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Abstract: We consider a generalised assignment model where the pay-offs, individual, 

as well as pairwise, depend on the number of matchups that take place. We develop an 

appropriate notion of stability, called consistent stability, and derive conditions under 

which existence is ensured. We provide examples to demonstrate that if these conditions 

are dropped then a consistently stable outcome may not exist.
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1. INTRODUCTION

 In this paper we seek to develop an appropriate solution concept for assignment mod-
els with externalities. 

 Assignment models are two-sided matching games where only the agents on the op-

posite sides of the market, denoted the p- and the q-agents, can, by coming together, 
create value. Examples of such models include the assignment of worker to firms, the 

pairing of men and women in marriage, the assignment of students to colleges, to name 
only a few. 

 Recently there have been some attempts at generalising various matching models. 
Sonmez [13], [14], for example, examine a class of generalised matching problems 
such that both the marriage problem and the housing market emerge as special cases. 
Li [ 10] considers matching models with externalities. Another paper is by Chowdhury 

[6], who examines assignment model with externalities. 
 In this paper also we examine assignment models with externalities. Such exter-

nalities are likely to be of interest whenever the agents, after the completition of the 
matching process, indulge in some activity where the out-come depends on the earlier 
matching. As examples we can mention labour, as well as marriage markets. In labour

 Acknowledgement. I would like to thank an anonymous referee of this journal for very helpful and incisive 
comments. I would also like to acknowledge visiting fellowships to the Center for Operations Research and 
Econometrics (CORE), Belgium and the Indian Statistical Institute (Delhi Centre) which made the writing of 
this paper possible. 

 Copyright@2002, by the Keio Economic Society

9



10 KEIO ECONOMIC STUDIES

markets, for example, the profits of a firm may depend on which worker is hired by the 
rival firms. 

 The standard solution concept for assignment games is that of stability, developed 
by Shapley and Shubik [12]. An outcome is said to be stable if it cannot be blocked 
by individual or pairwise coalitions. It is clear that in the presence of externalities the 
notion of stability also needs to be generalised. The problem lies with evaluating the 
expected deviation payoffs following a break-up. The expected deviation payoffs will 
depend on what the deviating agents, following a deviation, expect the other agents to 
do. One approach is to assume that the agents are very pessimistic, so that following 
any deviation they assume that the outcome is goint to be the worst possible in terms 
of their payoffs. Chowdhury [5] demonstrates that under this assumption a stable out-
come always exists. Despite this attractive technical property, however, it is clear that 
this assumption is ad hoc in nature. In this paper we develop an alternative notion of 
stability that we call consistent stability (c-stability), where the conjectures are derived 
endogenously within the model in a consistent manner. 

 The idea is to use reduced form games to build up the conjectures consistently. Begin 
with the smallest reduced form games consisting of one agent each from both sides of 
the market, and assume that the assignment of the other agents are fixed. Extending 
the notion of stability to this game is straightforward. Next consider a reduced form 

game consisting of two agents from one side of the market and one agent from the other 
side. We solve for the stable outcome of this game when the deviation conjectures are 
such that they are consistent with outcomes in the smaller reduced form games solved 
earlier. We can proceed inductively in this manner to find a consistent set of conjectures 
for the whole game. Any stable outcome where the conjectures are consistent in the 

above sense, is said to be consistently stable. 
 We provide sufficient conditions under which a symmetric game would have a consis-

tently stable outcome. We also provide two examples to demonstrate that if the sufficient 
conditions are dropped then a c-stable outcome may not exist. It appears that a consis-
tently stable outcome is more likely to exist if the externalities are of the increasing 
returns type, rather than if they are of the decreasing returns type. 

  We then relate our paper to the existing literature on the subject. Chowdhury [6] is 
another paper that examines an assignment model with externalities. He sets up a two-
stage non-cooperative game and examines sub-game perfect equilibria of this game. 
Thus, in contrast to the present paper, Chowdhury [6] adopts a strictly non-cooperative 
approach to the problem. Li  [ 10] considers a matching model where he defines a rational 
expectations equilibrium, such that the expectations are consistent with the equilibrium. 
He shows that under the appropriate assumptions existence is ensured. He, however, 
analyses a matching, rather than an assignment model, the focus of our interest in this 

paper. Finally, Sonmez [13], [14] is not concerned with developing equilibrium notions. 
Rather he focuses on the issue of strategy-proofness in the class of models defined by 
him. 

  In the next section we set up the basic model. The notion of consistent stability is 
analysed in section 3.
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2. THE MODEL

  We examine a two-sided assignment model with one-to-one matching. There are two 
disjoint set of agents, denoted P and Q, consisting of n agents each. Members of P 
and Q are called the p- and the  q  -agents respectively. Following the practice in Roth 
and Sotomayor [11], we reserve the symbol i for agents belonging to P, and the symbol 

j for agents belonging to Q. The pairwise payoff from matching a p-agent, i, to a q-
agent, j, when the total number of matchups equals k, is denoted by xi (k). Let X (k) 
denote the matrix whose typical element is xi (k). The payoff from remaining single 
is pi (k) for a p-agent. i, and q j (k) for a q-agent, j, where, as before, k denotes the 
number of matchups. We assume that xi (k), pi (k) and qt (k) are non-negative. 

 We now introduce a series of definitions, mostly adapted from Roth and Sotomayor 

[11],  that we require for the analysis. We begin by providing a formal definition of an 
assignment. 

 DEFINITION. An assignment a is an one-to-one correspondence from the set P U Q 
onto itself of order two such that if, for some i E P, a (i) i, then a (i) E Q and if, 
for some j E Q, o- (j) j, then o- (j) E P. An assignment a that involves k pairs of 
matchups is denoted by ak. 

 The fact that a is of order two, implies that if i is matched to j, then j is matched to 
i. The definition also requires that agents who are not single, be matched to agents from 
the opposite set. 

 We next define an optimal assignment for a matrix X, whose typical elements is xi j . 
Consider the following linear programming problem: 

     Maximise E al j xi j 
i,j 

     Subject to (a) Eau j < 1, (b) E al j < 1 , (c) al j < 0 . (1) 

 It can be shown that there is a solution, a, of the above problem that only involves 
values of zeros and ones (see Dantzig [8], pp. 318). Any such assignment, a, is called 
an optimal assignment of X. 

 DEFINITION. A vector (u, v), with (u, v) E 118+ x R+, is called a feasible vector 
for a matrix X, if there is an assignment ak such that 

           Eui-f-Evj=Xak,(2) 
iEP jEQ 

where Xak denotes the aggregate payoff arising from the assignment ak. In that case 

((u, v), o-k) is called a feasible outcome. 

 In the sequel we will often use the notation ((u, u, v, v), ak) instead of ((u , v), a-k) to 
denote an outcome. Here ui denotes the payoff of a p-agent who is matched under the 
assignment and ui denotes the payoff of a p-agent who is not. The definitions of v j and 
vi are symmetric and hence omitted.



12 KEIO ECONOMIC STUDIES

3. CONSISTENT STABILITY

 With the basic notations and definitions in place, we now proceed to the task of 
extending the notion of stability to the generalised framework. 

 As in Gale and Shapley [9] we concentrate on notions of stability that respect the 
importance of pairwise coalitions in assignment models. (Pairwise coalitions, in this 

paper, always refer to agent pairs where the two agents belong to the opposite sides 
of the market.) We, therefore, restrict attention to individual and pairwise deviations, 
rather than consider deviations by all possible coalitions. The important question is 
to what extent is it possible for the larger coalitions to make binding commitments. 
In some cases there may be legal restrictions on the formation of large coalitions e.g. 
in the context of a model of technology transfer such coalitions may violate anti-trust 
legislations. Alternatively, we can assume that coordination across relatively larger 
coalitions is prohibitively costly in terms of search or negotiation costs, or perhaps even 
ruled out by the prevalent social norms. 

 Clearly, the problem in extending the notion of stability to this generalised model is 
to define, in an intuitively acceptable manner, exactly how the players perceive their 

possibilities following a deviation. Depending on the perception of the players, we 
obtain different notions of stability. We seek to develop a notion that we call consistent 
stability, where these conjectures are endogenously developed within the framework of 
the model. We then use this notion to analyse some simple examples with symmetric 

payoffs. 
 The basic idea is to use the notion of reduced form games to build up the conjectures 

inductively. To begin with, consider a reduced form game consisting of one p- and 
one q-agent. Assume that the assignment of the other agents are given and involves k 
matchings. Given k, we can examine the stable outcome (in the sense of Shapley and 
Shubik [12]) for this reduced form game. Since this reduced form game involves no 
externalities, the definition of stability in this context is unambiguous. 

  DEFINITION. Let  (k, p, q) denote a reduced form game consisting of p p-agents 
and q q-agents, where the number of matchups by the other agents (who are not mem-
bers of the reduced form game) is k. 

  We can next examine the stable outcome for a game consisting of two p-agents and 
one q-agent. Now, however, externality issues crop up. In particular consider an out-
come that involves exactly one match up. Suppose the assigned p-agent wants to decide 
whether to stick to the outcome, or to deviate and remain single. The question is what is 
his reservation payoff from remaining single? Consider the reduced form game consist-
ing of the remaining one p- and one q-agent. The stable outcome for this reduced form 

game is known. Hence the p-agent can calculate the expected number of matchups if 
he deviates. The p-agent can now use this information to find out his reservation payoff 
and make his decision accordingly. 

  We then examine a reduced form game consisting of two p- and two q-agents. We 
look for a stable outcome of this game such that the conjectures are consistent with
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the stable outcomes for the smaller reduced form games examine earlier. Proceeding 
inductively in this manner we can derive a consistent set of conjectures for the original 

game. We then seek a stable outcome where the conjectures are consistent in the above 
sense. Such an outcome, if it exists, is called consistently stable. 

 Of course, the idea of imposing some kind of consistency condition while defining 
equilibrium notions is not new in the literature. Game theorists have used this idea in 
many different contexts. We can mention, among other equilibrium notions too numer-
ous to mention, the concept of coalition-proof Nash equilibria developed by Bernheim, 
Peleg and Whinston [3], [4]. 

 Next turning to the formal analysis, we simplify by assuming that the payoffs are 
symmetric, so that  xi  j  (k) = x (k), pl (k) = p(k) and q j (k) = q (k), `di, j and k. The 
symmetry assumption is not required for the definition of consistent stability, though 
it does help in simplifying the notation. However, since we use this concept to anal-

yse games with symmetric payoffs, we impose this condition at the outset. We then 
introduce a series of notations and definitions that we require for the analysis. 

 Note that if ((u, u, v, v), 6k) is feasible then for the symmetric case we have that

  ui + ui -} vi -~ vi = kx(k) + (n — k)p(k) (n — k)q(k) .

Thus the payoffs of the agents exactly exhaust the aggregate output. 
  Let P' and Q' be subsets of P and Q respectively. Let denote an assignment for the 

reduced form game consisting of agents belonging to P' and Q'. Similarly, an outcome 
for this reduced form game is denoted by ((u, u, v, v), µk). We begin by defining the 
stable outcome for two agent reduced form games. 

  First consider a reduced form game consisting of exactly one p-agent and one q-agent . 
Since the reduced form game has exactly one p-agent and one q-agent, consistency is 
not a problem in this case. 

 We first provide the definition before interpreting it. 

 DEFINITION. Consider a reduced form game such that I P' I = I Q' I = 1. As-
sume that the other agents have formed k matchings, where k < n — 1. An outcome 

((u, u, v, v), µk,(k,l,l)) is said to be c-stable for (k, 1, 1) if the assignment involves 
k' (k, 1, 1) matchups and the payoffs satisfy: 

  (i) tit i + uj > x(k + k' (k, 1, 1)), for ,u = j, 

  (il) u + vi > x(k + 1), 
 (iii) uti > p(k), vi > q(k), 

 (iv) ui > p(k), u; > q(k). 

 Note that the second and third arguments of k' (k, •, •) and c-stability for (k, •, •, ) 
denote, respectively, the number of p- and q-agents in the reduced form game under 
consideration. 

 This definition is a straightforward extension of the notion of stability . Suppose 
k' (k, 1, 1) = 1. Then, in the reduced form game, the p-agent and the q-agent match up,
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the total number of matchups is k  + 1 and their payoffs will be denoted by Lli and v j 
respectively. Conditions (i) and (iii) are the natural stability conditions for this case. 

 Next consider the case where k' (k, 1, 1) = 0. Then, in the reduced form game, 
the p-agent and the q-agent remain single, the total number of matchups is k and their 
payoffs will be denoted by ui and vi respectively. Conditions (il) and (iv) provide the 
stability conditions for this case. Condition (il), for example, simply states that the sum 
of payoffs for the two (unassigned) agents must be at least equal to what they would 
obtain from matching up. 

  We then consider a reduced form game consisting of two p-agents and one q-agent. 
This leads us to a definition of k' (k, 2, 1). 

DEFINITION. Suppose that I P11 = 2, I Q' I = 1 and let k be defined as usual. An 
outcome ((u, u, v, v), µk (7K,2,1))is said to be c-stable for(k, 2, 1) if the assignment 
involves k'(k, 2, 1) matchups and the payoffs satisfy: 

  (i) u; + v j > x(k + k'(k, 2, 1)), for p(i) = j, 
  (il) ui + vi > x(k + 1), 

 (iii) ui + vi > x(k + 1), 
 (iv) ui > p(k + k'(k, 1, 1)), vi > q(k), 

  (v) ui > p(k + k'(k, 2, 1)), vi > q(k + k'(k, 2, 1)). 

  Again there ac two cases to consider. First, when kV, 2, 1) = 1 and second when 
kV, 2, 1) = 0. Conditions (i), (iii) and (iv) are concerned with the first case, while 
conditions (il) and (v) are concerned with the second. 

  In this case, however, consistency issues crop up. Consider the case where one of 
the p-agents decides to remain single. In that case what is the reservation payoff of this 
p-agent? Note that the reduced form game now consists of exactly one p-agent and one 
q-agent. The numbeer of match-ups in this reduced form game is exactly k' (k, 1, 1). We 
can now appeal to the previous definition to solve for k' (k, 1, 1). Thus the total number 
of matchups should be k + k' (k, 1, 1) and the reservation payoff of the p-agent should 
be q(k + k'(k, 1, 1)). This is formalised in the first part of condition (iv), which states 
that the reservation payoff of an assigned p-agent, in case he decides to remain single, 
is p(k+k'(k, 1, 1)). Thus he must obtain at least this much if he is not going to deviate. 
Furthermore, observe that k' (k, 1, 1) may be non-unique. In that case we assume that 
any arbitrary selection from the set of possible values of k'(k, 1, 1) is equally admissible. 
However, since we do not want to complicate the notations any further, we shall use 
k' (k, 1, 1) to denote this selection as well. 

  The interpretations of the other conditions do not involve any consistency issues. 
Hence we do not elaborate on them. 

  Clearly, k'(k, 1, 2) can be defined analogously. We can then use k'(k, 1, 1), k'(k, 1, 2) 
and k'(k, 2, 1), to define k'(k, 2, 2). The definition for k'(k, p, q) for general p and q 
can now be constructed inductively.
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  DEFINITION. Suppose that  I  P'  I = p, I Q' I = q and let k be defined as usual. An 
outcome ((u, u, v, v), p,k,(k p q)) is said to be c-stable for (k, p, q) if the assignment 
involves k'(k, p, q) matchups and the payoffs satisfy: 

   (i) u1 +f); > x(k + k'(k, p, q)), for µ(i) = 1, 
  (il) u1+uj >x(k+1+ kV( +1,p-l,q-l)), for µ(i) j, 

  (iii) ui+vi >x(k+1+k'(k+1,p-l,q-l)), 
  (iv) ui+vi >x(k+1+k'(k+1,p-l,q-l)), 
  (v) ui+vi>x(k+1+ kV( +1,p-l,q-l)), 

  (vi) u1 > p(k + k'(k, p — 1, q)), 1)1  > q(k + k'(k, p, q — 1)), 
 (vil) ui > p(k + k'(k, p, q)), v j > q (k + k'(k, p, q)). 

  In order to make this definition more transparent let us re-state some of the above 
conditions. 
  Consider condition (i). Suppose that under the outcome ((u, u, v, v), µk,(k,p,q)) 
agent pi is matched to agent qj in the reduced game. Then the sum total of their as-
signed payoffs must be at least as much as what the pair obtains under this assignment, 
which is x(k + k'(k, p, q)). 

  Next consider condition (il). Suppose that under the assignment in the reduced form 
game agent pi and agent qj are both matched, but not to each other. Then, for the 
outcome to be stable, the sum total of their assigned payoffs must be at least as much as 
what the pair obtains if they decide to deviate and match up with each other. Note that 
in that case the total number of matchups is k + 1 plus k' (k + 1, p — 1, q — 1), where 
the last term is the number of matchups in the reduced form game (k + 1, p — 1, q — 1) . 
Thus the deviation payoff of this pair is x (k + 1 + k' (k + 1, p — 1, q — 1)) . Hence 
condition (il) follows. 

  Next consider condition (iii). Suppose an unassigned p-agent and an unassigned 
q-agent decide to match up, what is the joint payoff that they can expect? Following 
their match up, the remaining agents in the reduced form game take (k + 1) matchups 
as given. Hence in the reduced form game consisting of (p — 1) p-agents and (q — 1) 
q-agents, the number of matchups is going to be k' (k + 1, p — 1, q — 1) . Thus the total 
expected number of matchups following the deviation is k + l-I- k' (k + 1, p — 1, q — 1) . 
Hence the expected payoff is x (k + 1 + k' (k + 1, p — 1, q — 1)) . 

 Conditions (iv) and (v) can be interpreted similarly. 
 Next consider the first part of condition (vi). What is the reservation payoff of a p-

agent who is assigned? Given that the p-agent has decided to remain unassigned the 
reduced form game is now of the form (k, p — 1, q). Hence the reservation payoff of 
the p-agent is p(k (k, p — 1, q)). For stability, the payoff of the p-agent must at 
least equal this. 

 The rest of the conditions can be interpreted similarly. 
 We are finally in a position to define the notion of consistent stability. Notice that the 

deviation payoffs are derived by using conjectures that are consistent in our sense.
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 DEFINITION. An outcome  ((u, u, v, v), ak) is said to be c-stable if: 

  (i) ui + uj > x(k), for Q(i) = j, 
  (il) ui+vi>x(l+k'(l,n-l,n-l)), for a(i) j, 

 (iii) ui + v j > x(1 + k'(l, n — 1, n — 1)), 
 (iv) ui -I- vi > x(1 + k'(1, n — 1, n — 1)), 
  (v) ui -I- v j > x(1 + k'(1, n — 1, n — 1)), 
 (vi) ui > p(k' (0, n — 1, n)), vi > q(k'(0, n, n — 1)), 

 (vil) ui > p(k), v j > q (k). 

 We now interpret these conditions. 
 Condition (i) is entirely standard. 
 Next consider condition (il). Suppose that under the outcome ((u, u, v, v), 6k) agent 

pi and agent q 1 are both matched, but not to each other. Then, for the outcome to be 
stable, the sum total of their assigned payoffs must be at least as much as what the pair 
would obtain if they decide to deviate and match up with each other. Note that in that 
case the total number of matchups would be 1 + k' (1, n —1, n — 1), where the last term is 
the number of matchups in the reduced form game (1, n — 1, n — 1). Thus the deviation 

payoff of this pair is x(1 + k' (1, n — 1, n — 1)) . Hence condition (il) follows. 
 Next consider condition (iii). Suppose an unassigned p-agent and an unassigned 

q-agent decide to match up, what is the joint payoff that they can expect? Following 
their match up, the remaining agents in the reduced form game take 1 match up as given. 
Hence in the reduced form game consisting of (n — 1) p-agents and (n — 1) q-agents, the 
number of matchups is going to be k' (1, n — 1, n — 1). Thus the total expected number 
of matchups following the deviation is 1 + k' (1, n — 1, n — 1) . Hence the expected 

payoff for this deviating pair of agents is x(1 + k' (l , n — 1, n — 1)) . 
 Conditions (iv) and (v) carry similar interpretations. 

 Next consider the first part of condition (vi). What is the reservation payoff of a 

p-agent who is assigned? Given that the p-agent has decided to remain unassigned the 
reduced form game is now of the form (0, n —1, n). Hence the reservation payoff of the 

p-agent is p(k'(0, n — 1, n)). For stability, the payoff of the p-agent must at least equal 
this. 
  The rest of the conditions can be interpreted similarly. 

  It is worthwhile to try and understand the conceptual basis of these conditions. Con-
sider, for example, condition (iii). The essential point is that we are considering a 
situation where none of the agents have as yet committed to the prescribed outcome 

((u, u, v, v), ak). Consider the decision problem facing a p-agent and a q-agent, who 
are unassigned under the prescribed outcome. If they decide to remain unassigned, 
then, since they think that the prescribed outcome is c-stable, they expect that the oth-
ers will also follow this outcome. However, if they decide to match up, then the situ-
ation changes drastically. Now the prescribed outcome ((u, u, v, v), ak) is no longer 
relevant. The other agents are faced with a situation where one p-agent and one q-
agent has already matched up, so that the other agents face a reduced form game
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of the form (1, n — 1, n — 1). The number of matchups in this reduced form game 
is given by  k'(1, n — 1, n — 1). That is why the reservation payoff of this pair is 
x (1 +k'(1, n —1, n —1)). Moreover, there is no necessary relation between the matchups 
in this reduced form game, and those originally prescribed. It is conceptually possible 
that agents who were matched up in the original matchups remain single in the reduced 
form game. 

 We then apply the notion of c-stability to solve the symmetric assignment game with 
externalities. We begin by introducing some more definitions: 

 DEFINITION. f (k) = x(k) — p(k — 1) — q(k — 1), V E {1, 2, • • • , n}. 

  f (k) can be interpreted as the incentive for a single p-agent and a single q-agent to 
match up if there are k — 1 existing matchups and, following this match up, no additional 
matchups are expected to take place. 

 DEFINITION. g(k) = x(k) — p(k) — q(k), V E {1, 2, • • • , n — 11 and g(n) = 
x (n) — p(n — 1) — q (n — 1). 

 Thus fork E { 1, 2, • • • , n — 11, g (k) can be interpreted as the incentive for a single 

p-agent and a single q-agent to match up if the number of matchups is expected to be 
k irrespective of whether they match up or not. g (n) carries the same interpretation as 

f (n). 

 DEFINITION. kl (respectively kg) be the minimum integer such that f (k) (respec-
tively g (k)) is non-negative. 

k f can be interpreted as follows. Consider a hypothetical situation where the agents 
are naive in the sense that if there are k existing matchups and if a single p-agent and 
a single q-agent matches up, then the expect that the ultimate number of matchups is 

going to be exactly k + 1.1 In such a situation any assignment must involve at least k f 
matchups. This is because for any assignment with less than k f matchups, it is the case 
that f (k) < 0, so that such an assignment cannot be stable. 

 kg can be given a related interpretation. Consider another hypothetical situation 
where the agents are naive in the sense that if there are k (< n) existing matchups and 
if a single p-agent and a single q-agent matches up, then they expect that the ultimate 
number of matchups is going to be exactly k. In such a situation any assignment must 
involve at least kg matchups. Clearly, for any assignment with less than kg matchups , 
g (k) < 0. Hence such an assignment cannot be stable. 

 Next we introduce an assumption that we require in the proof of Proposition 1 below. 

 ASSUMPTION (I). 

 (i) p(k), q (k), f (k) and g (k) are all (weakly) increasing in k. 
 (il) k f = kg = k. 

 Let us try to interpret assumption I.

1 Of course , in our model the agents are much more sophisticated. The alternative assumption is just for 
ex positional purposes.
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 First consider assumption I(i). The conditions that p(k) and q(k) are increasig in 
k essentially states that the payoffs of the unassigned agents exhibit increasing returns 
to scale in the numbers of matchups. While the conditions that f (k) and g (k) are 
increasing in k ensure that, in some sense, the incentive to form matchups are increasing 
in k. So that under these conditions there would be a tendency for consistently stable 
outcomes to involve n matchups. 

 Next consider assumption I(il). Recall that k f and kg can be interpreted as the mini-
mum number of matchups for two different kinds of conjectures by the agents regarding 
the outcome following a match up. Thus the condition that kg = k f is essentially a con-
sistency condition that irrespective of the conjectures the minimum number of matchups 
is the same. 

 The proof of the following proposition can be found in the appendix. 

PROPOSITION 1. Under assumption I a c-stable outcome exists. 

  (i) If k < n —1, then all outcomes such that there are n matchups, = x(n), 
ui > p(n — 1) and 1)1 > p(n — 1), are c-stable. 

  (il) If k = n, then all outcomes such that there are n matchups, ui + vi = x(n), 
ui > p(0) and v > p(0), are c-stable. 

  Thus in the presence of increasing returns to scale a c-stable outcome is likely to 
exist. The proof is constructive. 

  Let us take a look at the c-stable outcomes described in Proposition 1. Note that all 
are Pareto optimal in the sense that they involve exactly n matchups. This, of course, is 
expected given our assumption that the incentive to form matchups is increasing in the 
number of matchups, i.e. f (k) and g (k) are increasing in k. There are two cases. First 
consider the case where k < n — 1. In this case if an agent decides to remain single, 
then, in the reduced form game, there are going to be n — 1 matchups. Hence we find 
that u i > p(n — 1) and v > p(n — 1). Next consider the case where k = n. If an 
agent decides to remain single, then in the reduced form game all the agents are going 
to remain unassigned. Hence in this case ui > p(0) and > p(0). 

  Why do we require that both f (k) and g (k) be increasing? In the actual proof the 
consistent conjectures are constructed inductively starting from the smallest reduced 
form games. The condition that f (k) be increasing is required to construct the conjec-
tures in reduced form games with an equal number of p-agents and q-agents. Whereas 
for reduced form games with an unequal number of p-agents and q-agents, we require 
the condition that g (k) be increasing. As we mentioned before, assumption I(il) is es-
sentially a consistency condition. Formally, what it does is to ensure that reduced form 

games with an unequal number of p-agents and q-agents have a solution. For such re-
duced form games we need that f (k) and g (k) should have the same sings for all k. 
However, that is possible when k f = kg, not otherwise.

2 Example 2 later illustrates some of the possible problems when k 1 kg .
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  We then provide two examples to show that if we drop either one of the two conditions 
in assumption I, then a c-stable outcome may not exist. 

  EXAMPLE 1. We first consider an example where n = 2.  x  (k), p(k) and q (k) are 
all strictly decreasing in k, and x(2) - p(1) - q (1) < 0 < x(1) - p(0) - q (0) . Clearly, 
assmption I(i) fails to hold. Notice, however, that kl = kg = 1, thus assumption I(il) 
holds. 
  We then examine if this game has a c-stable outcome. To begin with it is easy to see 
that 1(1(0, 1, 1) = 1 and k' (l, 1, 1) = 0. We then claim that k/(0, 2, 1) = 1. Consider an 
outcome that involves one match up, ui = u i = p(1) and v j = x(1) - p(1).  We then 
check that v j > q(0) i.e. x(1) - p(1) - q (0) > 0. This follows since x(1) - p(0) -

                                                        q (0) > 0 and p(0) > p(1).  (We can similarly argue that 1(1(0, 1, 2) = 1.) 
  Finally let us examine kl(0, 2, 2). There are three different cases to consider. 
  Case (i). We first examine if l'(0, 2, 2) can equal zero. In that case ui > p(0) and 

v j > q(0), Vi, j. In fact we can argue, following Roth and Sotomayor ([11], lemma 
8.5)), that ui = p(0) and vi = q(0), `di, j. Since k'(l, 1, 1) = 0, the c-stability 
condition is that ui + vi > x(1). This in turn implies that p(0) + q(0) > x(1), which 
is a contradiction. 

 Case (il). We then check if 1(1(0, 2, 2) can take a value of one. The payoffs in this 
case must satisfy ui = p(1), v j = q(1) and 1,-4+1)1   = x(1). Since k'(k, 1, 1) = 0, the c-
stability condition is that u, + v j > x(1), which in turn implies that x (1) - p(1) -q (1) < 
0. But this violates the condition that x(1) - p(0) - q (0) > 0 (since p (k) and q (k) are 
decreasing in k). 

 Case (iii). Finally we examine if k/(0, 2, 2) can assume a value of two. In that 
case the payoffs must involve u i + v j = x (2) whenever Q (i) = j . If Q (i) j , then 
the c-stability condition yields that u i + v j > x(1).  Summing up we obtain 2x (2) = 

E ui + E v; > 2x (1) i.e. x(2) > x(1).  This, however, is a contradiction. 
 Thus in the presence of decreasing returns to scale a c-stable outcome may not exist. 

 EXAMPLE 2. We then provide an example where assumption I(i) holds, but I(il) 
fails. Assume that n = 2, and x (k), p(k) and q (k) are increasing in k. Furthermore 
assume that x(2) - p(1) > x(1) - p(0) - q(0) > 0 and x(1) - p(1) - q(0) < 0. 
Observe that under these assumptions kl = 1 < 2 = kg. (This follows because if 
kg = 1, then this would imply that x(1) - p(1) - q (0) > x(1) - q (1) > 0, which is a 
contradiction.) 
 We then argue that we cannot find a set of consistent conjectures for this game. 

 To begin with, it is obvious that k'(k, 1, 1) = 1, Vk E {0, 1}. We then examine if 
k'(0, 2, 1) is defined. It is easy to see that kl(0, 2, 1) cannot equal zero. If it does, then 
the payoffs must involve ui = p(0) and vi = q(0), Vi, j. But in that case one p- and 
one q-agent can match up. Since kl(1, 10) = k'(1, 0, 1) = 0, their joint payoff is going 
to be x(1), which is greater than the sum of their payoffs p(0) + q (0). (This follows 
since x(1) - p(0) - q (0) > 0.) 

 Finally, we examine if k'(0, 2, 1) can take a value of one. Suppose that it can. In that 
case the payoffs must satisfy ui = p(1), ui + vi = x(1) , ui > p(1) and vi > (0).
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But the last three conditions together imply that x(1) — p(1) — q(0) > 0, which is a 
contradiction. 

 Thus k' (0, 2, 1) is not defined, and a c-stable outcome does not exist. 
 We then demonstrate that c-stable outcomes do not necessarily belong to the core. 

Consider an example where n = 2, x(2) = 3, x(1) = 5, p(1) = q(1) = 1, and 

p(0) = q(0) = 0. Notice that assumption (I) is satisfied and thus, from Proposition 
1, there is a c-stable outcome that involves two matchups, = 1 and f)1  = 2. `di, j. 
Observe, however, that 

x(1) + p(1) + q(1) = 7 > 2x(2) = 6 > 2p(0) + 2q(0) = 0. 

Thus the grand coalition can deviate and make a gain. Hence the given outcome is 
c-stable, but not in the core. (This also implies that c-stable outcomes need not be 
coalition proof Nash equilibrium.) 

 This is interesting because the sufficient condition given by Li [ 10] for the existence 
of a rational expectations equilibrium, that the problem have `weak externalities', leads, 
in a matching context, to a core outcome. Thus in some sense the condition provided 
by Li [ 10] is too strong. In contrast assumption (I) does allow for non-core outcomes. 
Of course, assumption (I) is for symmetric games only, while Li [10] allows for non-
symmetric matching games also. 

 Finally, recall that Chowdhury [6] also examines assignment models with externali-
ties and defines a non-cooperative solution concept, that of a `perfect' equilibrium. It is 
natural to examine if the notion of `perfect' equilibrium is related to that of c-stability 
developed in this paper. 

  We first claim that a c-stable outcome need not be `perfect'. Consider a standard 
assignment game with no externalities. It is clear that the set of stable and c-stable 
outcomes coincide. From Proposition 5 in Chowdhury [6], however, it follows that 
only the p-optimal outcome can be sustained as a `perfect' equilibrium. Thus the other 
c-stable outcomes are not `perfect'. 

  We then argue that the converse is also true, i.e. a `perfect' equilibrium need not 
be c-stable. Consider the following symmetric game where x(2) = 5, x(1) = 10, 

p(1) = q(1) = 3 and p(0) = q(0) = 4. Observe that this game satisfies the conditions 
given in example 1 above. Thus this game has no c-stable outcome. Next consider the 
following strategies. Both pi and p2 offers the vector (3, 7) to qI. They make no other 
offers, q 1 accepts the offer made by pi,  say. It is easy to see that these strategies are 
`perfect' . (See Chowdhury [6], pp. 347, for the definition of `perfect'ness.) 

  Thus the set of c-stable outcomes and that of `perfect' equilibrium are not nested. 
  To summarise, in this paper we study a natural extension of the standard assignment 

model and formulate an appropriate equilibrium concept for this class of models. We 
also establish an useful existence result. We then provide some examples to demonstrate 
that if the sufficient conditions are violated, then a c-stable outcome may not exist.
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                            4. APPENDIX 

  PROOF OF PROPOSITION 1. We first argue that  if _k > max{k — 1, 01, then 
k'(k, 1, 1) = 1. Otherwise, it takes a value of zero. If k > max{k — 1, 0) then the 
outcome that involves one match up, ui = p(k) and v j = x(k + 1) — p(k) is c-stable for 
(lc, 1, 1). If, however, k < max{k — 1, 01, then the outcome that involves no matchups, 
ui = p(0) and vi = q(0) is c-stable for (k, 1, 1). The proof is obvious and follows the 
fact that f (k) > 0, if and only if k > k. 

  We then argue that if k > max{k — 1, 01, then k'(k, 2, 1) equals one. Otherwise, 
it takes a value of zero. To begin with consider the case where k < max{k — 1, 01. 
Consider the outcome where all the agents remain unassigned and the payoffs inolve 
ui = p(k) and vi = q(k), Vi, j. This outcome is c-stable for (k, 2, 1) for the reduced 
form game since ui + v j = p(k) + q(k) < x(k + 1). 

  We then examine the case where k > max{k — 1, 01. Consider the outcome where 
ui = p(k + 1) = ñ, and v j = x(k + 1) — p(k + 1) . Clearly the c-stability condition for 
the reduced form game (k, 2, 1) is that v j > q (k), i.e. x (k + 1) — p (k + 1) — q (k) > 0. 
(This follows since g (k + 1) > 0 and q (k) is increasing in k.) 

  It is clear that k'(k, 1, 2) has the same form as k'(k, 2, 1). 
  We then consider the general case where p > q. We demonstrate that ea, p, q ) 

equals q if k > max{k — q, 01. Otherwise it assumes a value of zero. 
  The proof is through induction. 

  Inductive hypothesis: Let p' and q' be such that p' < p and q' < q, and at least 
one of the inequalities is strict. Then k'(k, p', q') equals min{ p', q'), if k > max{k — 
min{ p', q'}, }. Otherwise it assumes a value of zero. 

  We first consider the case where p > q and k = max{k — 1, 0}. Consider the 
outcome that involves q matchups, ui = p (k + q) = u i and v j = x (k + q) — p (k + q) . 
Notice that if a q-agent decides to remain single then, from the induction hypothesis, 
k' (k, p, q — 1) = 0. The c-stability condition for (k, p, q) therefore is that '01  > q (k) 
i.e. x (k + q) — p (k + q) — q (k) > 0. This follows since g (k + q) > 0 and q (k) is 
increasing in k. 

 We then consider the case where p >,,q and k > max{k —q, 0}. Consider an outcome 
that involves q matchings and ui = p(k + q) = ui and '01  = x(k + q) — p(k + q). In 
this case k'(k, p, q — 1) = q — 1, and hence the c-stability condition for the reduced 
form game is that f).;  > q (k + q — 1), i.e. x (k + q) — p (k + q) — q (k + q — 1) . As in 
the previous case, this follows since g (k + q) > 0 and q (k) is increasing ink . 

 Finally, if k < max{k — 1, 01, then it is easy to see that an outcome that involves no 
matchups, ui = p(0) and vi = q(0), Vi, j, is c-stable. 

 The proof for the case where p = q is similar and hence omitted. 
 We are now in a position to solve for the c-stable outcome of this game. There are 

two cases to consider. 
 Let us first examine the case where k < n — 1. Consider the outcome where there are 

n matchups, ui + f).;  = x(n)), for 6(i) = j, ui = p(n — 1) and v j = x(n) — p(n — 1). 
Since k < n — 1, k"(0, n, n — 1) = n — 1 and thus, the expected number of matchups
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if an agent decides to remain single, is (n — 1). The c-stability conditions thus become 
 ui + ti > x(n) (for 6 (i) j), and vi > p(n — 1). That the first condition is satisfied is 

obvious and the second condition implies that x(n) — p(n — 1) — q(n — 1) > 0, which 
follows from the fact that f (n) > 0. 

 We then consider the case where k = n. Consider the outcome where there are n 
matchups, ui + vi = x(n), for 6(i) = j, ui = p(0) and vi = x(n) — p(0). Since 
k = n, the expected number of matchups, if an agent remains single, is zero. Thus the 
c-stability condition is that 1)1 > q (0) i.e. x (n) — p (0) — q (0) > 0. This follows from 
the fact that f (n) > 0 and p(k) and q (k) are increasing in k.
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