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COMPETITION AND EFFICIENCY IN INDUSTRY EQUILIBRIUM

Jati K. SENGUPTA

Department of Economics, University of California, 
           Santa Barbara, USA

First version received November 2002; final version accepted June 2003

Abstract: Efficiency of competitive industry equilibrium is analyzed here at two lev-
els: firm efficiency and market efficiency. Efficiency at the firm level is determined in 
a semiparametric way by extending the nonparametric methods of efficiency measure-
ment. The competitive industry then selects the optimal number of efficient firms by 
minimizing total industry costs under given market demand. Conditions of convergence 
to the efficient industry equilibrium in terms of Walrasian price and quantity adjust-
ments are also discussed.

 1. INTRODUCTION

  Competition has been most intense in recent times in the new technology-based in-
dustries such as computers and telecommunications. Declining prices and average costs, 
accelerating global demand and increasing innovation efficiency have intensified the 
competitive pressure in these industries. The key role in this competitive pressure has 
been played by the cost efficiency of individual firms and the increasing market share of 
the cost efficient firms over time. At the industry level this has also intensified the exit 
rate (declining market share) of firms which failed to remain on the leading edge of the 
cost efficiency frontier. 

 Our objective here is two-fold. One is to analyze the dynamics of the market selection 

process in this competitive environment, where cost efficient firms prosper and grow and 
the less efficient ones decline and fall. The second is to analyze the cost efficiency of a 
firm in a nonparametric way based only on the observed cost and output data of firms 
comprising the whole industry. 

 Our analysis follows a two-stage approach. In the first stage each firm minimizes 
costs, given the market price. The estimation of the firm's cost frontier is obtained 
through a nonparametric approach, which has been adopted in recent years. This non-

parametric approach initially developed by Farrell (1957) and later generalized in the 
theory of data envelopment analysis (DEA), see e.g., Chaines et al. (1994) and Sen-

gupta (2000) estimates the cost frontier of a firm by a convex hull method based on the 
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observed cost and output data of all firms. Unlike the method of least squares it does not 

purport to estimate an average cost function, i.e., it attempts to estimate cost-specific 
(input specific) efficiency of each firm relative to all other firms in the industry. 

 In the second stage the market clearing price is determined in the industry by min-
imizing total industry costs. The dynamics of adjustment around the industry equilib-
rium is then analyzed by a Walrasian process where prices rise in response to excess 
demand and fall in response to excess supply and the firm's output adjusts according to 
profitability.

2. THE TWO-STAGE MODEL

 In the DEA models of efficiency analysis the cost efficiency has been separately ana-

lyzed from market efficiency. Thus Athanassopoulos and Thanassoulis (1995), and also 
Norman and Stoker (1991) analyzed market efficiency in a two-stage approach, where 

the relative efficiency of an individual firm in capturing its share of the total market is 
analyzed by a linear programming (LP) version of the DEA model. We attempt here 

to generalize this method by explicitly allowing a nonparametric treatment of the two 
stages. In the first stage we estimate a cost frontier in a quadratic convex form for a 

firm. The second stage allows the market selection process to select the most efficient 
of the firms specified to be cost efficient in the first stage. This method is very similar to 
the economic approach of Farrell and Johansen (1972). Farrell applied the convex hull 

method of estimation of technical efficiency without using any market prices but men-

tioned allocative efficiency as the industry level when the input and output prices are 
assumed to be determined by demand supply equilibrium in the market. Johansen used 
the individual firm's production frontiers to determine the industry production frontier 

by maximizing total industry output under the constraints imposed by the aggregate 
inputs and the convex technology. 

 In our approach we consider first the problem of estimation of the firm-specific cost 

frontier. Let Ch and  Ch be the cost function and the cost frontier (i.e., minimal cost 
function) of firm h, where Eh = Ch - Ch > 0 indicates cost inefficiency. We assume 
Ch to be quadratic and strictly convex, e.g., Ch = yo + yr yh + Y2y2i, where y is output 
and the parameters yo, yr, y2 are all positive. For estimation of these parameters by the 

DEA approach we set up the LP model

Min £h = Ch - Ch 

 s.t. Cl > yo + YiYi + y24; j = 1,2,...,n (1)

based on n observations (Cl, yr ). Here total costs Ci include both variable and fixed 
costs and all firms are assumed to follow a given common technology. Timmer (1971) 

applied a variant of this method by minimizing the sum of absolute value of errors 

Eh-l Eh, since his interest was in robust estimation of the production function. Sen-
gupta (1990) has discussed other forms of estimation including corrected ordinary least 
squares and the generalized method of moments. The main advantage of this type of
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DEA estimation is that it is firm specific. 
the dual of the LP problem (1): 

 Min  E~,;C; 
j=1

s.t. E A.i Y j 
=1 

E j Al

To see this more clearlyl one may consider

yh; EAjyj ? yh 
.1=1 

>1; Aj>0; j=1,2,...,n

(2)

This can also be written as 

Min 9 s.t. A E R and 

          En (3)             R = E < 9Ch and the constraints of (2) 
j=1 

and is the column vector with n elements (Al) representing nonnegative weights of 

the convex combination of costs for each firm. Here 9 is a scalar representing a measure 
of inefficiency, i.e., 9* = 1.0 indicates 100% efficiency and 9* < 1.0 denotes less than 

full efficiency, i.e., relative inefficiency. 
 On using the Lagrangian function 

L =-9+,i(eCh — EA; C;)+al(EAly; —Yh)+a2(EAJy; — 
+,ea(EA; — 1) 

and applying Kuhn—Tucker conditions with respect to 9 and Al one obtains the cost 
frontier for firm j , when all the slack variables are zero 

,Bah = 1, 0 free in sign and 

              Ci=Yo+Ylyj+Y2)j;Yr>0,i =0,1,2(4) 
where yo = .80/,8, Yr = al /a and Y2 = a2/ P. 

 Note that the condition a L/89 = 0 yields the numeraire condition. On varying h 
in the index set In = { 1, 2, ..., n } the cost efficiency frontier for all the firms can be 
determined. Note that for any firm h which is less than 100% efficient, i.e., 9* < 1.0, 
one can adjust its cost C; to 9*C; so that in terms of the adjusted cost firm h will be 
100% efficient. Note that if we drop the constraint EAl4 > yh from (2) we obtain the 
linear cost frontier 

              Ch = Ch = yo + yr yh(5) 
Here the constraint >; A y? > yhimplies that the resulting cost function is strictly con- 
vex, which yields a unique cost minimizing output. Thus equation (4) may be viewed as 
a semiparametric method of determining the cost frontier, whereas (5) is usually called 

the nonparametric method of estimating the cost frontier. Next we consider the second 

 1 The objective function of (1) may be written as: Max Ch = yo + vi y j + y24 so that the dual problem 
may be written as a minimization problem.
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stage of the market demand process which selects among the first stage efficiency set, 
so that the total industry cost (TC) is minimized. But since the cost frontiers of firms 

are not all identical, we have to assume that firms are identified by their cost structures, 
where each firm is assumed to belong to one of m possible types of costs, each produc-
ing a homogeneous output. Let  n; be the number of firms of type j = 1, 2, ..., m cost 

structure. We now minimize TC for the whole industry, i.e.,

Min TC= >n;C;(y;) 
     {n~,Y)} ; -1(6) 

                s.t. Emn; y; > D; (hl, y;)>0 
J=1 

where C; = C; (y;) denotes the cost frontier of firm j in terms of either (4) or (5). 
Total market demand D is assumed to be given. Clearly if D > 0, then we must have 
n; y; > 0 for some j = 1, 2, ..., m. On using p as the Lagrange multiplier for the 
market demand supply constraint and assuming the vector n = (n 1, .......n) to be 
given, total industry cost TC in (6) is minimized if and only if the following conditions 
hold for given D > 0, 

MC; (y;) — p(n, D) > 0 and y; [MC; (y;) — p(n, D)] = 0 , for all j (7) 

where MC; = MC; (y3) is the marginal cost frontier, i ... , MC; = yr + 2Y2 y; and 
p = p(n, D) may be interpreted as the market clearing price, i.e., the shadow price 
which equates total supply S = >n; y; to demand D. Let 9 j = 9 j (p)be the optimal 
solution to (6). Here price p depends on n and D and hence y; (p) may also be written 
as y; (n, D). Then clearly it follows that y; variables are uniquely determined given D 
and vector n. Optimal total costs can then be specified as 

                  TC = E n; C; (9 j (n, D)) 
—I 

 Now consider the Lagrangian function L 

L=— Enl(yo yiyj  + Y24) + p( n;y; — D). 

The first order conditions aL/an; = 0 = aL/ay; yield 

p=AC; = yo/ yj+YI+y2y> and p=MC; =yI+2Y2y; (8) 

which implies that p = min AC;. Since n; is an integer, the continuity of the La-

grangian function L = L (y; , n; , p) may not hold with respect to n; . If we ignore 
this integral requirement as an approximation, then the Kuhn—Tucker theorem may be 
easily applied to determine the optimal values (9j, n; , p) by finding the saddle point 

(9, n, p) of the Lagrangian L for some nonnegative vectors 9, n, p. Since the L func-
tion is strictly concave in y for a fixed n = (hl) and it is linear in n for any fixed y and 

p, the sufficiency conditions are also fulfilled.
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 In the realistic case of integral  nj however we have to adopt a different method. Now 
we index the firms with a continuous parameter denoted by u, which replaces the integer 

index j. Then 
C(u) = g(u, y(u)) 

gives the total cost function of firm j. The TC function for the whole industry becomes 

S 

              C(s) = IC(u) F(u) du 0 < s<1 

                         0

in place of the sum E nj Cl, where F(u) denotes the number of firms of type u and the 
upper limit of the integral s denotes the value of the index of the "marginal firm", i.e., 
the firm that it just pays to operate, given the desired total output. The industry's total 
output is given by Y(s) = lo y(u) F(u) du. 
 Now we order the firms with respect to their minimum average cost, so that it is a 

rising function of the continuous indexing parameter u. The optimal s and y is then the 
solution of the following problem 

Min(s ,y)>o C(s) s.t. Y(s) = D > 0 

The Lagrangian is given by 

                                                 s 

              C(s) -+- p(D — ly(u) F(u) du) 
                                0 If there is a minimum, then the following relations must hold: 

              faC(s)/ay — pF(u) du >0 and aC(s)/as — py(s)F(s)>0. 
Since 

ac(s)ac(s)C(s)F(s) andaC(s)=fsaCF(u) du 
as BY JBY                      3'o 

it follows that s (ac, 
            —pF(u)du>0

9 oy(9) 

C(s)—py(s)>0 

By hypothesis the output of the marginal form is positive, hence the necessary condi-
tions in (9) become equalities. Moreover, without loss of generality we may assume 
that F(u) > 0 for all u with 0 < u < s. These imply that 

aC(u) =p,for all u with 0 < u < s andaC(s)(s)                                                =Ci.e., MC = AC. 
ByBy(s) y(s) 

The first condition means that for all active firms (i.e., firms with positive outputs) 
there must be a common marginal cost. The second condition means that the scale of 
operation of the "marginal firm" is such that its average cost is a minimum. These are the 
same conditions as in (7). Also, for all extra marginal firms, i.e., for all u > s, y(u) = 0. 

 Let us now denote by 9 and n the optimizing values for the total cost function C(s). 
These may be viewed as the continuous approximation of the earlier problem with a
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discrete number of firms. These variables satisfy p = AC and AC = MC. Thus the 
long run equilibrium price p is the minimum point of the AC curve, i.e., the minimum 
efficient scale (MSE). We may thus use  nj and yj as the discrete approximation of the 
continuous model. 

 Note that the specific computation of the minimum efficient scale of output is possi-
ble here due to the quadratic cost function used here for illustration. The quadratic form 
of the convex function in (1) allows us to write the dual problem (2) in a linear form, 
as is customary in the nonparametric efficiency analysis approach of data envelopment 
analysis. However, log linear and other nonlinear forms can be introduced in (1) yield-
ing a nonlinear DEA model. But the results in (9) would still hold due to the convexity 
of the total cost function with respect to n and y. 

 Several economic implications of this result may now be discussed. First of all, if the 
market demand function is viewed in its inverse form, i.e., p = F(D) where D = Y, Y 
being the aggregate output, then 

F(Y)>LRAC(y)asY<Y 

where LR denotes the long run. But since LRAC(yj) is of the form 

                  LRAC(y~)=Yo+YI + y2Yi 
Yr 

its minimum is attained at 

                = (Yo/Y2)1/2 = (Yoj/Y2j)112

LRACj (91) = al + 2,/yoY2 

Thus a dynamic process of entry (or increase in market share) or exit (or decrease in 
market share) can be specified as a Walrasian adjustment process 

dn~/di = kl(p —LRAC(91)) and op/di = b(D(p) — (Y)) (10) 

where k and b are positive parameters. The equilibrium is then given by the steady state 

values p* = LRAC(9) and D(p*) = (Y). This entry (exit) rule (10) is different from 
the limit pricing rule developed by Gaskins (1971) and others, in that this is determined 
directly from the estimate of MES of cost efficient firms. Also different cost structures 
are allowed here, which implies that in terms of minimum average costs different firms 
can be ranked. For example if firms are ordered from the lowest to highest according to 
minimum average costs cl as follows: 

c(1) < c(2) < ... < •(k), k < n 

then p(1) = c(1) would be the lowest price, whereas p(k) = c(k)would be the highest. 
Hence if due to exogenous demand shift the price p comes down to p = p(1), then all 
other firms have to exit in the long run. Likewise if demand shift raises the price to 

p = p(k) then the other firms would earn positive `rents' as 

IX(i)= PM— P(1),j=2,3,...,k (11)
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Low cost firms can produce at a lower AC than the others, because they may possess 
some scarce factor, such as superior technology, which is not available to others. Thus 
the low cost firms may earn for some time more than normal profits, i.e., excess profits. 
Some potential entrants, seeing the large profits made by the low cost firms, would want 
to adopt the superior technology, thus wiping out the extra rent. Until this happens, the 
low-cost firms would enjoy positive differential rent, i.e., early adapter's profit advan-
tage. Thus in the long run the variance of  "e( j) or of differential rent A (j)) would decline, 
though it may be high in the short run. 

 Now consider the case when each firm j has a separate cost function C j (y j), i.e., 
m = 1. The industry model then takes a simple form

MinECj(yj) 
j=1 

s.t. Eyj > D; yj ?; JEIn

(12)

By rewriting the cost function as C j (y j ; k 1) where k j is capital endowment, short and 
long run cases can be distinguished. The short run case assumes k j to be constant so 

that the cost function depends on output only while in the long run case the cost function 
depends on output and capital inputs, which are both variable. In the long run case the 

Lagrangian function can be written as

L =—EC1(yj,kj)+p(Eyj —D) 
j=1 

=E [pyj — Ci(yj, kj)] — pD 
    j=1 

=Enj - pD 
    j=1

(13)

where 71 is the profit function of firm j, if p is interpreted as the market clearing price. 
In a competitive industry each firm is a price taker, so market price is given as p. In the 
short run capital inputs are also given as kj.  Hence the vector Y* = (yr , y2  . . . , 4) is 
a short run industry equilibrium (SRIE) if each firm j maximizes profit 71 with respect 

to y j. Since the cost function is strictly concave, this SRIE Y*(K) exists and it is unique 
for every given vector K = (kl, k2, ... , kn). For the long run industry equilibrium 
LRIE we have to modify the objective function as long run profits defined as

wt = te—'°t[nj (t) — h(u j (t))]di 

      0

(14)

where u(t) is investment defined by dk j /di = u j (t) — S j kl(t), h(u j (t)) is a convex 
cost function and 6 is the fixed rate of depreciation.
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 The LRIE is now defined by vectors  K*, Y* if for each firm j, 

                  i) maximizes W j for given 19 , 
(15)                  il) Vi! maximizes W j for given yy . 

But since investment cost function is separable, the maximization problem (i) is equiv-

alent to max 71. Here p = p(9) = p(y*) and 9 = y* = ~~-1 9j. Thus the industry 
equilibrium price p* clears the market and given p* each firm maximizes long run 

profit with respect to y j and k 1. Now define a competitive industry equilibrium by vec-
tors Y*, K* and price p* such that D = D(p*) = Ey; and the conditions (15) hold. 
Then one can easily prove that such a competitive industry equilibrium exists, since the 
cost functions are strictly convex and the profit function strictly concave; see e.g., Dreze 

and Sheshinski (1984).

3. DYNAMIC ADJUSTMENTS

 Two types of dynamic adjustments are implicit in the two-stage model of competitive 
industry equilibrium outlined in earlier sections. One is the path of optimal accumu-
lation of capital by each efficient firm j, which maximizes the discounted stream of 

profits. This involves continuous adjustment of existing capacity (capital) by an optimal 
investment program so as to reduce the current cost of using exiting capacity for produc-
ing current outputs. For example, consider a quadratic cost function h j = g u j + g2u~ 
for each firm j, which solves the dynamic problem 

Min-pt[yo +YlYJ+ y2y2+,Blkl +,B21 +hi]di 

no 

           s.t. kj=uj-8kl;kl=dkj/di 
k j (0) > 0 given 

On using the current value Hamiltonian involving k j and u 1: 

H=-lslkl-ls2k ‘—giuj—g2u2i+ s(u1—(Ski) 
Pontryagin's maximum principle yields the optimality conditions 

=(p+8)s+,81+2,82kl 

uj = (2g2)-1(/L — gr) 
kj =uj -6kj 

On eliminating ,u, one obtains the pair of differential equations 

         uj __ (p+6) 132/g2 uj+Al(16) k
j1—6kjo) 

where Al = (1g1 + (p -+- 8)g 1)/(2g2)• 
 The characteristic equation is 

                 A2 - p~ — [6(6 + p) + 132/g21(17)
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Since the product of two roots is negative and the sum positive and 

 P2 + 4(32/g2 + 6(9 + 6)) 

is positive, the two roots are real, one positive and one negative. Hence there exists a 

saddle point equilibrium. The steady state levels are given by 

kl = —(Pi + g t (P + 6))/2(/32 + (P + 6)6g2) 

uj =8kj 

It is clear that as the cost coefficients g 1 or IBI rise the steady state levels of capital 

and hence investments decline. The two characteristic roots imply that there is a stable 
manifold along which the motion of the system (16) is purely towards (ü1, k j) and an 

unstable manifold along which motion is exclusively away from (u j , k j ). By transver-
sality conditions one may choose only the stable manifold. By using this stable manifold 

around the steady state equilibrium one may state the following proposition. 

 PROPOSITION 1. For each vector K there exists a SRIE Y*(K), where each yy 
maximizes n j = p* y j —C j (yr, kl). There also exist a LRIE given by the pair (Y*, K*) 
where for each firm j: 

 (i) yy solves max n-j = p*yj — Ci(yj, k~) 
and 

 (il) k; and u*:i solve the steady state level of profits n j = p* yy — C j (yy ,k j) 
— h(u j) . 

The SRIE and LRIE solutions are unique. 

 Proof Existence follows from the fact that the production set is convex, closed 
and bounded by assumption. Strict concavity of the profit function yields uniqueness. 
Equilibrium market price p* = P(y*), y* = ~~ yy equalizes total demand and 
supply. 
 The adjustment of the market equilibrium may be directly shown in terms of the 

Walrasian process of price quantity adjustments as specified in (10) before, e.g., 

y = a[P — c(y)] 

P = b[D(P) —y](18) 

where c(y) is the long run minimal average cost function and a, b are positive param-
eters. The minimal average cost function intersects the marginal cost function at the 
optimal output y* and the marginal cost is linear in output for the quadratic cost fron-
tier; also the demand function D(p) is linear in this case. Hence (18) can be viewed 
as a linearized version around the optimal output level y*. Thus the linear differential 
equations for (18) can be analyzed in terms of the characteristic roots. For nonlinear 
forms of c(y) and D(p) we have to consider linearized versions around the optimal 

point y* in order to analyze the stability of the adjustment process. The conditions for 
convergence to the steady state of this linearized system are once again specified by its 
characteristic roots. Two important cases are:
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   (i) each root has a negative real part; this implies that the steady state equilibrium 
       is stable in the sense of convergence to the steady state, 

and 

  (il) two real roots, one positive and one negative; this implies a saddle point equi-
      librium. There is a stable manifold of convergence. 

Hence one can state the result. 

  PROPOSITION 2. There exists a stable manifold along which the LRIE can be 
reached by a Walrasian adjustment process. 

 Proof Here one can apply the linearizing process to the cost c(y) and demand D(p) 
functions by taking their slopes c' and  d', so that the characteristic equation can be 

derived. Thus by using the explicit cost functions assumed to be strictly convex, the 
two roots of the characteristic equation can be directly computed, e.g., 

               A2 + (ac' — bD'))A + ab(1 — c'D') = 0(19) 

where c' = aC/ay, D' = aD/ap. Equation (19) has roots with negative real parts 

if and only if ac' — bD' > 0 and (1 — c'D) > 0 and ab(1 — c'D') > 0. But with 
D' (p) < 0, c' > 0 implies that these conditions hold. In the second case if it holds that 

c' < 1/D' < 0, then one real root is positive and the other negative. Now the two roots 
are 

 A = —1/2(ac'—bD')±1/2[(ac'—bD')2-4ab(1—c'D')]I/2. Since c' < 1/D', there 

are two real solutions in A, one positive and one negative. The point (y*, p*) is now 
a saddle point. There is a stable manifold along which the motion converges towards 

(y*, p*) and an unstable manifold along which the motion is away from (y*, p*). The 
slopes of these manifolds at (y*, p*) are given by the eigenvectors of the matrix in 

(19a) 

      (5'—ady :)(;)—b (19a) 
corresponding to the stable and the unstable roots respectively. From this one can read-
ily verify that the unstable manifold has a negative slope at the point (y*, p*). Note that 
in the general nonlinear case the Lyapunov theory of stability has to be applied, e.g., 
Takayama (1988). 

 Two points are to be noted. One is that the concept of convergence used here is in the 
long run, when the system remains in its phase space within which certain properties 
hold and not that it actually converges to a point. Secondly, in the short run the sys-
tem must be such that the initial point must be "close" to equilibrium and just right as 
specified by the characteristic vectors corresponding to the characteristic roots.2 

 Some important implications of the two dynamic adjustment processes have to be 
briefly mentioned. First of all, if individual firms do not follow these optimal paths of

2 The author is indebted to the referee for emphasizing this point clearly .
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capital accumulation, then they would not be consistent with long run industry equilib-

rium. Also, firms which are cost efficient in the short run may not be so in the long run 
unless they use an optimal investment path. Hence there is scope for analyzing ineffi-

ciency in the long run. This aspect has been analyzed in a nonparametric framework 
by Sengupta (1999). Secondly, the competitive industry model developed here has a 

decentralization interpretation in terms of firms surviving under long run equilibrium, 
see e.g., Gabszewicz and Michel (1991). Novshek (1980) has shown that this type of 

equilibrium can be extended to include the case of Cournot equilibrium, if firm size is 
measured by technology, market size measured by perfectly competitive demand and if 
firms are small relative to the overall market and free entry conditions prevail. In such a 

case Cournot equilibrium exists and the aggregate output is approximately competitive. 
Finally, one could empirically test the consistency of the cost efficiency model (4) esti-

mated by the DEA model in respect of the industry equilibrium. So long as MES levels 
are different for cost efficient firms, there exists some scope for improving efficiency in 

the long run. This implies price changes due to entry and exit of firm in the industry 
with a consequent impact on individual firms through allocative efficiency.

4. ALLOCATIVE EFFICIENCY IN MARKET EQUILIBRIUM

 The industry equilibrium in competitive markets may be analyzed more directly if we 
assume that market clearing prices are estimated by a demand function  P = a —by ,  y = 
Enj —1 yj . In this case the industry equilibrium is directly obtained from maximizing 
total industry profits tr, where the cost function of each firm is strictly convex and 

quadratic: 

Max 7 = E [Pyj — C (y.i )](20) 
                                .v, 

Since P is the market clearing price, equilibrium of market demand and supply is im-
plicit here. The industry selection process (20) selects optimal outputs yy and y* = 
Eyy so as to meet total demand by following the rule 

yy =Al — Bi y* 

            y* =(1+EBI\-1/EAJ\(21) 

where A = (b + 2Y2i)-1(a — yr ), Bl = (b + 2Y2>)-lb. 
 Let cy be the optimal average cost Ci (4)/yy , then the entry or increased market 

share rule can be specified as 

yj = kl (P — cy) , kj > 0 
i.e., entry (market share) is positive (increasing) or negative (decreasing) according as P 
exceeds (falls short of) c~.The price adjustment in the market can be similarly specified 
as 

                    = k(D(P) — y*) , k > 0
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The equilibrium supply behavior specified in (21) implies the following comparative 
static consequences: 

 ayV8y2j < 0, ayVaylj < 0, ayy /ab < 0 and 8v/8a > 0 
If all cost functions are identical so that Aj = A and Bi = B for all j, then one obtains 

yy =A — B(1 + nB)-1(nA) 
y~ =(1nB)-1(nA); p = a — by* 

This shows the impact of the number of numbers in the industry on equilibrium industry 
output. 

  When firms are not alike in their cost functions but belong to a cost structure, each 
firm may follow one of m possible types of cost. Let nj be the number of firms of type 

j = 1, 2, ..., m cost structure. Then the allocative efficiency model (20) takes the form 

mm Maxi = pnjyl — EnlCl(yr) 
nj,l'j 

j=1j=1 

where p = a — b Ej nj yr; a, b > 0. This yields the equilibrium conditions 

                                         1 

            p~=p(yj) _ (1 —FP1\ MCj(y? 
                                             (22) 

pi = AC (4) (1 — Isnj ~)-1 
where cp and Enj are the price elasticity of demand and size elasticity of price respec-
tively, i.e., 

Enl = (ap/P)(ant/nj), cp = (ay1/yr)(ap/P) 

When tsp I tends to infinity and En./ to zero then we obtain the earlier result (9), 
i.e., 

              p = MC (4) = AC j(4) , y, > 0 
Thus we can state the result: 

  PROPOSITION 3. There exists an industry equilibrium specified by the pair of vec-
tors (n*, Y*), where n* = (hl, n2, ..., n,n) and Y* = (y1', y2, ..., y,) which satisfy the 
optimality conditions (22). If each cost function is strictly convex and quadratic, then 
this equilibrium pair (n*, Y*) is unique. Furthermore, there exists a stable manifold 
along which the equilibrium could be reached from a nearby nonequilibrium point. 

 Proof Since the profit function is closed and bounded by its continuity with respect 
to (n, Y), the existence of industry equilibrium is assured. By strict concavity the equi-
librium is unique. Furthermore, the Walrasian adjustment process defined by the free 
entry (exit) rules possesses a stable manifold due to the negative slope of the demand 
function and strict convexity of the cost function. 

 Several implications of this proposition are important in economic terms. First of 
all, optimality of the industry equilibrium (n*, Y*) may be tested against the observed 
outputs y 1 and firm sizes n . In cases of disequilibrium the observed values would differ
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from the optimum and hence the market process of adjustment through entry and exit 
has to be analyzed. Secondly, the impact of demand on equilibrium output and price can 
be directly evaluated in this framework. In particular, large demand fluctuations would 

tend to have some adverse reaction for the risk averse producers, e.g., their optimal 
output would tend to be lower. "Finally, market concentration measured by unequal firm 

sizes would affect the industry equilibrium, e.g., firms with the least optimal average 
cost would survive longer.

5. APPLICATION IN COMPUTER INDUSTRY

 In order to indicate the usefulness of the cost efficiency concepts developed here, 
we may illustrate their application in the US computer industry. Growth and efficiency 

in this industry over the period 1985-2000 have been analyzed by Sengupta (2002) in 
some detail elsewhere. Here we select 10 out of 22 companies from the earlier study and 
estimate minimum efficient scale (MES) for three selected years 1987, 1990 and 1997. 

The data set is taken from Standard and pool's Compustat file. The total costs here 
comprise the following: R & D expense, cost of goods sold and the cost of plant and 

equipment net of depreciation. Cost of goods sold includes manufacturing, marketing 
and administrative costs and the cost of change in inventory. Total combined costs 

comprise 75 to 80% of overall costs. For the output measure  `net sales' data are used 
and these are not deflated due to lack of a suitable price index. 

 Since the cost components are not deflated and it is difficult to separate the short 
run and the long run components of total costs we adopt a nonradial measure of cost 
efficiency. This measure differs from a radial measure in that different components may 

grow or decline at different proportions. Thus in order to test the cost efficiency of firm 
h the following LP model is set up. 

3 

Min E gr 
i=1

s.t. E CilXj < BiCih; i = 1, 2, 3 
j=1 

                2 
EYj~jYh;YjAj > Yh 
j=1 

Ex; = 1, Al >0,j = 1,2,. .,n

(23)

By using C./= E3_ 1 f3, Ci j as the total cost measure, where ,9,'s are the shadow prices 
of the first three constraints of (23), one could derive the cost frontier specified by (4) 
before. The estimates of AC1 and min ACj are then obtained and denoted by c j and cy 
and the gap ej = cj — cl measures the scope of unutilized capacity. 

 Table 1 shows the estimates of c j and si for 10 selected companies and their rank in 

terms of closeness of s i to zero. These estimates are only illustrative, since the sample
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Table 1. DEA estimates of average cost  (c  1) on the frontier and its minimal value (cp

Company
1987 1990 1997

Ci Si rank Cl Si rank Ci Si rank

1. Apple 

2. Compaq 

3. Datapoint 

4. Dell 

5. Hewlett Packard 

6. Hitachi 

7. Silicon Graphics 

8. Sun 

9. Maxwell 

10. Encore

0.58 

0.76 

0.86 

0.74 

0.82 

0.98 

4 

0.78 

0.85 

0.90

0.0 

0.18 

0.28 

0.16 

0.24 

0.40 

0.56 

0.28 

0.58 

0.61

1 

3 

6 

2 

5 

7 

8 

4 

9 

10

0.59 

0.83 

0.69 

0.73 

0.84 

0.96 

0.63 

0.76 

0.81 

0.91

0.0 

0.25 

0.11 

0.15 

0.26 

0.38 

0.05 

0.18 

0.39 

0.41

1 

6 

3 

4 

7 

8 

2 

5 

9 

10

0.98 

0.82 

0.76 

0.81 

0.84 

1.00 

0.73 

0.65 

0.80 

0.93

0.34 

0.18 

0.12 

0.17 

0.21 

0.41 

0.09 

 .01 

0.43 

0.44

7 

5 

3 

4 

6 

8 

2 

1 

9 

10

Note: optimal AC (average) 0.59 0.58 0.64

size is very small. Nevertheless, two broad results are indicated. First, there is wide 

diversity in the pattern of average costs along the cost frontier, hence the levels of MES 

vary significantly. Thus Apple Computer seems to have the best cost structure at the 

end of 1980s and the beginning of 1990 but after 1995 the company had trouble in its 

marketing policy and its effects are evident in the ranking. By contrast Dell Computer 

retained its market share due to competitive pricing based on MES. Secondly, some 

firms like Maxwell and Encore did not perform very well from the beginning relative to 

the others and their market shares declined considerably. In the long run their survival 

is in great doubt. The R & D expenditure played a very critical role in maintaining the 

rank of a firm in the efficiency scale over time. The detailed study analyzes this trend 

elsewhere.

6. CONCLUDING REMARKS

 The efficiency of competitive equilibrium is analyzed here in two stages: firm effi-

ciency and market efficiency. At the first stage each firm seeks to attain the cost frontier 

given the market price. The set of firms, each on its cost frontier is then subjected to a 
market selection process. This selection process chooses among those firms selected in 

the first stage by their relative profitability, when prices help in the selection process by 
clearing the market. 

 The dynamics of entry or exit behavior of firms in this competitive industry are ana-
lyzed in this framework, so that the roles of demand and supply forces in disequilibrium 

can be better understood.
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