{W*} \quad y_{k2}^{W*} \quad \cdots \quad y_{kn}^{W*} \right] \begin{bmatrix} y_{1k}^B \\ y_{2k}^B \\ \vdots \\ y_{nk}^B \end{bmatrix} dt^B .
\]

(27)

where

\[
-y_{kk}^{W*} y_{kk}^B - \sum_{i=1, i \neq k} y_{ki}^{W*} y_{ik}^B < -y_{kk}^{W*} y_{kk}^B - y_{kk}^{W*} \sum_{i=1, i \neq k} y_{ik}^B < 0
\]

(28)

The first comes from the unsurpassed nature of \(y_{kk}^{W*} \) and non-positiveness of \(y_{kk}^B \), and the last inequality comes from the similarity condition imposed on country B.

This implies \(\frac{dp^A}{dt^B} > 0 \), that is, the Lerner paradox does not arise. The Lerner's paradox does not occur when the world demand is gross substitute and the importing country's demand is substitute property.

The same argument applies for the absence of the Metzler paradox if the pure substitutability condition is replaced by the following Assumption.

Assumption III. With the international price vector \(p \),

\[
p'(X^W - S^B_{pp}) < 0
\]

holds.

The condition (29) holds if \(S^A_{pp} \) is substitutes and if income effects to the two countries more or less cancel each other.

Proposition IV. Gross Substitutability for \(X^W \) and equation (29) preclude the Metzler Paradox.

The proof comes through a similar way to Proposition III, if we recognize

\[
dp^B = -(X^W)^{-1}(X^W - S^B_{pp}) dt^B
\]

(30)

5. CONCLUSION

More than a half century has passed since Lerner and Metzler discovered these paradoxes, and since Metzler found the nature of the gross substitutes. Gross substitutes has played an important role in the general equilibrium analysis. In this paper we presented another way of utilizing this analytical concept in order to define the sufficient conditions to guarantee the absence of the Lerner and the Metzler Paradox in a general equilibrium of a world economy with many goods. It was shown that the assumptions of the stability of the market (or the invertibility of the Slutsky matrix) and the similarity of Slutsky matrices across countries exclude the possibility of the emergence of the Lerner paradox and the Metzler paradox. Also, gross substitutability among goods
and substitutability of demand in the import country will exclude the Lerner Paradox if the world economy starts from the zero tariff situation. Intuition of these pioneers is well grounded; paradoxes can happen a consequence of reasonable market forces if an asymmetry in excess demand structures and strong income effects exists between countries.

Conventional assumption like gross substitutability alone cannot preclude the possibility of these paradoxes, and, though both paradoxes emerge from similar mechanism, the Metzler paradox persists more robustly than the Lerner paradox. Our task has been to seek exactly what conditions suffice to exclude the occurrence of these apparently anomalous situations. A lemma on the inverse of a dominant diagonal matrix is introduced to clarify the situation. If the excess demand structure expressed by the Slutsky matrix is invertible and similar with each other, then these paradoxes are harder to occur. Also, the dominance of gross and net substitution rather than complementarity will help the avoidance of the Meltzer paradox.

REFERENCES