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First version received August 2001; final version accepted Jun 2003

Abstract: Dynamic oligopolies are analysed in the case when the firms treat pollution 
directly and share the cost in proportion to their share in the total output. If instanta-
neous information on the firms' output is available to all firms as well as to the pollu-
tion treatment agency, then the equilibrium is locally asymptotically stable. However 
the presence of information lags introduces the possibility of instability. Local stability 
analysis of the information lag situation is performed and conditions for local stability/ 
instability and the birth of limit cycles are obtained.

1 . INTRODUCTION

 Industrial waste and pollution emerge as a by-product of any kind of production pro-
cess. One of the regulatory policies commonly employed to reduce pollution levels 

is a pollution tax. An alternative regulatory policy is to let the firms treat the pollution 
directly. In the first case, the pollution tax is modelled as an additional cost term depend-

ing on the firm's own output. In the alternative case of pollution treatment cost-sharing, 
the unit treatment cost depends on the total output of the industry, and so it cannot 

be modelled in the same way. Okuguchi and Szidarovszky (2000) have examined the 
existence and uniqueness of the Nash-equilibrium in the cost-sharing case by giving 

sufficient conditions for the existence of a unique positive equilibrium. The equilib-
ria were compared without and with pollution treatment cost sharing, and comparative 
static analysis was conducted in relation to a change in pollution treatment technology. 

 In section 2 of this paper the dynamic extensions of the model of Okuguchi and Szi-
darovszky (2000) will be introduced, and the asymptotic behaviour of the equilibrium 
will be analysed. Next dynamic models of firm adjustment will be formulated in a fairly 

general framework that allows for an information lag structure. In section 3, the case
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of the availability of instantaneous information to all firms and to the pollution treat-

ment agency, is first analysed. In section 4 we will assume that the unit treatment cost 

is determined by the pollution treatment agency based on a weighted average of past 

output data, and that this is common knowledge to all firms. In section 5 we will as-

sume in addition that there is an information lag experienced by firms in obtaining and 

implementing information on the output of the rivals. Section 6 concludes.

2. THE GENERAL MODELLING FRAMEWORK

 Consider an n-firm Cournot oligopoly, where pollution emerges as a result of firms' 

production activity and the firms treat jointly the pollution and share the treatment cost 
in proportion to their share in the total output. 

 The profit of firm i is then given as 

                           T (Ej=1 x>) 
 tr = xi .f (E~-lxl) — cl (xi) — xi(1)                  (n) 

where  xi is the output of firm i, f is the inverse demand function, cl is the cost function 
of firm i, and T is the total pollution treatment cost function. The economic interpreta-
tion of these functions implies that f is strictly decreasing, whilst cl and T are strictly 
increasing. In the following analysis we assume differentiability of all relevant func-
tions up to the necessary order. A non-cooperative n-person game is now defined: the 
firms are the players, [0, JV ] and hi are the set of strategies and the payoff function of 
firm i, respectively. 

 Introduce the notation 

X =E _1x~, G(X) =T-----X), F(X) = f (X) — G(X) . (2) 
For any given Qt = El Al xi , the best response of firm i is the output that maximises 

Tri = xi F(xi + Qt) — c (xi) •(3) 

Excluding a corner optimum, the first order condition is 

F(xi + Qt) + xi F' (xi + Qt) — c (xi) = 0(4) 

and the second order condition is 

2F'(xi + Qt) +xiF"(xi + Qt) — (xi) < 0.(5) 

As in Okuguchi and Szidarovszky (2000), assume that the following conditions hold: 
(A) F' (X) + xi F" (X) < 0, 
(B) F'(X) < c"(xi), 
for all xi and X. 

 These assumptions imply that Tri is strictly concave and the left hand side of equation 
(4) is strictly decreasing in xi with fixed values of Qt. In Okuguchi and Szidarovszky 
(2000) sufficient conditions were derived for the existence of a positive equilibrium. We 
do not make those assumptions here, rather we simply assume the existence of a positive
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equilibrium,  x* = (x , ... , xx ). In the neighbourhood of this equilibrium there is a best 
response function for each firm, xi = Rt (Qt ), which is the unique solution of equation 

(4) for xi . Clearly, at the equilibrium, 

xi Rt (E x~ ) 
                                 Al for all i=1,2, ... , n. The derivative of Rt can be obtained by differentiating implicitly 

equation (4) with respect to Qt : 

          R~(Q)—F'(X) + xi F" (X)(6)                    `2F'(X)
+xiF"(X)—c:'(xi) • 

 Assumptions (A) and (B) then imply that 

—1<Rt(Qt)<0 .(7) 

 We now formulate three possible dynamic adjustment regimes for output based on 
different information sets for the firms and/or the pollution treatment agency:— 

(I) Consider first the situation in which the output of each firm is instantaneously 
available to all firms as well as to the pollution treatment agency, and the pollution 
treatment cost is computed by using the current output values. It is also assumed that 
each firm adjusts its output into the direction of its best response resulting in the dynamic 
equations 

xi = kl (Rt (Qt) — xi)(8) 

where kl > 0, the speed of adjustment of firm i, is a given constant for all i. 

(II) Consider next the situation in which the pollution treatment agency computes the 
unit treatment cost based on an average of past output data, and the averaging rule is 
known by all firms. Firms however continue to have instantaneous information about 
the output of rival firms. In this case each firm maximises its profit, which now has the 
form 

hi = xi .f (xi + Qt) — cl (xi) — xi G (X E) ,(9) 

where XE is an average of the past outputs of the industry. We assume that at each time 

period 

             XE — s, T, m) En xi(s)os,(10) 

                                                               i-l where w is a weighting function known by all firms. As in Invernizzi and Media 

(1991), Chiarella and Khomin (1996), and Chiarella and Szidarovszky (2000) we will 
use weighting functions of the form

w(t — s, T, m) =

 1 

in! 

 1 
 -e 

T

where m is a non-negative integer 

weighting function has the following properties:

m \,n+1_m(t-s)       (
t -s)n Tifm > 

T 

(t-s)  Tit m= 

         is a given parameter.

1 

      (11) 

0, 

Notice that this
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(a) For m = 0, weights are exponentially declining with the most weight given to the 
    most current value; 

(b) For m  > 1, zero weight is given to the most current value, rising to maximum at 
    t — s = T, and declining exponentially thereafter; 

(c) As m increases, the weighting function becomes more peaked around t — s = T . 
   For sufficiently large values of m the function may for all practical purposes be 

    regarded as very close to the Dirac delta function centered at t — s = T . 

(d) As T —> 0, the weighting function tends to the Dirac delta function centered at 
    zero for all m; 

(e) The area under the weighting function is unity for all T and m. 
The best response of firm i is obtained by maximising function (9) with given Qt and 
XE . The first order conditions are 

(f (xi + Qt) — G(XE)) +xif'(xi + Qt) — cl(xi) = 0(12) 

and the second order conditions are 

2f'(xi + Qt) +xif"(xi + Qt) — c;' (xi) < 0.(13) 

 If we assume that for all xi and X, 
(C) f'(X) xi f'' < 0, 
(D) f'(X) < Oxi), 
then the left hand side of (12) is strictly decreasing in xi , so there is a best response 

xi = R(Qt, XE)(14) 

of firm i . The derivatives of RIC I) are obtained by differentiating equation (12) implicitly 
with respect to Qt and XE, so that 

aRCl) _ -f'(X) +xif''(X) il(15) aQi2 f'(X)+xi f"cl((X) —xi ) 
and 

aRCI)G'(XE)  
axE-2 f'(X)+xi f"(X) — c;' (xi) •                                            (16) 

 Assumptions (C) and (D) imply that 

aR(1) —1 <  ` <0 ,(17) aQ
i 

however the sign of a R,1) /a X E is indeterminate. 
 Assuming again that each firm adjusts its output into the direction of its best response, 

then we have the dynamic equations: 

Zr =kl(Rit)(Qt, XE) — xi) ,(18) 

whereXE is given in equation (10). 

(III) Finally we consider the case in which the firms, in addition to the pollution 
treatment agency experience information lags. In particular each firm experiences a 
time lag in obtaining information about the output of the rest of the industry, and the
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time lag is continuously distributed. So instead of the instantaneous output  Qt 

rest of the industry, each firm uses the expectation 

ow= fr w(t — s, Si, ll)Qt(s)os, 

                            0

of the

(19)

where ll > 0 is an integer, Si > 0 is a parameter, and the weighting function is given in 
equation (11). In this case the dynamic adjustment of output is modified to 

                xi=kl(Ri')(QE,XE)— xi) ,(20) 

where XE is given in equation (10). 
 In the following sections the asymptotic behaviour of the equilibrium of the output 

adjustment processes (8), (18), and (20) will be analysed, particularly with a view to 
determining the effect on the dynamic behaviour of the different information structures.

             3. THE CASE OF INSTANTANEOUS INFORMATION 

 As we have shown in the previous section, the dynamic behaviour of output in this 
case is described by the system of ordinary differential equations (8), the asymptotic 

behaviour of which is examined by linearization around the equilibrium. 
 The Jacobian of system (8) at the equilibrium has the form

                                —kl 

                J = k2r2 
knrn 

where tr = R; (E~ of xy) . 
 Since (21) may be re-expressed as 

J= 

with IT=(1,1,...,1)and

kiri ... 
—k2 ... 

knrn ...

D+a1T

klrl ) 
k2r2 
—kn

D = diag (—kl(1 + q ), —k2(1 + r2), ... , —kn(1 + r12)) and a =

 kill 
k2r2 

kn m

(21)

(22)

the characteristic polynomial of J has the special form 

 cp(X)=def(D+a1T —  def(D—  XI)  def(I+(D—AI)-lalT) 

=def(D—XI)[1+IT(D—XI)—la] 

                                                        k~r* _~n              ~_1 (—kl (1+r~)— A)[1+~n —kl (1 + 11') — IX
 Let pl < p2 < ... < ps denote the different eigenvalues —kl(1 + r;'), and I the set 

of firms having the same eigenvalue pi = —kl (1 + r;'), and let mi denote the number
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of firms belonging to  I ./. Then

(P(o) _fl i—I(p~— A)mil +E;-I------wj(23) pi — 

with 

w j = k~ r . 
t E I~ 

From relation (7) we see that for all j, pi < 0 and w j < 0. We will next prove that all 

roots of the characteristic polynomial cp are real and negative implying the following 

 THEOREM 1. Under conditions (A) and (B) the equilibrium of system (8) repre-
senting the case of instantaneous information is always locally asymptotically stable. 

 Proof Since pi < 0 for all j, it is sufficient to show that all roots of the equation 

s wj 
           =1pj —------- =—1(24) 

 are real and negative. We may assume that wt 0 0 for all j, otherwise we would 

consider only the nonzero terms of the left hand side with a smaller value of s. Let g (X) 
denote the left hand side. Clearly

limA loo g (A) = 0 , lima. ~,o;±o g (A) = +ac 

and 
            sw 

             g'(A)_2 ---------2<0.                           1=1 (pi - x) 

The graph of function g is shown in Figure 1. Notice that equation (24) is equivalent to 

a polynomial equation of degree s, and there is a root below pi, and one root between 
each pair pi and pi+1 of poles for j =1,2, ... , s-l. Hence all roots are real and 

negative.• 

 It is known (see for example, Okuguchi and Szidarovszky, 1999) that in the situation 

without pollution treatment cost sharing dynamic oligopolies under conditions (A) and 

(B) are always locally asymptotically stable. Therefore the introduction of pollution 
treatment cost sharing merely changes the location of the equilibrium in general, but 

the equilibrium still remains locally asymptotically stable.

4. THE CASE OF INFORMATION LAG ONLY FOR THE POLLUTION 

                 TREATMENT AGENCY

 We have shown in section 2 that in the case in which the pollution treatment agency 
bases its calculation on an average of past output, the dynamic adjustment of output is 

given by equation (18). The asymptotic behaviour of the resulting dynamics will be 
examined by linearisation around the equilibrium.
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                          Figure 1. Graph of Function g . 

 The linearised equation has the form 

          aR(1)aR(1) xis = kl aI--------(Q~ ,X*)Qi3 +aXE(Qt,X*)Xs — xis(25) 

where xis, Qrs, and Xs denote the deviation of xi, Qt, and XE from their equilibrium 
levels. Equations (15) and (16) imply that this equation can be rewritten as 

   otiytn   xis = kl(--/ E xi+/—/~fw (t — s, T, m) E x~s(s)os — xis). (26) 
     Ni j�iNioJ-l 

with 

al = f'(X*)+4 fu(X*), 
Pi = 2f'(X*) + 4 f"(X*) — c;'(4) , 

and 

y = GI (X*) . 

 We seek a solution to the integro-differential equation system (26) in the form 

xis = vi ext, (i = 1, 2, ... , n) . 

 Substituting this form into equation (26) and allowing t 00 we have 

. + kl 1 — Y fw(s, T, m)e—~`sdsvi 
pie(27) 

            + kiai—yw(s,Tm)e—~`sds>v~             P~ f= 0.      iiJ i
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By introducing

                                   —(m+1) 

Al(X)_X+kit— Y—+1 ~
i r

and

         a'i yXT
+1—(m+1) Bi (X) = kl— — —         P

i IBI r

with

  lm if m> 1 r= 
    1 if m = 0 ,

equation (27) becomes

def

 Al(X) 
B2 (X) 

Bn(X)

Bl(A) 
A2 P) 

•
Bn (A)

Bl (0) 
B2 P) 

An (X)

 =0.

 Notice that this determinant has a similar structure to that of the Jacobian (21) exam-

ined in the case of instantaneous information. By using the same method that was used 
to derive equation (23) we find that this determinantal equation can be rewritten as 

(Al (A) — B(A))1 + En                             1 ABI (A) = 0. (28)                                   a()—Bi(A) 

 Notice that 

Al (A) — Bi (A) = X. + kl 1 —  , 

and from relation (17) we see that kl (1 — ,)is positive for all i. Hence the roots of 
the first product are all negative. The other roots are the solutions of the equation       

nlai y AT—(m+1)    1+E —--------------k~Si/3ir+1=0,          lX+kl(1—c) 
which can be rewritten as 

   ATm+I      n
_ -------------------                                                               kt            kia,n ------------- 29  (—+l)1+1+kl—a'=El=,a+kl—o() 

 In the general case numerical methods are needed to locate the roots of (29), so in 
order to obtain analytic results special cases will need to be considered. 

 For the sake of algebraic simplicity consider the symmetric case, when kl = • • = 
kn = k, al = • • • = an = a, pi = • • • = ,Bn = ,B. Then equation (29) simplifies to 

                         m+l           AT +1(A+k( \1+(n_1)_))=anky(30)r,B /3



             CHIARELLA & SZIDAROVSZKY: DYNAMIC OLIGOPOLIES 

 Assume first that  m=0. Then (30) reduces to the quadratic equation 

X2T+X 1+kT 1+(n-l)1 +k 1+(n-l)~—--- = 0. 
 In this case we can establish the following result: 

  THEOREM 2.Assume in = 0. If 

Y > f3+(n-l)a 

n then the equilibrium of the output dynamics (18) is locally asymptotically stable. If 

13 (n-l)a Y < 
n 

then the equilibrium is unstable, and if 

Y =                          /3+(n-l)a 

n then no conclusion about the stability of the equilibrium can be drawn. 

 Proof Notice first that the linear coefficient is always positive. If 

8 + (n — 1)a 
Y > n 

then the constant term is also positive demonstrating the asymptotic stability of the 

equilibrium. If 

Y =                           /3+(n-l)a 

n then one root is negative, the other is zero. Hence no conclusion can be drawn about the 
stability of the equilibrium. If 

+(n-l)a 
Y < ------------- n

then one root is positive and the other is negative implying the instability of the equilib-

rium.^ 

 Notice that without pollution treatment cost sharing G(x) = 0, so y = 0. Since both 

a and /3 are negative, 8 + (n — 1)a is always negative, so when y = 0 the condition of 
local asymptotic stability of the equilibrium is always satisfied. Hence the introduction 

of pollution cost sharing (when y 0 necessarily) may make the equilibrium unstable, 
so that the asymptotic behaviour of the equilibrium becomes much richer. If G' (x*) is 

a large negative number, then instability in fact occurs. 
 Assume next that m=1. Then (30) reduces to the cubic equation 

A3 T2 + A2[2T + kT2l + (n—1)a)j+A[1+2Tk(1+   (n — 1)a 

                                           (32) 

                               +kl+(n-l)a—ny )=0.
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  In this case we can establish the following result: 

  THEOREM 3. Assume m = 1. The equilibrium of the output dynamics (18) is 
locally asymptotically stable if 

 ,B  +  (n  — 1) a —2,B (1 + kT A)2 <y < -----------------, 
     nnkT 

(n-l)a   where A = 1 +---------> 1. 

 If 

s+(n-l)a—2,B(1+kTA)2 y <  
nor Y >nkT' 

then the equilibrium is unstable. 
 If 

+(n-l)a 
Y=                                         n 

then no conclusion about the stability of the equilibrium can be drawn. 
 If 

—2,B (1 + kT A)2  
Y nkT' 

then a Hopf bifurcation occurs, so there is a limit cycle in the neighbourhood of the 
equilibrium. 

 Proof Notice first that since a and 13 are negative, all coefficients of (23) are posi-
tive if and only if 

,B+(n-l)a 
Y > ---------------•                                        n 

All eigenvalues have negative real parts if and only if this relation holds and 

      [2T+kT2y+(n-l)a )J[l+2Tkl+(n-l)      P13 

                 2(n — 1) a — ny       >Tk 1+-------------- 

as a consequence of the Routh-Hurwitz stability criterion (see for example, Szidarovszky 
and Bahill, 1997). 

 By introducing the quantity 

(n-l)a   A =1+---------1 

the above inequality can be rewritten as 

—2,3 (1 + kTA)2 
Y < -------------------.                               nkT
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Assume next that 

 /3+(n-l)a 
Y < ---------------,                                        n 

then the constant term of the cubic (32) is negative implying the existence of a positive 

root. 

 If 

—2/3 (1 + kT A)2  
Y >                             nkT 

then the Routh-Hurwitz criterion shows the existence of a root with positive real part. 

In both cases the equilibrium is unstable. 
 If 

/3+(n-l)a 
y= ---------------,                                        n 

then equation (32) has a zero root and the other two roots have negative real parts. We 
will finally show that if 

—2/3 (1 + kT A)2 
                   _ Y nkT' 

then there is a pair of pure complex roots and Hopf bifurcation occurs. 

 Assume that A = i a is a pure complex root, then by equating the real and imaginary 

parts to zero we have 

(n-l)a            —asT2+al+2Tkl+--------=0 

and 

      —a22T+kT2l+ (n-l)a +k 1+(n-l~—nY=0 

implying that 

             1 + 2Tk (1 + (n-l)a) k (1 + (n-l)a—nY  
  2 _-------------------__ P       aT2

2T + kT2l+ (n-l)al(33) 
                                        ~I 

We select y as the bifurcation parameter. This relation gives for the critical value of y 

the simple expression 

       *=IkTl+(n-l)a_2+kT1+(hl)aYoP 
            xi + 2T1 +(n — 1)a nkT 

Notice that the middle part of equation (33) is always positive, so there is always real 
solution for a.
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 The critical  y* value can be further simplified to 

                      *_—2(1 + kT A)2,B            Y*
nkT 

which is always positive. Differentiating equation (32) implicitly with respect to y we 
have (5 - caldy) 

          

sA2T2~+ 2XX 2T + kT2 1 +(n — 1)a 

                 +J,1+2Tkl+(n-l)a—nk_0

implying that 

nk 

sJ2T2 + 2X [2T + kT2A] + [1 + 2TkAl 

which at X = i a has the real part 

                                          2a2T2nk  

Re (5) a—la = (2
a (2T + kT2A))2 + (2a2T2)2 > 0 . 

Hence there is a limit cycle in the neighbourhood of the equilibrium as a consequence 

of the Hopf bifurcation theorem (see for example, Guckenheimer and Holmes, 1983). 
•

 With fixed values of ,B, n, k and T Figure 2 shows the stability region in the (y, a) 

plane. Notice that y = 0 is always in the stability region showing again that without 
pollution treatment cost sharing the equilibrium is always locally asymptotically stable. 
Therefore in the presence of time lag in pollution treatment the asymptotic behaviour of 
the equilibrium becomes richer. In this case the critical value for y (at which the birth 

of a limit cycle occurs) as a function of a is represented as the upper parabolic boundary 
of the stability region shown in Figure 3. It is clear from Figure 1 that the asymptotic 
stability of the equilibrium is preserved if G' (x*)1 is sufficiency small.

5. THE CASE OF INFORMATION LAGS 

        TREATMENT

FOR FIRMS AND THE 

AGENCY

POLLUTION

 In section 2 we have shown that in this case the dynamic adjustment of output is given 
by equation (20), the asymptotic behaviour of which will be examined by linearisation. 

 The linearised equation now has the form 

              (1)(1)aRiki (al(Q, X*) Q+8XE(Q.,XE) X —, (34) ---------
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 2/3(1--+kT)2 
  nkT

a

Figure 2. Information lag only for the pollution treatment agency: 

  The stability regtion in the (y, a) plane for the case m = 1.

where xig, Q g, and Xi are the deviation of xi, QE, and XEfrom their equilibrium 
levels. Equations (15) and (16) imply that this equation can be rewritten as 

                        alt 

           xi8=kl(--w (t - s,Si, ll)x jg (s) os 
        Pio~ji 

   t(35) 

                                   En+-I-ow(t-s,T,m)Ej_lxjg(s)ds-xig 
             Pi 

where al , pi and y are the same as in the previous section. We again seek the solution 

to (35) in the form 

xis = vieAt (i = 1,2, ... ,n). 

 Substituting this form into equation (35) and allowing t co we obtain the charac-

teristic equation 

    + kl 1 - Y fw(s, T, m)e-)nvi 

pie 

         al o 
   +kl— w(s, Si,ll)e-sds - —fw(s, T, m)e-sdsEjiv= 0. 

   ifNio 

                                             (36)
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  Introduce now functions 
                                                    —(m+1) 

             Al(X)=A+kit—Y-,T +1 
                              13i  r 

and 

               al ASiY  AT—(m+1)       B
i (X) = kl—+ 1~

~ r----+ 1                 13i qt 

with 

                           ll, ifli>1, 
                     qt = 1 , if ll = 0 , 

to see that equation (36) is equivalent to the same type of determinantal equation as in 
the previous section, therefore it is equivalent to equation (28) with the above defined 
functions Al (X) and Bi (X). 

 Consider first the equation 

Al (X) — Bi (X) = 0 , 

which now has the form 

                        al —(t,+1) +kil--(—XSi+1 =0.(37) 
~i qt 

 This is equivalent to the polynomial equation 

ASI 1,+1 kiai 
             +kl) +1—---- =0. 

qt 

 Notice that this equation is similar to equation (30), which was examined in section 
4. However in this case we can prove that all roots have negative real parts. The proof 

is by contradiction; assume that for a root, Re X > 0, then 

+ kl l > kl andS` + 1 > 1, 

qt so that 

                           ~Sit,+1                (X
+kl)+1 >kl. 

                           qt 

 However assumptions (A) and (B) (see section 2) imply that < 1, therefore 

kl al 
----- <kl, 

which is an obvious contradiction. Hence all roots must have negative real parts.
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The other eigenvalues are obtained by solving the equation 

 kl ~t gt+ 1)13; (r _L 
1+L

i=1       a~(It+l) X + kit —Pi+1)
=0,

which can be rewritten as 

   ATk`ar(XT+ 1)m+1 —y~s;+1) 
                                                           Ir+l 

    m+lrPt(Rt 
 (—r+ 1+~i-ll---------------------------------------+1= 0 . (38)                   (X+kl)~gs`+1)_k 

 In the general case numerical methods are needed to locate the eigenvalues. In order 

to obtain analytic results we will examine some special cases. Thus we consider the 
symmetric case, when kl=•••=kn=k,al=•••=an=a, 13i=•••=13n=1, 

ll = • • • = In = 1 (therefore qt = • • • = qn = q), and SI = • • • = Sn = S. Equation 

(38) then simplifies to

      ~7m+l~SkU,l+lATm+1 
  (A+k)+IR+1+(n-l)+1 

        r

nykl+113 r                           —ny.IS+1 =0 . 
q 

In the most simple case of m = 1 = 0, this equation becomes the cubic 

AsTS+A2[T+S+kTS]+Al+kT+S+(n~l)aT—S 
                           +k[1+(n-l)a—ny _0

(39)

(40)

 The local asymptotic stability of the equilibrium can be again examined by using the 

Routh-Hurwitz criterion. The details are not given here. We are however interested in 

the possibility of the birth of limit cycles. In fact, the following result is true: 

 THEOREM 4. Consider the output adjustment dynamics (20) and assume m = 1 = 

 0.  If 

             ) 

     y = {(1 + k (S + TA)) (T + S + kTS) — kAST}knS2 (1 + kT)  13 

with A = 1+ (n-isl)a then a Hopf bifurcation occurs, so that a limit cycle is born around 

the equilibrium. 

 Proof Assume that X = la is a pure complex root, then by equating the real and 

imaginary parts to zero we obtain 

        —asTS + al + kT + S +(n — 1)a[l—_S= 0 ,
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and

ny  —a2  [T+S+kTS ]+kl +(hl)a— = 0 , 

implying that 

1+k(T+S+(n.-1)aT— S) _k[1+(n-l)a—l   2=-------------------- _ a(41)            TST
+S+kTS 

We again select y as the bifurcation parameter. Then this relation gives a simple ex-

pression for the critical value of y viz. 

        Y=               1+kT +S+(hl)aT (T +S+kTS) 

—k(1 (n — 1)aTS /(knS2 (1+kT)(42) 
which is always negative, since all negative terms cancel out in the numerator. Simple 

calculation shows that from equation (41) the value of a2 becomes positive if and only 
if 

(S — T )Ak > 1 + kS .(43) 

In this case there is a pair of pure complex roots. At the critical value, equation (42) can 
be rewritten as 

X3 TS + X2 (T + S + kTS) + XTS2a + (T + S + kTS) a2 = 0 , 

where we used equation (41). The left hand side can be factored as 

(XTS + (T + S + kTS)) O,2 + a2) 
so the third root is negative. 

 Differentiating equation (40) implicitly with respect to y we have 

sX2XTS + 2XX [T + S + kTS ] 

       +++4T+S+(n-l)a7—nyS~nSk=0 
                  1313 13 

implying that 

X                                     nSk+kn 

sX2TS+2X[T+S+kTS]+[1+k(T+S+(nfil)aT— S)] 
which at X = i a has the real part 

2a2'S2(1+kT) 
          Re(a) =la = (2a2TS)2+(2a(T+S+kTS))2



CHIARELLA & SZIDAROVSZKY: DYNAMIC OLIGOPOLIES 43

 a

 1+k(S+T)(T+S+kTS)—kTS 
knS2(1+kT)

Figure 3. Information lags for both firms and the pollution treatment agency: 

The critical curve in the (y, a) plane for the case m = 1 = 0.

which is always negative. Under this condition there is a limit cycle in the neighbour-
hood of the equilibrium as a consequence of the Hopf bifurcation theorem.• 

 Relation (42) is satisfied if the information lag of the firms is much larger than the 
information lag of the pollution treatment agency. This condition is realistic, if the 
firms directly report their output to the agency, but not to each other, or the firms treat 

pollution immediately. 
 With fixed values of ,B, n, k, T and S, Figure 3 shows the curve of the critical 

values of y as a function of a. It is a linear function with positive slope and negative 

y- intercept. Therefore the critical value is always negative as has been already pointed 
out.

6. CONCLUSIONS

 In this paper dynamic oligopolies have been examined in the case when the firms 

treat pollution directly and share the cost in proportion to their share in the total output. 
The models discussed here are the dynamic extensions of the static model introduced 
earlier by Okuguchi and Szidarovszky (2000). 

 Three particular models were considered. First we proved that in the case of the 

availability of instantaneous information to all firms as well as to the pollution treat-
ment agency, the equilibrium is always locally asymptotically stable. However insta-
bility may occur in the presence of information lags. If instantaneous information is
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available to the firms, but the pollution treatment agency experiences a time lag in ob-
taining and implementing information on the total output of the industry, or the unit 

pollution treatment cost is based on an average of past outputs, then a nonlinear integro-
differential equation for the evolution of output is obtained. We have considered two 
special symmetric cases characterised by the way in which past output information is 

 weighted  . In the first case, when the weights decline exponentially, the eigenvalues are 
real. Conditions were derived for the asymptotic stability of the equilibrium depending 
on the particular value of the model's parameters. In the second case, when the weight-
ing function rises to maximum and then declines exponentially, in addition to stability 
conditions the possibility of the birth of limit cycles was demonstrated. A more compli-
cated integro-differential equation for output was obtained when all firms as well as the 

pollution treatment agency experienced information lags. In the most simple symmetric 
case, when m = l = 0, the possibility of the birth of limit cycle was examined. The 
conditions for such an outcome require that the information lag of the firms be much 
longer than the information lag of the pollution treatment agency. 

 It is known from earlier studies that without information lags and pollution treatment 
cost sharing the equilibrium is always locally asymptotically stable. The introduction 
of information lags, in the pollution treatment agency and in the response of the firms 
may make the equilibrium unstable, and in the case of bifurcation limit cycles may be 
born. Hence the asymptotic behaviour of the equilibrium becomes much richer than in 
the instantaneous information case. 

 In setting up the dynamic output adjustment processes we have assumed that at each 
time period each firm adjusts its output into the direction of its best response. Alter-
native models can be obtained by assuming that the firms adjust their outputs propor-
tionally to their marginal profits. The analysis of these alternative output adjustment 

processes are left to future research.
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