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THE CHARACTERIZATION OF THE COMMON PRIOR ASSUMPTION 

WITHOUT COMMON KNOWLEDGE

Yukihisa LITSUfylI

Department of Value and Decision Science, Graduate School of Decision Science and 
           Technology, Tokyo Institute of Technology Tokyo, Japan

First version received April 2002; final version accepted August 2004

Abstract: The purpose of this paper is to examine the situation in which agents are 
not hyper-rational and knowledge is incomplete, and to explore how agents find out the 

structure of games which they play or analyze, and how they construct a coherent model 
to the true game. That is, we study how they form a subjective model and learn the 

situation from past information. We prove that agents can know the true game according 
to an information accumulating process. Moreover we characterize the common prior 
assumption using a learning approach without common knowledge. 

Key words: Bayesian game, common prior assumption. 

JEL Classification Number: C72, C73, D82, D83.

1. INTRODUCTION

 Game theory has been widely employed as a useful tool for modeling a strategic 

interaction under certainty or uncertainty. In applying this method, however, we often 

need some assumptions. Each player in a game theoretical model and analyzers to 

use this model have to know who takes part in this game, which strategies players can 

use, what the outcomes are, and so forth. Moreover, the players are assumed to have 

the common prior probability under uncertainty. These suppositions are unrealistic in 

many complex situations, especially in modeling a social situation. 

 Exploring this incomplete situation where individuals do not have the above knowl-

edge, Harsanyi (1967/68) introduces the new class of games which is called the 

Bayesian game. In Harsanyi's paper each individual is assumed to be able to access 

to the same information and to have the same prior probability. This philosophy is 

called the Common Prior Assumption (henceforth CPA). Any difference in posterior 

probability assessments must be the results of difference in information under the CPA. 
Namely, individuals assign the same probability if they have the same information.

Acknowledgements. The author thanks Mikio Nakayama, Kazunori Araki, and referees of this journal 
for useful comments. E-mail: 
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 Harsanyi's approach is very useful and general in studying the incomplete informa-
tion. Not surprisingly, the CPA has been criticized as an artificial assumption. Aumann 

(1987) said that the CPA had no rational basis for people who had always been fed 
precisely the same information. 

 To justify the CPA, various ideas have been examined: for example  Aumann (1976), 
Morris (1995), Samet (1998) and Bonanno and Nehring (1999). Aumann (1976) shows 
that if the subjective probability of an event of each individual is common knowledge 
then these probabilities must be the same. In his agreement theorem, he gave a necessary 
condition for the existence of the common prior. Bonanno and Nehring (1999) extend 
his result to the game situation with incomplete information. Morris (1995) summarizes 
some approaches (logical justifications, frequentist justifications and so on) to justify the 
CPA. Samet (1998) proposes a necessary and sufficient condition for the existence of 
the common prior on a finite type space. His condition is the one in which it is common 
knowledge that the iterated expectation to converge to the same value among players. 
Most approaches have to assume something which is common knowledge. 

 One of the main concern of this paper is to propose a theoretical framework to jus-
tify the CPA without common knowledge. To do so, we use another word that agents 
forecast a situation in a subjective way. Moreover, we also consider that agents face con-
stantly the similar or new situation in society and can learn from additional information 
and their experiences. Namely, the agents are assumed to accumulate their knowledge 
and information. Under these hypotheses, it turns out that their personal forecast may 
become the correct one. That is, knowledge of an agent is revised according to the 
information accumulating process. 

 Before discussing the formal model, we introduce related literatures. Kalai and 
Lehrer (1995), Matsushima (1997) and Kaneko and Matsui (1999) have the similar 
motivation and background with our paper. 

Kalai and Lehrer (1995) investigate a situation in which no player possesses objective 
knowledge of the game and maximizes his subjective expected payoff based on his 
belief. They showed that subjective optimizers converged to a subjective equilibrium 
during the repeated play of the game. Matsushima (1997) explores the similar situation 
in which players know the set of actions but do not know their true payoff functions. 
Then players have to formulate their own game in a subjective manner. According to 
him, these games are characterized through inductive learning procedures, by a trivial 

game. in this game, there is a unique action which is efficient and strictly dominated. 
These two papers deal with the adapting process of each player's belief using a learning 
approach. On the other hand, Kaneko and Matsui (1999) establish the inductive game 
theory, using a differential approach with a similar motivation. In their paper, the player 
does not know the structure of the games, but may infer from his experiences, what 
has been occurring. Roughly speaking, they prove that each player can choose a Nash 
equilibrium strategy using accumulated active experiences. 

  Our paper discusses the information process in the mind of the agents and the struc-
ture of their knowledge instead of these previous approaches. So, our motivation is
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similar to Kaneko and Matsui. However, we mainly consider when the player can rec-
ognize the structure of games, while Kaneko and Matsui consider when the player can 

play a Nash equilibrium strategy. We prove that the agents can know the true game 
according to the information accumulating process. We consider that CPA is justified 
from this result even if there is no common knowledge. 

 The rest of this paper is organized as follows. In section 2, we introduce a new 
class of games, which is called an extended complete game, and define the structure 
of information and learning for an individual. In section 3, we prove that the complete 

games and the incomplete games are represented by the limit of an extended complete 
game under certain assumptions. In section 4, we show that assumption l is derived 
from another assumption which is more fundamental. We state the main theorem in this 

paper. The last section presents concluding remarks and extensions.

2. EXTENDED COMPLETE GAMES AND THE TRUE GAME

2.1. Bayesian Games and Extended Complete Games 
 In this subsection we define a new class of games, which is an extension of complete 

games. This generalized form enables us to characterize incomplete games and com-
plete games in the same method. We begin with explaining a relationship between a 
Bayesian game and a new class of games. 

 DEFINITION I . (Harsanyi 1967) 
 A Bayesian game is a system (N, (S; )IEN• (T; );EN, (tip )tElV, R), where 

(1) N is the (finite) set of players, 
 (2) for every i E N, Si is the set of actions of player i, 

 (3) for every i e N, Ti is the finite set of possible types of player i, 
 (4) for every i e N, vi : S x T R is the payoff function of player i, where 

      S := l;EN. Si and T ._ 11;EN T,, and 
 (5) R is the objective probability on T. which all players know in advance. 

 This objective probability R is called a common prior. To define an extended com-plete
 game we prepare a Game space. 

 DEFINITION 2. We define a Game Space as

I' = {(N. (Si),EN, (uj );EN) N is a set. Si is a set. ui : LT Sf R I , 
jEN 

where 
(I) N is the set of agents to play a game, 

 (2) Si is the strategy set of player i, 
 (3) u; : il;EN Si — R is the payoff function of player i. 

 Intuitively this space consists of all complete games. We consider the situation where 
an agent is supposed to choose some games from this game space and assign probabil-
ities to them. Formally we define this situation as a game called an extended complete 

game.
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 DEFINITION 3. An Extended Complete Game is a system  ({  Gk  4=1.....,,,, P). where 

 (1) Gk = (Ni, {SI}.ENk,(u~}/ENk)eF for all k = 1.....m, 
 (2) u : ENI. Sf -~ R is the payoff function at the game Gk, and 

 (3) P is the probability on (Gt}k I....,,,,. 
Note that. in case P(G') = 1 or in = 1, an extended complete game becomes a 
complete game. In this sense ((Gk }k_I.....„t, P) is an extension of complete games. 
Figure 1 illustrates an example of extended complete games.

Figure

A  B

A  a  , bl a3. b3

B a?, bl a4, b4

A  B

A  c~, d~ c3, d3

B c), d~ C4, (14

 Gt G-l

1. These matrices illustrate the extended complete game ({GI, C2), P). The left side matrix GI 

  and the right side matrix G2 denote 2 x 2 games. P(GI) and P(G2) are probability to occur the 

game GI and G' respectively.

 A Bayesian game does not coincide with an extended complete game. In spite of this, 

if Bayesian games and extended complete games satisfy the following five conditions:

(1) 
(2) 

(3)

(4) 

(5)

IT I = m, that is, the number of types is equal to the number of games, 
for all k = 1, ... , in, N = Nk, that is, the set of players is the same, 
for all k = l....., in, and for all i E N, S; = Sit, that is, the set of actions is 
equal to the set of strategy in the game Gk, 

for all t E T, V; (t) = uti, and 

for all t E T, R(t) = P(G`),

then we can state a relationship between them. 

 PROPOSITION I . Under the above five conditions, 
I. A Bayesian game has a unique extended complete game. 

  2. An extended complete game defines some Bayesian games. 

 Proposition 1-1 suggests that a Bayesian game is characterized by an extended com-

plete game. At the same time we can also conclude from proposition 1-2 that an ex-
tended complete game is represented by some Bayesian games. In this sense we call 
the extended complete game, which satisfies the previous five conditions, the quasi-
Bayesian. Game. 

The following result says the equivalence about quasi-Bayesian games. 

  LEMMA 1. Let ((Gk }k_1....,,,,, P) be the quasi-Bayesian game. The game, to which 
P-null sets are added, is also the same quasi-Bayesian game. 

Proof If and only if G is the P-null set, P(G) = 0. Then, even if we add P-null 
sets, the structure of the quasi-Bayesian game does not change. ^
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2.2. The Structure of Games for an Agent and the Rue Game 

  Next we introduce the extended complete game for an agent and the true game. The 
former is a game that an agent forms or guesses in a subjective way. and the latter is 

the game that describes the true situation and that an agent does not always know in 
advance. We suppose that the situation is determined by the true game and that each 
agent forecasts it in a personal way. 

DEFINITION 4. An extended complete game for agent i is a system 

({Gr }.—t.....g(i)'Pi), where 

(1) E I' for all j = l , ... , g(i ), and 

 (2) Pi is the subjective probability of agent i on {G' } f_1 g(l). 
 In this paper, we consider an agent as a player to join a game or an analyst to construct 

a game theoretical model. In any case, we assume that each agent takes some games , 
which is finite, from the game space T. Agent i has a subjective probability PI over 

{GI}j_ .....g(l) because of the axioms of Savage (1954), Anscombe and Aumann (1 963) 
and so on. In this sense, we may regard the extended complete game for an agent as a 
subjective concept. We consider the extended complete game for an agent as the game 
which he expects or believes in a personal way. For notational convenience we write 
simply GI instead of {Gt } 

 The true game is supposed to be given by the extended complete game. The true 
situation is also assumed to be determined by the true game in our paper. This game 
is denoted by ({Gk}k=1.....,,,, Q), where Gk E T for all k = 1, ... , m, and Q is the 
probability over { Gk }k_ 1....,,,, . In the same reason we write T G instead of { Gk }k_ 1,...,,,1. 

 In the similar way, the extended complete game for agent i at period t is defined as 

({Gil..... Gr`)}1, pl,1), where (G), ... , G9t}t is the set of games for him to select 
from T at period t, and pl,1 is his subjective probability on {Gr , ... , Gr`)}r at period t. 
For notational convenience Gt,t = (G)1, ... , Ggt` 1 }1. Moreover, the true game at period 
t is described by (TG,, Qt ), where TG, := TG is the set of games and Q, := Q is 
the probability over TG,. We assume T G, and Q, do not depend on times, because we 
consider the true game is always given uniquely and does not change through times . 

2.3. Information and Learning 
 Let (GI,1, Pi,,) be the extended complete game for agent i at period t. Since pi,t is 

the probability measure on Gt ,,, agent i 's information is expressed by a a-algebra of the 
subsets of G, ,,. In addition to this notion we consider that agent i can observe the game, 
which occurred at the previous period, and learn from his past information . To make 
this idea concrete we introduce a dynamic model where agents are assumed to face the 
same situations for several periods, and in which they are supposed to be informed of 
the basic situations over time. 
 Let GI :_ f x 1 GI,, be the product set of GI,1 and Pi be the product probability 

measure over GI. To characterize an agent's information, we adopt a partition of GI.1 

1 This partition approach is sometimes adopted. Monderer and Samet (1995) use the same approach.
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 We define a partition of GI at period t as Ti,,. Pi,, (G) denotes the element of P31,, 
which contains G E GI. Moreover, we assume that these partitions satisfy 

Ti,r (G) D Pi,,+l (G) 

This supposition describes the situation where agent is information is refined and ac-
cumulated by observing past information. According to this refinement processes, an 
agent knows the realized game and learns from his past experience. Then, a sequence 
of a-algebras {Ti.,) generated by the partition Pi_,} forms an information increasing 
class.' In other words (Ti,,) satisfies 

             C . 

We summarize the previous notions. 

 DEFINITION 5. The structure of information and learning for an agent i is defined 
as the filtered probability space (GI, 5", {Ti,t), Pi), where 

(1) Gt is the product set of GI,, . 
 (2) 3 is a product a-algebra of the subsets of G , 

 (3) ff!.t } is a filtration, and 
 (4) 1Pi is the product probability measure and is called subjective probability. 

 This specification shows essentially that each agent constructs a subjective probabil-
ity of what games are going to happen, based on information about what games occurred 
in the past. Concretely Pi denotes his forecast for games at the initial period. Besides, 
the condition ~i,, of the conditional probability Pi ( Iii r) indicates his information and 
observation until the period t. For this reason, the conditional probability Pi (-o-i.1) ex-

presses his forecast for games at period t -I- 1. Namely, an agent is assumed to revise his 
prediction Pi (•Iffi,,) by Bayesian learning. 

 Finally, we state the product set of the true game in the same way. The product set 
of the true game is denoted by (TG, Q), where 7G :=rj°__ITG, and Q is the product 
probability measure on 7G.

3. THEOREM

 If an agent faces and observes the same situations repeatedly, he may have another 
forecast about games. Namely, he becomes familiar with the game, which he joins 
or analyzes, by using his experience, intuition and so on. As it turned out, it may be 

possible for him to find out the true game. In this section we state a positive massage 
to this prospect. We prove that the quasi-Bayesian games and complete games are 
represented by the limit of the extended complete game for an agent i under some 
assumptions.

  2 The filtration is also given by another way. For example when the game, which player i observes 
at period t, is expressed by the random variable fl and his information :Yid is given by _fit...., fi", his 
information ~it becomes a filtration.
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  First of all, we adopt the next assumption 1 to prove the results simply. The reader 
may think this assumption is too strong to verify the theorem, however we show that it 
is derived from more fundamental and weaker assumption in section 4. 

  ASSUMPTION  1. (Gk)k=1.....t,t,t C {GI)j•=1 ,g(i) tfor all i and t = 1, 2,.... 
 This assumption suggests that for each t the extended complete game for agent i 

contains the true game. Using assumption 1, we can add the games (G,,, \T G,) to 
the true game as Q-null sets. We abuse the notation TGt and regard this new games 
((G,,t\TG1) U TGt) as TGt. 

 For this reason we can assume the following condition through this technical opera-
tion. 

  ASSUMPTION 2. Qt '< pl,, for all i and t = 1, 2,.....3 
 Assumption 2, which is called an absolutely continuous condition, means that 

Q, (G) > 0 implies Pi.t (G) > 0 for all G C TG,, so that the prediction by Q, is 
also predicted by Po. Moreover, even if there is a game not to happen in the true game, 
an agent can assign a positive probability to this game. Accordingly we permit that he 
can have a wrong expectation. This assumption is usually adopted in Bayesian learn-
ing literatures, (for example, see Feldman (1987), Kalai and Lehrer (1993, 1995), and 
Nyarko (1998)). 

  LEMMA 2. If'Q, < Pi.r.for -all t = 1, 2.... then Q «Pi. 

Proof. We will show that for all G E TD0 , Q(G) > 0 implies tp, (G) > 0. Let 
G = nill GI be the product set in TG. For all G E 

Q(G)>0= Vt=1,2,... Q(Gj)>0 for all /=1,2,... 
Vt = 1, 2, ... P;,, (GI) > 0 for all 1 = 1, 2, .. . 

= Pi(G)>0. 

 Using lemma 2, we may interpret assumption 2 in another way. If assumption 2 
follows for all agents, we can consider that they have a common accessible information, 
which is described by Q. 

 The following result is useful to prove theorem 1. 

 LEMMA 3. For all f E L I and for every monotone increasing sequence PH) of 
a'-algebras converging to a a-algebra B, 

lira E[ f IB„] = E[.f IB] almost everywhere . 
n,-->00 

Proof The proof is basically the same as Theorem 35.6 in Billingsley (1995). ^ 

3 Let P and Q be the probability measures on a set Q, and E be a a-algebra of subsets of Q. Now, 
Q < P denotes that Q is absolutely continuous with respect to P, and means that Q(A) > 0 implies 
P(A) > 0 for all A E E. In our setting, we regard S2 as TG, = G;,, from assumption 1 and the technical 
operation.
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  The following theorem is a basic result in this paper. 

  THEOREM 1. Under assumption 1 and 2, 

Q(A II-t,x.) = rim IPi (A lTi.t) (a.e.) 
t-*x 

for all A E C TG. 

Intuitively, theorem 1 tells us that an agent can find out the true game, which is 
characterized by the extended complete game, as t goes to infinity, since his updating 

process works well under assumption I and 2. 

  Proof From lemma 2, Q < pl follows. We can see from Radon-Nikodym's theo-
rem that 

I 3f (G) : J-j,x-measurable s.t.If (G)dIi = Q(P) (1) 
                                            J' 

for all P E l x. Using the definition of conditional expectation and lemma 3, we 

examine the following two cases, for all P'1,t _1 E ~It . 
 Case 1. Pi (Pi,t_ (G)) � 0.

1   E
p [.f (G) I Pi,t-~ (G)] =IP

i(~i.r-l (G))~; ,ti(G) 

                  c(Pi.t-l(G))  
IPi(Pi./-1(G)) 

Q(Pi,x (G)) (a .e.) . 
(5)i,(G)) 

Case 2. F1(pl,_ (G)) = 0. 
In this case, theorem 1 is trivial by Q < Pi. Let us 
Since Pi,. (G) C Pi,t- i (G),    

rim -------------------------------------- IP; (P; ,-.„(G)tp; ,_, (G))

f (G)dIPl(G)

(from (1) ) 

(Lemma 3)

                                Let us consider the case 1 as follows.
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       t > to . j (Pt,ac(G)IPt,t—i (G)) — Q(;PisOo(G)I'Pi.t-l(G))I < s 

on TG\F. Let A be an atom of 3, x. We can see 

              t ? to IPi(Aql .r) —Q(AI3 .I)I < s. 

In fact, since A. is not contained in Pi,l (G), it follows that P, (A I Ti,t) = 0 and 
Q(Al Ti.t) = 0. 

Hence, 

rim Iii (A I~ir) = Q(A I too) (a.e.) . 

The proof is completed.^ 

 Based on this theorem each agent can find out the same information which is also 
true, if they have a common accessible information. Since the conditional subjective 

probability for agent i converges to the conditional true probability, we may interpret 
that the limit of his prediction coincides with the true probability. As a result the quasi-
Bayesian game is represented by the limit of the extended complete game for an agent. 
Roughly speaking, a Bayesian game is characterized by the limit of extended complete 

game. Moreover this theorem tells us that when agents satisfy assumption 1 and 2, 
they can find out the same game and agree to this game theoretical situation. Namely, 
even if they do not have the common prior, they can know the quasi-Bayesian game 
under these assumptions. From this theorem, the common prior is characterized by the 
limit of a subjective probability. the CPA is justified without common knowledge. How-
ever, when the jure game is a Bayesian game, each player may know another Bayesian 

game and cannot learn the true game, according to Proposition 1 and Theorem 1.4 An 
extended complete game and a quasi-Bayesian game consist of finite complete games 

, Gm). For this reason, the player can know the true game at the positive prov-
ability when the true game is a Bayesian game. Furthermore, we can prove a more 

powerful statement as follows, since complete games are considered as a special case 
of extended complete games, 

PROPOSITION 2. A complete game is represented by the limit of extended complete 

game. for agent i wider assumption 1 and 2. 

 Proof A complete game is the special case of extended complete game where the 
true game T Gt is a singleton and a probability measure Qt over T G, assigns one to this 
unique set. For this reason we can apply the same proof of theorem 1 to this proposition 
and our conclusion follows.^ 

 Using this result, even if agents do not have the common prior and common knowl-
edge of the structure of the true game, they can perceive the complete game, which 
describes the true states. For example let the true states be described by the famous 
complete games: the Prisoner's Dilemma, the coordination game, Matching Pennies 
and so on. Players and analysts can recognize these games as time goes to infinity. In 
this sense, our results are opposite to Matsushima (1997). 

4 This comment is suggested by referees.
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4. THE POSSIBILITY TO ASSUMPTION  I

 It is natural that an agent should experience  and observe the game which he does not 

predict. Likewise it is not realistic for him to know the all elements in (Gk Jk_I.,,,,„, (the 
true game) at the initial period. For this reason the reader may feel that assumption 1 is 
strong. We can prove, however, from more fundamental and consistent assumption that 

assumption 1 holds with probability one. 
 This basic hypothesis is informally that if an agent faces the game which he does not 

expect, then he chooses games from the game space F including this game again. By 
this assumption, an agent's information increases and he becomes familiar with the sit-
uations whenever he experiences an unpredictable game. In short, an agent is assumed 

to learn the situations and to accumulate his knowledge from his past experiences and 
events. In this sense, we can consider that the following assumption is consistent with 

the situation where an agent learns from his experiences. 

ASSUMPTION 3. Let Gk ¢ {GI. } g(i~ r. If Gk occurs at period t, then 

(Gill.r+111 D (Gk} U {G? }J-I.....01 , until the finite period t 

PROPOSITION 3. Under assumption 3. {Gk}k_I„_.,m C (Gil 00 holds with Q-

probabilitt' one. 

  Proof Let A„ be the event where the game G' E {Gk }k-l ...,„, occurs at period 

n. Since the game occurs independently for every period, A„ and A,,, are independent 
events. Moreover, noting that Q(A„) = > 0 for each n E N, it follows that 

~oG 

EQ(All)= =De. 
11—111=1 

  Then we can conclude from Borel-Cantelli's theorem,5 

                       Q(rim sup A„) = 1 . 
n—>x 

  Since the previous proof does not depend on i = I , ... , in, it follows from the defi-

nition of the upper limit of A„ that GI , ... , GJll occur for infinitely many periods with 

Q-probability one. By assumption 3, we can conclude that (Gk}k—I.....„, C 1G1) 
holds with Q-probability one. 

  COROLLARY 1. Under assumption 3, {Gk}k—I,...,m C{Gt}j—l .....g(i>,rholds with 
positive Q-probability. 

  If the true game is a complete game, the following statement follows directly from 
assumption 3. 

  PROPOSITION 4. Under assumption 3. it follows with Q-probability one that there 

exists to E N such that {G} C {GI }J_1....,9(1).r for all t > to. 

  The following assertions are main massages in this paper. 

5 See for example Capinski, M. and Kopp, E. (1999).
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  THEOREM 2. Under assumption 2 and 3, a quasi-Bayesian game is represented by 

the limit of the extended complete game for agent i with positive Q-probability: 

Proof: From corollary 1 we can define assumption 2 with positive Q-probability . 
For this reason we verify this result in the same way, and complete this proof . ^ 

  PROPOSITION 5. Under assumption 2 and 3, a complete game is represented by 
the limit of the extended complete game for agent i with Q-probability one . 

 These results tell us that when agents satisfy assumption 2 and 3. they can perceive 
the same game and agree to this game theoretical model. In short even if they do not 

have a priori knowledge of the structure of the true game which they play repeatedly , 
and do not have a common prior, they can recognize the quasi-Bayesian games and 

complete games. The common prior assumption is justified from this theorem even if 
individuals do not have common knowledge.

5. DISCUSSIONS AND CONCLUDING REMARKS

 In this paper we consider that agents forecast a situation in a subjective way, and show 
that they can know the true game according to the information accumulating process. 
Concretely complete games and quasi-Bayesian games are expressed by the limit of the 
extended complete game. For this reason, we interpret that even if agents do not have 
common knowledge they can recognize these games. Namely, the Common Prior is 
characterized by the limit of a subjective probability. We have to say that when the true 

game is a Bayesian game, the players may know another Bayesian game and cannot 
recognize the true game. However, the player can know the true game at the positive 

provability in this case, since a quasi-Bayesian game consists of finite complete games 
(GI..... G'n ). To improve this point is one of our future's topics. 

•
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