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Abstract: In the classical Cournot duopoly model, it is well-known that for a wide 

class of demand functions and for concave cost functions, the quasi-competitiveness of 

the duopoly may be lost, resulting in an increase on the commodity price. In all the 

known examples, this phenomenon is accompanied by the loss of the stability of the 

model. This paper presents a classical Cournot duopoly model with a unique feature: 

the loss of quasi-competitiveness with tability of the equilibrium. 
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1. INTRODUCTION

 THE CLASSIC MODEL of Cournot oligopoly equilibrium was designed bearing in 
mind the mathematical modeling of the "effects of competition". Changing from a 
monopoly to a duopoly situation, one of these effects should be, as any reasonable per-
son would agree, the reduction in the price of the commodity. This effect is called 

quasi-competitiveness in the specialized literature. There exist models, though, that 
do not present it. Frank Jr. and Quandt (1963) offer a model in which duopoly price 
is greater than monopoly price; their inverse demand function is somewhat "kinked" 
though and the feeling that these kinks are responsible for the rise in price is un-
avoidable. McManus (1962) and later McManus (1964) offer more general models 
in which a loss of quasi-competitiveness may occur. In fact, McManus (1964) re-
lates quasi-competitiveness with the uniqueness of the equilibrium. In a more thor-
ough analysis Ruffin (1971) presents a classic Cournot equilibrium in which a new 
entry breaks the quasi-competitiveness, violating at the same time the stability of the 
model. Ruffin, in fact, directly relates a condition for stability established by Hahn 

(1962) to quasi-competitiveness. Hahn's condition requires the uniqueness of the equi-
librium; Okuguchi and Suzumura (1971) prove that Hahn's stability condition ensures 
uniqueness of the equilibrium. Lastly, Okuguchi (1974) proves that the uniqueness of

71



72 KEIO ECONOMIC STUDIES

Okuguchi and Suzumura proves quasi-competitiveness despite losing stability.' A very 

good summary of these results can be found in Okuguchi (1976) and, from a more 
general point of view, Daughety (1988). A good reference for the generalization to 
multi-product firms can be found in Okuguchi and Szidarovsky (1999). More recently, 
under the assumption that each firm faces a production adjustment cost at each time pe-
riod, Szidarovzky and Yen (1995) study dynamic oligopolies and find the necessary and 
sufficient condition for a global asymptotical stability. On the other hand, using lattice-
theoretic methods, Amir and Lambson (2000) throw new light into the existence of 
static Cournot equilibrium. They obtain two minimal set of assumptions on the (deriva-
tives of) demand and cost functions that guarantee that industry (equilibrium) price 
decreases [increases] with the number of competing firms whenever inverse demand or 

price decreases faster [slower] at any given output level than does marginal cost at all 
lower output levels. The dynamic stability of the equilibria, though, is not considered. 
The present state of the art can be found in Okuguchi and Szidaeovsky (1999) or Vives 

(2000). 
 In this paper, we build a model in which, starting from any linear decreasing inverse 

demand function we find an increasing piece-wise linear cost function in two pieces 
such that the model has the unique following features: 

  1. A unique Cournot equilibrium point is reached. 
 2. Monopoly price,  191, is lower than the equilibrium price for duopoly, p2. 

 3. The equilibrium point is stable in a sense that will be seen presently. 
We hope our model may add some information to the clarification of the interdepen-
dence of the three aspects of Cournot oligopoly: uniqueness of equilibrium, stability and 

quasi-competitiveness. Our cost function is concave for the levels of production of inter-
est; we would not be able to break quasi-competitiveness otherwise (Szidarovszky and 
Yakowitz (1982) prove uniqueness and quasi-competitiveness assuming strictly con-
vex cost functions and decreasing differentiable demand functions). Our contribution 
shows that the phenomenon of the loss of quasi-competitiveness is not incompatible 
with a unique Cournot equilibrium point which is globally stable. 

 In section 2, after building the model, we discuss monopoly and duopoly maximizing 
outputs, the reaction curves and the necessary assumptions required to achieve our re-
sults. We prove the existence and uniqueness of a Cournot solution and, lastly, we study 
its stability under an adjustment mechanism proportional to the difference between ac-
tual firm output and profit maximizing output. In section 3 we exhibit a numerical 
example of our model.

   The models dealt with by these authors vary slightly in their assumptions concerning demand and cost 

functions: some require differentiability, others only continuity or even semi-continuity. Others consider 

increasing marginal costs, others not. Some consider all the firms identical and others consider different costs 

for each firm, etc.
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                           2. THE MODEL 

 We assume a linear market demand function for the industry of our homogeneous 
commodity, p = a — bq, a, b > 0 and a continuous, piece-wise linear cost function: 

cl+diq if 0<q <qm 
(1)C(q) = c

2+d2q if q,n <q <a/b, 

where Cl, c2, dl, d2 > 0, dl > d2, and qm is a given point in the interval (0, a/b). The 
continuity of C(q) at q = gm requires that 

(2)C2 —Cl +(dl —d2)gm. 

The requirement dl > d2 is necessary in our model as for linear demands and convex 
cost functions it is well-known that the model is quasi-competitive, (see Quandt (1967) 
or Ruffin (1971)). 

2.1. Monopoly 
 In a monopoly situation, the profit function of our sole firm is:

     {—bq2+(a—dl)q—Cl if 0<q <qm 17(q)_ 
       —bq2 + (a — d2)q — c2 if qm < q < alb ,

that can be written as

 17i(q)
         a —d12 

= —bq—------
2b + 

a — d2 2 
= —bq— 

2b+

a — dl)2

17(q) =

H2(q)
22b

 22b 

2)2

— cl 

— c2

if0<q<qm

ifgm<q< alb .

The profits are thus denoted separately: 171(q) in the output interval [0, qm) and 172 (q) 
in the interval [qm, a/b]. The global profit function, 17(q), has a derivative for each q 
in (0, a/b) except for q = qm. 

 Equation (3) represents two parabolas: 171(q) to the left of qm and 172(q) to the right 
of qm. They both connect at qm (see Figure 4 at the end of the paper). Hi (q) has vertex 
(C 17p with 

                                     2 (4) qt=a — dland 171=(a_dl)—cl = b(q)2 — cl , 
    2b22b                           b 

and 172 (q) has vertex (q:, Hp with 

  _2 

(5)q2 =a2b2andli2=(a22d2) _c2 = b(g2)2 — c2 . 
As dl > d2, we have qt < q2 and we assume that the point qm satisfies 

qj <qm <q2.
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In order to have  qt > 0, we also require that 0 < d< < a, (i = 1, 2). Notice that from 
0 < d2 we have q2 < a/(2b). Summing up, we assume: 

a (6)0 < q i < qm< q2 < 2b 

It will be convenient to introduce the following parameters:

(7)A = q i /q2 and µ = R'm l q2 . 

Now, expression (6) becomes:

(8) 0< <µ<1.

2.2. Duopoly 
 Let us now suppose that a new firm with the same cost function enters the industry. 

We are now in a situation of duopoly. Let us denote by Q„ the total output in the case 
of monopoly and Qd the total industry output in case of duopoly. Let pi and p2 be the 
respective prices. Using the notations just introduced in (4), (5) and (7) we state the 
following result: 

 THEOREM 1. If 

(9)2<A<4 
and 

1 
(10)max~,, (5 — A,)<µ1<1(1 + A) ,

then Qd < Qm, and, consequently, P2 
reached for the Cournot equilibrium point 

(11)3qi

> pl. Moreover, the duopoly outputs are

2 

3qi

This equilibrium point is unique. 

 Proof Let 17j be the profit of firm j (j = 1, 2) and let q = (qt , q2) be the output 
vector: 

   Ill (q) =HI'l=—bqf + ((a — di) — bg2)gr — cl if 0<RI <qm 
/71,2 = —bqf + ((a — d2) — bg2)gJ — c2 if qm < qt < alb,

n2,1 = —bqz + ((a — dl) — bqi )q2 — cl if 0 < q2 < gm 
n2(q) = 

/2 ,2 = —bq2 + ((a — d2) — bg1)g2 — c2 if qm _< q2 < alb .
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As above, using (4) and I

(12) hi (q) =

171,1

171 ,2

  these profit functions can be written as 

     1 21 2 =—b qt—(q—Zq2 +b .4—Zq2 —Cl 
                          if 0<qt <qm 

       21 2 = —bq 1 —(q-22q2 + b q2 — 2 q2 — C2 
if gm gr<alb

and

(13) 172(q) =

From equation (13 
are

(14)

      1 21 2 
H2,1 = —bq2 —qj—2q1 + b qj — 2q1 — Cl 

                            if 0 < q2 < qm 

      1 21 2 H2,2=—b q2—(q-2ql +b q2—qt—c2 
                             if qm q2 alb . 

 the local maxima of 172 (q) in each of the intervals separated by q,,,

Amax = 2

bq~—    1 

bq2'—

1 

 2q1 

1 2q1

):dl—  
—c2

,

and these are reached for values of q2 that depend on qt. 

of firm 2 respect to the output of firm 1:

(15) R2(gr) =

   1 
qt - 2qi 

   1 q2 - 2qi

This gives the reaction curve

if  0<q2 <qm

if qm < q2 < a/b .

In the same way we have the reaction curve of firm 1 respect to the output of firm 2:

RI(g2) =

  1• 
qi-2q2  1 

  1• 
q2-2q2  1

f 0<qt <qm

f qm qt

The graph of each reaction curve (see Figure 1) is, in general, 
dence and not the graph of a function. R2 (q 1) = qm for qt 
(15), if qt E [0, 2(q2 — q,,,)], R2(gr) takes two values. From these two possible values 
of R2, firm 2 will choose the one that maximizes its profit. Using this value as the only 

image, we will change R2 into a proper function.

a/b .
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 Consequently, we are interested in finding the qt E [0, 2(q2 — gm)] for which we 
have 172,2(R2(gr)) ? 1-72,1(R2(gr))• By (14) we get: 

                        1 2cl2(16)c2 — cl <b((q.2—2q1—qt — 2g1 
From (2), (4) and (5) we have 

(17)c2 — Cl = 2b(gz — gr)gm , 

and replacing this value of c2 — cl in (16), after some algebra we reach 

2b(g2 — q )qm < b(q2 + qt — gr)(g2 — qt), 

which duly simplified takes us to 

qt < q2 + q 1 - 2qm = qh 

Notice that qh < 2(q — qm). After the correct reaction has been chosen, each reaction 
curve becomes a function (see Figure 2),

(18) F2(qt) =

   1 
q2-Zqlifo_<qt 5_gh 

 1 
qi-2qtif  qh < (it < alb

and

(19) Fl(q2) =
q2 -Q2i    2f 0 < g2 < gh 

 q -   g2 if gh < g2 < alb

The intersections of the reaction functions (18) and (19) are the Cournot points of the 

model.
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  The possible intersections are 

       Io = (--2qc,3q1•; Il = (iqi—q2),3(282—qc)•; 
12 =3q2,3q2•Iii=3(2q2 — qt),3(2qI— q2)• 

Not all of these intersections will take place at the same time. Depending on the value 

of the parameter qh some of them will not take place. Let us classify the different 

possibilities in terms of qh and, consequently, in terms of qm . 
  The function F2 (q i) presents a single discontinuity at qh = q2 + q i — 2qm. From 
Figure 2 and from the possible positions of qh, we infer: 

  • If 3 (2,2 — qt) < qh < q2 or, equivalently, 2qi < qm < 6 (—g2 + sq D, the only 
    existing intersection is 12. 

  • If 4q2 < qh < 3 (2q2 — qt) or, equivalently, 6 (—q2 + 5qi) < gm < 2 (3 q2 + qt ), 
    then the existing intersections are 12, Il and Iii. 

  • If -3.q < qh < 3q2 or, equivalently, 2 (3 q2 + qt) < qm < 2 (g2 + 3 qt), then II 
    and Ii' exist. 

  • If 3 (2q — q2) < qh < 3ql or, equivalently, 2 (q2 + 3 qt) < qm < .16-(5q2— qt), 
    then we have Ip, Il and Iii as the intersection points. 

  • Lastly, if 0 < qh < 3(2.4' —q2), or, equivalently, 6(5g2 —qt) < qm < 2 (qt+q2), 
    we will only have I. 

In our case, from (10), replacing ? and by their values we get 

0 < qh < 3(2gi— g2) 

and, consequently, our model has a unique Cournot equilibrium point, I. Notice that 

the first inequality in (9) is equivalent to 2ql — q2 > 0. 
  If Io is the equilibrium point in duopoly, 

4 
Qd=3g1 

Let us now find Qm. Maximum profit under monopoly can only be III or 14 as in (4) 
and (5). It is seen at once that, in our case, III < 14. Indeed, 

b(gr)2 — cl < b(g2)2 — c2 

is equivalent to 

c2 — cl < b(q2 + gr)(g2 — qt). 

Now, replacing c2 — c i by the expression obtained in (17), we reach 

1 
gm < 2(qig2), 

which is exactly it < 2 (1 + ),), the second inequality in (10). Consequently, 

Qm = q2 .
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Comparing now  Qm and Qd, we see immediately that Qd < Qm as the second inequal-

ity in (9), X < 3/4, is precisely 4q < qz . 
 It is worth noticing that by the double inequality in (10), the parameter µ has room 

to exist only if A > 1/2, which is precisely the first inequality in (9). It is also clear that 
the second inequality in (9), which is needed to ensure Qm = q2, makes qh > 0 as can 
be seen from Figure 2. This last condition, makes it possible for firm 2 to maximize its 

output at q2 = q2 if q i = 0.^ 

2.3. Stability of the model 
 We will study the stability of our duopoly model assuming that each firm adjusts its 

output proportionally to the difference between its actual profit and its profit maximizing 
output, a common adjustment system in the literature, see Hahn (1962); Fisher (1961); 
Quandt (1967): 

(20)gr = kl(Fi (g2)—qt 4
2 = k2(F2(gr) — q2) 

where F1, F2 are the reaction functions of (18) and (19); kl and k2 are the ̀ speeds' of 
adjustment, kl, k2 > 0, and t = 0 is the moment firm 2 enters the market. 

 We consider that the second firm enters the market when firm 1 is already maximizing 
its profit producing q2. Under these conditions and the same assumptions of theorem 1 
we may state: 

 THEOREM 2. The Cournot equilibrium point Ip is stable no matter the entry output 
of firm 2 within the range [0, q]. 

 Proof If we consider as possible outputs all the points (qt, q2) E [0, a/b] x [0, a/b], 
the reaction of each firm depends on the position of the actual outputs (qt (t), q2(t)) in 
each of the four regions which divide the square [0, a/b] x [0, a/b]. Figure 3 shows 
these four regions which we will call I, I', II and III according to the following descrip-
tion: 

® Region I: 0 < q i < qh and qh < q2 < alb. 
  • Region I': qh < q i < a /b and 0 < q2 < qh• 

  o Region II: 0 < q i < qh and 0 < q2 < qh. 
o Region III: qh < qt < alb and qh < q2 < a/b. 

In this way, the system of differential equations (20) can be split in four systems, one 
for each region above, in which the corresponding reaction functions are continuous 
and linear. To cover these four possibilities, we introduce Al and A2 to denote either 

q`i. or qz depending on the region we are in. Thus, in Region I, Al = qt , A2 = q2; in 
Region I', Al = q2 , A2 = in Region II, Al = q2 , A2 = q2 and, lastly, in Region 
III, Al = q, A2 = qt. . Using this convention, each of the four linear systems in (20) 
can be written as

 =  kl (Al - yq2 41) 
1 42 = k2 (A2 - qt - q2)
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Figure 3. Stability study: The four regions

The general solution is:

(21)
 qt  (t)

q2 (t)

2 
= Die—alt + Ere—alt + —

3 — A2) 
2 

= D2e—alt + E2e—a2t + 3(2A2 — Al) ,

where al and a2 are real and positive 

                 (kl + k2) — ,/(kl + k2)2 — sklk2 
                    al =                          2 

                (kl + k2) + ,/(kl + k2)2 — sklk2 a2 =2 

and Dl, El, D2, E2 are real constants that depend on kl, k2, and the initial conditions 

qt (0) and q2 (0). The stationary solution is obviously 

          ((2Al22 

           3 

                         — A2),—3(2A2  — A 1), 

that is to say, each of the four points Io, 11, Ii', 12, depending on the region in which the 
motion starts.2 

 The fact that al and a2 in (21) are strictly positive ensures the global stability of each 
of the attractors if the motion of (qt (t), q2(t)) stays within the region of validity of 
the system of differential equations. If the motion of our output vector takes it from one 
region to another, the values of Al and A2 change and the stationary solution with them. 
A more detailed study of the motion of our output vector (qt (t), q2(t)) is then required. 

 If q2 (0) > qh, the initial point (qt (0), q2 (0)) is located in Region III where Al = 

qt , A2 = qt and the at tractor is Ip. If q2(0) < qh, then (qt (0), q2(0)) is located 
in Region I' but the corresponding at tractor is also placed in Region III and the orbit 

 2 Let us recall that, under the assumptions of our model as set in (9) and (10) we have q2 < 2qi , and Ip is 
the unique Cournot point that exists.
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of  (qt  (t), q2(t)) eventually will enter Region III. When this happens, the system of 
prevailing equations will be the one whose at tractor is Io. The actual orbits may enter 
or leave different regions depending on the sign of qt. To be more specific, if (2q — 
q)/2 < qh < 2(2q. — q)/3 there would be orbits going from Region III into Region 
I' through a point on the segment with endpoints (2q i — 2qh , qh) and (q2 , qh) . 

 It is easy to see that, in this case, the second component of the orbit, q2(t), must attain 
a minimum value exactly on the line q2 = q2 — (1/2)qt, and then will re-enter Region 
III through a point on the segment with endpoints (q2 — 2qh , qh) and (41 — 2qh , qh) . 
 After that, the orbit does not enter Region I' again. A similar behavior may occur 

when we start from an initial point q2(0) very near to q2 and a value for kl >> k2. In 
this case, the orbit could move from Region III to Region I behaving in a similar way as 
before.^ 

 Let us remark that the assumption X > 1/2 is essential for the stability of the process 
as allowing q2 > 2q lc,, breaks the stability for some production entries q2(0) E [0, q2 ]. 
To see that, if we proceed as in the proof of theorem 1, we would have as one of the 

intersections 
                           2 

h, =31282—qiI,--sIq2— 2q1 I. 

Consequently, in this case, the at tractor of an initial state in Region I' would be placed 
in the non-positive zone for q2. That would mean that the output of firm 2, q2(t), would 
decrease till become zero. Firm 2 would leave the market and Io would not be stable.

                     3. A NUMERICAL EXAMPLE 

 We finish by exhibiting a numerical example of our model. Let our demand function 

be p = 100 — 2q, and let the cost function of our 2 firms be: 

10+47.2q if0<q<18 
(22)C (g) — 787

.6 -I- 4q if 18 < q < 5 .

P

Demand

4

C

Qnc 

Cost

Figure 4

9

11

7

4i 9+, q 

Monopoly profit

9
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The main parameters in our model are 

  1. q2=24. 
 2. A = 0.55 and thus it satisfies (9): 

1/2 < A < (5 + 1)/(2 x 5) . 

 3. Hence = 13.2. 
 4. µ = 0.75 and consequently satisfies (10): 

0.7416666... = max{A,, (1/6)(5 — A)} < µ < (1/2)(1 + X) = 0.775 . 

 5. Thus qm = µq2 = 18. 
Monopoly total output is 24 at a price pi = 52. Duopoly total output is 

price p2 = 64.80. 

                         4. CONCLUSIONS 

 We have exhibited a classical Cournot duopoly model ' ' ' ' 'monopoly 
lower than the price for the free entry of a new firm. The equilibrium solution 
is unique and stable under habitual adjustment mechanisms. 
as the loss of quasi-competitiveness has been always linked to instability. 
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