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Abstract: In this paper we formulate an uncertain situation for an agent and investigate 
a learning process which is formed from his or her knowledge structure. The purpose 
of this paper is to prove that his or her subjective probability converges to the true 
distribution which governs the uncertain states, whenever he or she updates his or her 
forecast by a rational learning. This result means that even if individuals do not have 
the same prior, they will come to have a common posterior. 
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1. INTRODUCTION

 The common prior assumption plays an important role in modern microeconomics 
and game theory. It states that two individuals having access to the same information 
will necessarily form the same subjective probability. In this paper we shall formu-
late a situation in which each individual has a subjective probability and can access 
to the same information; and then give a justification of this substantial common prior 
assumption. 
 The expected utility theory, which was proposed by von Neumann and Morgenstern, 

has been widely used in game theory and decision theory under uncertainty and risk. 
However, it is also known that there are several problems with that concept. One of 
them is that probabilities to represent risk or uncertainty are objectively defined. In 
other words decision-makers assign the same prior probabilities to the risk. Thus, we 
will have a difficulty when agents do not know the objective probability. If the decision-
maker does not know the probabilities of events, how does he or she make a decision 
under this uncertain situation? Savage (1954), and Anscombe and Aumann (1963) pro-

posed subjective expected utility models to solve this problem. This probability is called 
a subjective probability in the sense that it is derived from an individual's preference. 
Anscombe and Aumann defined a subjective probability on horse lotteries, where prizes
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were roulette lotteries, under three reasonable axioms. Edwards (1962), Machina (1989) 
and Schmeidler (1989) also considered related problems . 

 These subjective probabilities do not generally coincide with the true probability by 
which all states are governed uniformly in the expected utility theory. However, an 
agent may update his or her own forecast by experience if he or she faces the same 
situation many times. That is, he or she may learn the objective probabilities gradually 
in terms of the long-run frequencies . The idea of learning is not new in economic theory. 
In macro economic theory the rational expectation has been used for a long time (for 
example, see Muth 1961). Recent developments of these approaches include Black well 
and Dubins (1962), Feldman (1987), Kalai and Lehrer (1993) , Che (1998) and Sagara 
(1999). Other types of learning models are formulated in game theory, and summarized 
in Fudenberg and Levine (1998) and Young (1998) . 

 In this paper we formulate the learning process which is derived from an individual's 
knowledge, and clarify the relationship between the expected utility theory and the sub-

jective expected utility theory. Little has been known about this relationship. One of 
the main contributions is to characterize the common prior assumption studying this 
relation. More precisely, we show that an individual , who does not know the true prob-
ability, can find it out using his or her past observation and knowledge . In other words, 
his or her forecast, which is derived from a subjective probability , converges to the true 
distribution in accordance with a rational learning . Therefore we can state that even if 
individuals do not have the same prior, they will come to have the common posterior . 

 The rest of this paper is organized as follows. In Section 2, we define a rational learn-
ing and a structure of information. In Section 3, we show that the subjective probability 
of an agent converges to the objective probability whenever he or she updates his or 
her subjective probability, with respect to which the objective probability is absolutely 
continuous. The last section presents concluding remarks and extensions .

2. RATIONAL LEARNING AND OBJECTIVE PROBABILITY

 2.1. Subjective Probabilities and the Objective Probability 
 Initially, we define the objective probability and introduce subjective probabilities . 

Let Qt = {col, ... , cos} be the set of states at period t , and X C RI be the set of 
consequences. An element x in a subset of X Qt is called an action, and means that an 
agent obtains x (wj) when wt E Qt occurs at this period. 

 If an agent knows the prior probability Qt on Qt in this setting, it is known from 
the expected utility theorem that a preference on a subset of XQt is represented by 

ELI I Qt (wt) u (x (wt) ), where u : X R is a utility function for an agent. This 
probability Qt is called the objective probability on £2t in the sense that it is independent 
of his or her preference relation and experience. For example, we know from experience 
the probability distributions of dice, roulettes and a coin tossing. Besides Qt (wt) > 0 
for all (pi . Namely, it is implicitly assumed that Qt (wt) > 0 for all wt in many situations. 

 DEFINITION 1. The objective probability Qt on S2t is the probability measure on 
Qt = {wt, ... , ws} which satisfies Qt(wt) > 0 for all i = 1, ... , s.
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 Even if an agent does not know the prior probability on  Sit, it is also known that he 
or she has a probability measure Pt on Qt under reasonable axioms.1 This probability 
measure Pt is called a subjective probability in the sense that it is generated from his or 
her preference relation. In the same way as the expected utility theorem, a preference 
on a subset on X st' is represented by ~5=1 Pt (wt )u (x (wt )). In this paper we assume 
that a subjective probability on Qt is derived from some axioms. 

2.2. The Structure of Information and Learning 
 We suppose the situation in which the states in Qt are determined by the objective 

probability Qt. Even if an agent does not know this probability he or she can form a 
subjective probability. If he or she is confronted with the similar situation repeatedly 
and observes past information, he or she may have another forecast. That is, he or she 
can learn from his or her past experience and revises his or her prediction. 

 Pratt, Raiffa and Schlaiffer (1964) proved that an agent updated his or her own sub-
jective probability by using a conditional probability under certain axioms. But it is not 
clear what the relationship between the objective probability and a subjective probabil-
ity is. Here, we will clarify this relationship using a learning approach. To this end, 
we introduce a dynamic model where an agent is assumed to be faced with the same 
situations for several times, and in which he or she is supposed to be informed of the 
states. Since an agent is considered to be faced with the same situation Qt for each 
period, we use the product set of Qt as a state set throughout periods. 
 Let S2 := 1-172_lot be the product set of Qt = {wt, ... , ws} and P be the product 

measure over S2 which is constructed from Pt. To characterize an agent's information 
we adopt a partition of S2.2 

 Pt describes a partition of Q at period t. Pt (w) denotes the element of Pt which 
contains w E Q. Moreover we assume that these partitions satisfy 

Pt (w) D Pt+1(w) for all t = 1, 2, ... . 

This supposition describes that an agent's information is refined and accumulated by 
observing past information. According to this refinement process, we interpret that an 
agent knows the realized state and learns from his or her past experience. In addition, 
a sequence of a--algebras {.Ft} generated by the sequence of the partitions {Pt) also 
forms an information increasing class. In other words, the sequence of a-algebras ll-ti 
satisfies 

C Ft+1 for all t = 1,2,... . 

We summarize the previous notions and formulate a learning process which is derived 
from an individual's knowledge. 

 DEFINITION 2. The structure of information and learning for an agent is defined 
as the filtered probability space (S2, , {.~t}, P), where 

 (1) S2 is the product set of Qt, 
 (2) F is the a-algebra on S2 and satisfies .Ft C F for all t = 1, 2, ... , 

 1 See Anscombe and Aumann (1963) and Savage (1954). 
 2 This partition approach is sometimes adopted to describe knowledge.
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 (3)  {Fr} is a filtration, and 
 (4) P is the product probability measure which is derived from a subjective proba-

bility Pr on S2r . 

 From this specification, the a-algebra.Ft of the conditional probability P(• I Ft) in-
dicates an agent's information and observation until the period t. For this reason the 
marginal conditional probability Pt( I Ft) expresses his or her forecast for states at pe-
riod t 1, noting that P is the product measure. In the similar way his or her preference 
on the subset of X Qt+1 is represented by Es-,=i  Pr ((Di I Jr )u (x (wt )) using the marginal 
probability Pr (• I ,Ft). Furthermore, an agent is assumed to revise his or her own predic-
tion P(• I Ft) by Bayesian learning in this definition. We would like to emphasize that 
this definition has a decision theoretical background. 

 Finally we define the product measure of the objective probability Qt. Q denotes 
the product measure on Q and constructed from the objective probability Q. on Qt. 
(S2, F, Q) is also the probability space. Note that if Qt (cot) for all wt E S2r, Q(A) > 0 
for all A E F. This implies that if Qt is the objective probability, Q is also one.

3. MAIN RESULTS

 We clarify the relationship between the expected utility theory and the subjective 
expected utility. We shall point out an important result, which was proved by Black well 
and Dubins (1962) about the relationship between two probabilities on the same space. 
They showed that if two probability measures are predictive and absolutely continuous, 
two conditional probability measures merge almost everywhere as time goes to infinity. 

 In this paper, we make a progress one step ahead of their result. We prove a stronger 
result than theirs, focusing on a subjective probability and the objective probability, 
which are related to the decision theory. More concretely, we employ the product mea-
sure space which has a basis of a subjective probability and the objective probability, 
and the structure of information and learning which has also a decision theoretical back-

ground. We prove that if the objective probability on S2 is absolutely continuous with 
respect to a subjective probability on Qt, the conditional subjective probability con-
verges uniformly to the conditional objective probability. Roughly speaking our result 
is the uniform convergence instead of the almost everywhere convergence in the math-
ematical sense. Since it is not generic, we can interpret it more easily. It indicates that 
an agent's subjective expected utility at period t, ~i Pt(cot I F)u(x(wt)), converges 
to the expected utility E __ 1 Qt (cot I .F)u (x (cot)) as the outcome of his or her learning 
process. Furthermore we can interpret that individuals form the same subjective proba-
bility even if they have different knowledge and private forecasts at the initial point. To 
state our results we prepared for the following assumption and lemmas. 

 Assumption 1. Qt << Pr for all t = 1, 2, ....3

3 Let P and Q be the probability measures on a set Q , and E be a a-algebra of subsets of Q. Now, Q << P 
denotes that Q is absolutely continuous with respect to P, and means that Q(A) > 0 implies P(A) > 0 for 
all AEE.
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  Assumption 1, which is called the absolutely continuous condition, means that  Qt  (A) 
> 0 implies Pr (A) > 0 for all A C Qt, so that the prediction by Qt is also predicted 
by Pt. At the same time we also permit that an agent can have a wrong expectation. 
This assumption is usually adopted in Bayesian learning literatures, (for example, see 
Feldman (1987), Kalai and Lehrer (1993) and Nyarko (1998)). 

  LEMMA 1. If Qt << Pr for all t = 1, 2, ... then Q << P. 

  Proof We will show that for all A E Foe, Q(A) > 0 implies P(A) > 0. Let 
A = Ir 1 AI be the product set in Q, where Ak = Stk for all except finitely many k. 

VAE. 'o,Q(A)>0 Vt=1,2,...Qr(Al)>0 for all l=1,2,... 
=. Vt = 1,2,...Pr(Al) > 0 for all l = 1,2,... 

P(A) > 0. 

                                             I 
  Using Lemma 1, we may interpret Assumption 1 in another way. If Assumption 

1 holds for some individuals, we can consider that they have a common accessible 
information which is described by Qt. The following result is useful to prove Theorem 
1. 

  LEMMA 2. For all f E L 1(S2, 8, P) and for every monotone increasing sequence 
{13n} of a-algebras converging to a a-algebra 13,              

rim E[ f lin ] = E[f 18] almost everywhere . 
n-+00 

 Proof The proof is basically the same as Theorem 35.6 in Billingsley (1995). 1 

  The following theorem is the main result in this paper. Intuitively, it states that a 
subjective probability converges to the objective probability. 

  THEOREM 1. Under Assumption 1 

              Q(A I To) = rl~P(A I .Fr) uniformly 

for all A E .Foe.4 
  Proof From Lemma 1, Q << P follows. We can see from Radon-Nikodym's theo-

rem that
f           3f (w) : Foe-measurable s.t.If (w)op(co) = Q(P) (1) 

                             P for all P E .Foe. Using the definition of conditional expectation and Lemma 2, we 
examine the following two cases, for all pl _1 E -Ft. 

Case I. P(pl_ 1(w)) # 0. 

         Ep[f (w) I Pt—i (w)]=1  
P(pr-l(w)) f (w)op(w) 

4 We can prove the similar result without the 
product set approach.
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 Q(Pt—i(w))(from (1)) 
P (Pc —1(w)) 

                     Q (P00(0)))  
                       P(P~(w))(a.e.) . (Lemma 2) 

Case H. P (Pt _1(co)) = 0. 

In this case, Theorem 1 is trivial by Q << P. Let us consider the Case I as follows. 
 Since Poo(w) C pt-l(w), 

P(Poo(a))----------------------------1 pt-l(w))            rim
= 1 (a. e.) . 

t—00 Q(Poo(w) I pt-l(w)) 

This equation indicates that 

3F : P-null set s.t. Ye > 0 , Vco E S2 , 3to E N; 

                      t>tp (Poo (w)I Pt— 1(w))_1 <£                         to Q (P
oo (w) I pt-l(w)) 

on 0 \ F. Then, 
P(Poo(w)-----------------------I pt-l(w))  

t>to=1—e<<1+e. Q (P
oo (w) I pt-l(w)) 

Therefore 

t > to IP(Poo(w) I pt-l(w)) - Q(Poo(w) I Pt- i(w))I < EQ (Poo (w) I pt-l(w)) 

Noting that 0 < Q (Poo (w) I Pt- 1(c))) < 1, we can conclude 

3F : P-null set s.t. Ye > 0 , VcwEQ, stoEN; 

               t >> to IP(Poo(w) I pt-l(w)) - Q(Poo(w) I pt-l(w))I < E 

on S2 \ F. Let A be an atom of .Foe. We obtain that 

              t>—to=IP(AI Ft) -Q(AIJoo)I <E. 

In fact since A is not contained in Pt (co), it follows that P (A I .Ft) = 0 and Q (A I .Ft) = 
0. Hence                  

rim P(A I .Ft) = Q(A I Too) a.e. 
t--.00 

                     Noting that Q is the objective probability, we can conclude from Egroff's theorem 
that 

rim P (A I .Ft) = Q (A I .Foe) uniformly . 
t—*00 

for all A E J. The proof is completed. 

  An interpretation of Theorem 1 is that if an agent has a subjective probability with 
respect to which the objective probability Qt is absolutely continuous, and updates 
his or her subjective probability according to a rational learning then he or she can 
find out the objective probability. As an agent updates, the subjective expected utility 
which he or she forms under the subjective probability converges to the expected utility 
which he or she forms under risk or uncertain situations. Another interpretation is 
that even if individuals have different knowledge and private forecasts, they have a
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common posterior. In this sense, this result may be similar to Aumann (1976). Let 
we consider that two individuals have different information which are described by 
subjective probabilities. Apply Theorem 1, if their probabilities are equivalent they can 
agree throughout learning without the common prior and common knowledge. 

 PROPOSITION 1. If  limt_-00 P(A I -Ft) = Q(A I Foe), then the conditional proba-
bility distribution of Q is absolutely continuous with respect to the conditional proba-
bility distribution of P. 

 Proof By assumptions, 

os>OstoEN:t>to= P(A I.Ft)=O and Q(A I Ft) <E. 

Since the value of Q(A I .Ft) does not depend on e, we can conclude that P(A I Ft) = 0 
and Q(A I .P't) = 0 for all t > to. Then, the conditional probability of Q is absolutely 
continuous with respect to the conditional probability of P.

4. CONCLUDING REMARKS AND EXTENSIONS

 We have clarified the relationship between the expected utility theory and the sub-

jective utility theory. We introduce a filtered probability space as a representation of 
learning which is derived from agent's knowledge. Our main result, Theorem 1, is that 
a conditional subjective probability converges to the conditional objective probability. 

  Our result is one step ahead of Black well and Dubins's result, focusing on the rela-
tionship between a subjective probability and the objective probability. To put it briefly, 
our result is the uniform convergence instead of the almost everywhere convergence. 
Moreover its interpretation may be similar to Aumann (1976). Roughly speaking his 
result is that if agents with different partitions have common knowledge and the same 

priors, then these posteriors are equal, that is, they agree. It may be said that a similar 
result holds by introducing a rational learning approach without assuming any common 
knowledge and the same priors. In this sense, even if agents do not have the common 

prior they will come to have the common posterior. 
 One of our future researches is to deal with multi agents. In particular, if each agent 

has different knowledge, what we can conclude about the convergence? Another way 
is to apply our model to game theory. For example, we may take the state set S2 as a 
type space in Bayesian game. Under this situation it will be shown that even if players 
do not have common knowledge of their type spaces, they can find out their opponents' 
true type spaces by learning. 

 By this extension, it may also be possible to apply to Harsanyi's doctrine . Namely, 
if it is assumed that players revise their own subjective forecasts by a rational learn-
ing, they may come up with the (objective) Bayesian game, without the common prior 
assumption.
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