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Abstract: We examine the impact of an increase in technological asymmetry on the 
success of joint product development ventures, with a view to exploring the free-riding 

problems inherent in cooperative R  &  D. In a static model we find that if technological 
diversity increases then the chances that a joint venture forms at all is reduced. Given 
that a joint venture forms however, an increase in technological diversity increases the 

probability of success. We then examine how the results extend to a dynamic context. 
In a two period model the earlier sufficient conditions no longer ensure that the effort 
stream increases as the firms become more technologically diverse. In the infinite hori-
zon game we find that for linear cost and return functions all the earlier results still hold 

qualitatively. Moreover, the above results are independent of the nature of the sharing 
rule and are therefore consistent with any endogenous sharing rule.

1. INTRODUCTION

 In this paper we pose the following question. Consider cooperative R &D (more 
specifically joint product development) in a duopoly setting. What determines whether 
the firms will be successful in developing the product? We want to examine the question 
whether, in a dynamic joint venture, collaboration among technologically similar firms 
are more likely to succeed compared to collaboration among technologically dissimilar 
firms. 
 Mowery (1989) suggests that technologically dissimilar firms are usually more suc-

cessful in developing the product. Product development between technological equals, 
like that between Rolls Royce and Pratt and Whitney in the IT 10D jet engine, Fokker 
and Mcdonell Douglas in the MDF 100 commercial aircraft project, and Saab and 
Fairchild in the SF 340 commuter aircraft project, has frequently failed to develop 
the product or to market it. The AT & T Phillips venture in telecommunications also

 Acknowledgements. This is a revised version of Chapter 2 of my dissertation. The revision was done 
while I was visiting CORE, Belgium. I am indebted to an anonymous referee of this journal for very helpful 
comments. I would like to thank Dilip Mookherjee, V. Bhaskar, Bhaskar Datta, Shubhasis Gangopadhay, 
Sugata Marjit and Debraj Ray for their comments. The usual disclaimer applies.
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ran into problems. (Business Week, 1/18/8 p. 62.) Product development ventures be-
tween dissimilar firms e.g. the CFM International venture between General Electric and 
SNECMA of France and that between Boeing and the Japan Commercial Transport De-
velopment Corporation appeared to be doing better. (See Mowery (1980) for a more 
detailed discussion of these issues.) 

 We seek to explain this phenomenon through a dynamic analysis of the free-rider 

problem involved in joint research. In order to focus on the simplest possible model in 
which the free-rider problem can be posed, some of the usual questions addressed in the 

 R  &D literature are abstracted from. These include the problem of market interaction 
following the product development stage as well as the spill-over effect. D'Aspremont 
and Jacquemin (1988), Katz (1986) and Killing (1983) are some of the papers (among 
others) which examine these issues. 

 We begin by examining a static model of joint product development before going on 
to analyse the dynamic game. 

 Consider a duopoly model of R &D where the probability of success depends on the 

joint effort stream of the two firms. In the event of success the firms share equally in 
the resulting profits. The technological dissimilarity pertains to the marginal costs of 
making the effort. Efforts are either unobservable or nonverifiable by courts and hence 
cannot be contracted upon. Both the firms therefore have an incentive to free-ride on 
the other firm. 

 To begin with we examine, in an one period setting, whether the firms would find it 
individually rational to opt for joint product development rather than pursue competitive 
R &D. We find that cooperative R &D is individually rational if the technology levels 
are not too dissimilar and the cost levels are not too high compared to the gross payoff. 
We also find that an increase in technological dissimilarity (mean preserving spread of 
marginal costs) increases the probability of success. Since the incentive to free-ride 
increases for the inefficient firm and decreases for the efficient firm, we find that the 
efficient firm increases its effort level and the inefficient firm decreases its effort level. 
The increase in effort by the efficient firm, however, more than compensates for the 
decrease in effort by the other firm. Since the efficient firm has more to lose from a fall 
in effort, it tries to more than make up for the decrease in efforts by the inefficient firm. 
We also identify sufficient conditions for this to happen. 

  We then examine how the results extend to a dynamic context where the firms inter-
act over two periods. The earlier sufficient conditions no longer ensure that the effort 
stream increases as the firms become more technologically diverse. The reason is as 
follows. As a result of greater technological diversity the second period payoff of the 
firms may increase. This would have a negative effect on the first period efforts because 
the consequences of a failure in the first period is reduced. The net effect on the effort 
stream could therefore go either way. 

  The preceding result, however, is driven by the sharp asymmetry between the first and 
the second stages of the game. This asymmetry is somewhat artificial, and would dis-
appear in an infinite horizon framework. We subsequently examine the infinite horizon 
formulation of the joint venture game where we restrict attention to stationary Markov
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equilibria. We find that for linear costs our earlier theme reemerges i.e. while an in-
crease in technological diversity increases the success probability in absolute terms, it 
also leads to an increase in the divergence between the efficient and the equilibrium ef-
fort levels. The interesting fact is that the above results are independent of the nature of 
the sharing rule and are therefore consistent with any endogenous sharing rule. More-
over, if the return function is also linear then we find that for symmetric firms, both the 
firms are likely to prefer joint product development to competitive  R&D. 

                                                  We can summarise our basic findings as follows. We find that technological diversity 
decreases the possibility of a joint venture forming at all. If, however, a joint venture 
does form an increase in technological diversity increases the success probability in 
absolute terms. This essay therefore suggests the testable hypothesis that the proportion 
of observed successes among heterogenous firms would be higher. Another implication 
of our analysis is that the amalgamation of the joint venture firms makes greater sense 

(in terms of the probability of success) if the firms are technologically far apart. 
 The paper closest to this one is by Ray Chaudhuri (1995). Ray Chaudhuri (1995) 

considers the same problem but in a completely static framework. Moreover, he as-
sumes that the sharing rule is endogenously determined. He finds that if the sharing rule 
obeys some reasonable regularity conditions, an increase in technological asymmetry 
leads to an increase in the probability of success. He also identifies some situations 
when the sharing rule would obey these restrictions. The present paper differs from 
Ray Chaudhuri (1995) in focussing on the dynamic issues involved in the problem. In 
the process we gain two additional insights that were not clear from the static analysis. 
First, we show that in a finite horizon game an increase in technological asymmetry 
might have a negative effect on R &D, as it increases the profit levels of the firms and 
thus decreases the incentive to do R & D. Second, in an infinite horizon framework, this 
effect becomes less important and the qualitative results obtained in the static analysis 
continue to hold. Moreover, we demonstrate that the actual sharing rule may be imma-
terial for the R &D efforts. This demonstrates that the perception of the partner firms 
regarding the longevity of the joint venture is an important factor in determining the 
success of the project. 

 The rest of the paper is organised as follows. The basic one period model is examined 
in Section 2. Section 3 briefly examines the two period game. The infinite horizon game 
is explored in Section 4. Section 5 concludes.

2. THE BASIC MODEL

  Two firms, firm 1 and firm 2, are jointly trying to develop a product denoted X. If 
they succeed they jointly receive a gross payoff of R, which they split equally. One 
way to interpret R is to think of the joint venture as a purely research venture which, 
in the event of success, is going to sell the product to a third firm for a fixed price 
R. Alternatively one can think of the joint venture firms as cooperating in the product 
market as well. In this case R can be interpreted as the payoff accruing to the firms from 

jointly marketing the product. If they fail to develop the product they receive nothing,
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despite incurring development costs. (In fact we can assume that in case of failure also 

they receive a positive payoff, which is smaller than what they would receive in case of 

success. This will not affect the analysis in any way.) 

 In this section we briefly describe a one period game where the firms simultaneously 

decide on their level of efforts. Efforts are either unobservable or non-verifiable by 

courts and hence cannot be contracted upon. This leads to the well known free-rider 

problem and implies that we must solve for a Nash equilibrium of the game. 
 The cost functions of the two firms are given by  Ci  (el) = hi g, c(el )del , i = 1, 2, 

where el is the amount of effort put in by the ith firm, hi c(el) is the marginal cost of 
effort of the ith firm and hi'  is a productivity index. If h 1 < h2 we say that firm 
1 is technologically superior to firm 2. If hi = 112 the firms are considered to be 
technologically identical. The probability of success is given by the return function 
)(el } e2). We define E = el + e2. 

 We make the following assumptions of c(el) and ).(E), 

 (A) c(el) and X(E) are twice continuously differentiable. 
 (B) Marginal costs are positive and strictly increasing in the effort level i.e. c(el) > 

0 and c' (el) > 0, vel 

 (C) Marginal productivity of effort is positive but decreasing in the effort level i.e. 
X(E) E [0, 1], (E) > 0, A"(E) < 0. 

 (D) c(0) = 0. 
 Assumption D is a simplifying assumption which ensures that for all h,, h2 0 the 

equilibrium effort levels for the joint product development game are strictly positive. 
 To begin with we examine whether the firms find it individually rational to opt for 

joint product development rather than pursue competitive R&D.' Note that under joint 
product development the profit of the i -th firm is given by 

                        R 1Pe, 
Pi(el, e2) = A(el+e2)2— hi 

J c(el)del •(1) 

                                       0 We can use a standard reaction function approach to solve for the equilibrium effort 
levels. 
 We assume that the competitive R &D payoffs, when both the firms succeed in devel-
oping the product, are zero. This can be justified by assuming that the product market 
involves price competition. Denoting the disagreement profits by Di (e l , e2) 

e, Di(el, e2) = ?(el)(1 —),(ej))R — hi 0~c(el)del.(2)
We can again use a standard reaction function approach to solve for the equilibrium 

effort levels. 

 Proposition 1 below demonstrates that if hi and h2 are equal and the payoff R high 

enough relative to the cost parameter, it is individually rational for both firms to opt

   Marjit (1991) also examines, in a model with exogenous probabilities of success, the individual rational-
ity of pursuing joint research. He finds that joint research in profitable provided the exogenous probability of 
success is either very high or very low.
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for joint product development.2 The result is quite intuitive. For large values of R 
and similar technological levels, free-riding problems are not very severe. The joint 
venture venture firms therefore have a sufficient incentive to invest and the probability 
of success is high. In competitive  R  &D however, a large R implies that both the firms 
over invest. Not only does this reduce the individual success probabilities but increases 
the cost levels as well. Hence the result follows. 

 PROPOSITION 1. Assume that hl = h2 = h and A,'(el)(1 - A(ej)) > (et + el), 
Vet, el, i j. We also assume that under competitive R &D a unique solution exists 
and there exists e* such that A(2e*) > 2. If the payoff R is high enough compared 
to the cost parameter h, the profit from joint product development exceeds that from 
competitive R & D. 

 The condition that A' (el) (1 — A(el)) > (et + el), b'et , e j , i j is not necessary 
for the result. Consider the case where the return function is linear viz. A (e 1 + e2) = 
min(1, el + e2) and hence does not satisfy the above condition. Even in this case we can 
show that if R is high enough relative to the cost parameter h, it is individually rational 
for the firms to opt for joint product development. 

 In the next proposition we prove that the technology levels of the two firms cannot be 
too far apart if joint product development is to take place. The intuition is as follows. 
As technological asymmetry increases the level of effort put in by the inefficient firm 
becomes negligible. In the event of success however it stir obtains half the payoff. There 
is too much free-riding by the inefficient firm and it is therefore better for the efficient 
firm to pursue competitive R &D. 

  PROPOSITION 2. Assume that X(0) < 2 . For any given level of hi, it is not indi-
vidually rational for the first firm to opt for joint product development if the second firm 
is inefficient enough i.e. if h2 is large enough. 

  Propositions 1 and 2 are concerned with properties that hold in the limit. The spirit of 
the results however, seems to be that joint product development is individually rational, 

provided the technology levels are not too far apart. We can use a simple example where 
the return function is linear viz. A(el + e2) = min(1, el + e2) and the cost function is 

quadratic viz. Cs (es) =h2`to show that this is indeed true. 
  We then examine the impact of an increase in technological asymmetry on the prob-

ability of success in a joint venture. We also compare the equilibrium outcome with the 
efficient outcome and examine the effect of an increase in technological diversity on the 

gap between the efficient and the equilibrium effort stream. 
  The next proposition provides two sufficient conditions for the effort stream to in-

crease for a mean preserving spread of the technology levels. 

PROPOSITION 3. (A) A unique and interior Nash equilibrium exists.

 2 Given Ray Chaudhuri (1995) we have omitted the proofs of Propositions 1 to 3. These are, however, 

available from the author on request.
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  (B) Either of the following is a sufficient condition for the joint effort stream (el + 
e2) to increase for a mean preserving spread  of  hi and h2: 

  (i) c(el) be concave, 
  (il) c—I be homogeneous of degree k, k > 0. 

 The intuition is as follows. As technological diversity increases the incentive to free-
ride increases for the inefficient firm and decreases for the efficient firm. This follows 
because the efficient firm now has more to gain from any success (his costs having 
fallen), while the inefficient firm has less to gain. This implies that the amount of effort 
put in by the efficient firm increases whereas the amount put in by the inefficient firm 
decreases. The increase in efforts by the efficient firm however exceeds the decrease 
in efforts by the other firm. This is because the efficient firm, having more to lose 
from a decrease in efforts, tries to more than make up for the decrease in effort by the 
inefficient firm. The sufficient conditions essentially ensure that doing this does not 
prove too costly for the efficient firm. Symmetrically they also ensure that decreasing 
the level of efforts is not too attractive for the inefficient firm. 

 Part B(il) of Proposition 3 enables us to provide a definite answer for some cost curves 
with constant elasticity of the marginal cost (in fact these have convex marginal costs) 
e.g. Ci (el) = hi em, in > 2. 
 The above result pertains to the case where the sharing rule is exogenous . We next 

briefly consider the case where the sharing rule is endogenously determined. We find 

that, for any sharing rule obeying some reasonable regularity conditions , an increase 
in technological asymmetry leads to an increase in the probability of success. We also 

identify some situations when the sharing rule would obey the stipulated restrictions. 

Such restrictions may be satisfied either when the sharing rule is determined through a 

Nash bargaining process or when it is determined so as to maximise aggregate profits . 
We refer the readers to Ray Chaudhuri (1995) for a detailed discussion of these results.

3. TWO PERIOD MODEL

 Joint ventures are, in reality, spread over many periods. It is therefore of interest to 

examine whether in a dynamic context, the earlier conditions still ensure that a mean 

preserving spread of the technological levels leads to an increase in the effort stream. 
We find that for a two period model the previous conditions are no longer sufficient. 

 We analyse a two period game where in both period 1 and period 2 the firms simul-

taneously decide on their effort levels. They have a one-shot payoff of R, which they 

split equally. Of course if they succeed in developing the product in period 1 then the 

game stops after period 1 itself. For the sake of simplicity, we assume that the firms 
do not discount the future and that there is no 'learning' i.e. spill-avers of first period 

effort into the second period is absent. The probability of success in period 2 therefore 

depends solely on the effort level in that period. 

 Let ell denote the amount of effort put in by firm i in period j. In general we let the 

first subscript denote the firm and the second subscript denote the period.
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 We solve for the subgame perfect Nash equilibrium of this game. We use a standard 
backwards induction argument to solve for the second period game. In the second period 

game the Nash equilibrium conditions (i.e. the reaction functions) are given by 

               ~/(e12+e22)R=hic(el2),(3) 

                 At(el2 + e22)—2h2c(e22) ••(4) 

It is entirely standard to argue that the period 2 reaction functions, are negatively sloped 
and that a unique, interior solution exists. 

 Since the first period payoff functions are strictly concave in their own effort levels 

(this follows from Assumptions B and C), the equilibrium is given by 

         ap  

           aellA'(ell+ e21)R— P12—  hic(elf) = 0, (5)                ll 

   ~ 

              P21 
= )'(ell + e21)— P22— h2c(e2t) = 0 . (6) 

               21 

 Here Pi 2 (i = 1, 2) denotes the second period payoff of firm i, evaluated at the 
Nash equilibrium effort levels of the second period game. We can argue as before that 
the period 1 reaction functions, R11 (derived from equation (5)) and R21 (derived from 
equation (6)), are negatively sloped and that a unique, interior solution exists. 

 Consider the case where, for a mean preserving spread of the technology levels 

(hl, h2), P12 and P22 increase. From equations (5) and (6) it is obvious that this will 
have a negative effect on the first period efforts, since the consequences of a failure in 
the first period is reduced. 

 Even for the especially simple example of a linear cost function, where Ci (ell) = 

hi eii, we find that the effect is ambiguous and the sign of deldhde2l could go either way. 
 The period 2 reaction functions are given by 

A'(et2 + e22) 2 = hl ,(7) 

R (e12 + e22)-2 = h2 .(8) 

 Clearly for hi = h2, the reaction functions coincide and all points can be a Nash 
equilibrium. For hl < h2, it is clear that R12 lies above R22. Consequently, the equi-
librium involves e22 = 0 and e12 = e12, where A'(e12)  = hi. Thus, for a mean 

preserving spread of hi and h2, e12 would increase and e22 would still be zero. Besides, 
both P12 and P22 would increase. In fact dPl2 = —el2dhl > 0. 

 The period 1 reaction functions are given by 

R Xi(ell + e2i) [-2 — P12 = hl ,(9) 
                          R ?'(ell + e21) [-2 — P22 = h2 .(10)
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 Since P12 < P22, R21 lies below  R  1  i and the equilibrium involves e21 = 0 

eii=ejl,whereA'(ell)(R — P12) =hl. 
 Differentiating the above and taking into account the change in P12, we obtain 

dell 1 — ~'(ell)e12  

dhl ?"(ell)  (-2— P12

and

(11)

Clearly the sign of this is ambiguous. In fact if we assume that X'(E) < 1 for all E 
and that the costs hl is not very high (specifically 3T//2-1, < (1)) then it is obvious that 
dh' > 0. In this example it is clearly seen that the problem stems from the fact that P12 
increases.

4. THE INFINITE HORIZON GAME

 We next investigate whether the indeterminacy problem in the two period game could 
be due to the finite horizon formulation. The dissimilarity between the first and the 
second period is artificial. If second period failure is followed by the possibility of 

going into another period then second period profits may not increase and consequently 
the first period effort may not decrease. In order to examine this question we set up an 
infinite horizon version of the above game where at each t = 0, 1, 2, • • • , 00 the firms 
simultaneously decide on their effort levels. We show that if the costs are linear then the 
effort levels increase for a mean-preserving spread of hl and h2. In this case we also 
find that an increase in technological dissimilarity widens the gap between the efficient 
and the equilibrium effort stream. 

 For the sake of simplicity we assume that the discount factor is one (i.e. there is no 
discounting of the future) and that there is no memory. The assumption of no memory 
implies that the game at any period is identical, except for the date, to the game at any 
other period.3 

 In this section we introduce establishment costs, K, which have to be met even when 
effort levels are zero. Of course once the firms succeed in developing the product, the 
R&D establishment can be dissolved and there is no need to incur the establishment 
costs any more. We assume that dissolving the establishment means that the firms 
opt out of the R &D venture. So we can rewrite the cost function as, Ci (el) = K -}-
hi J " c(el)del, where K > 0. (Since there is no discounting and since assumption 
F (yet to be introduced) ensures that even with zero effort the venture will ultimately 
succeed, in the absense of the establishment costs there is no incentive for the firms to 

put in a positive level of effort.) 
 We restrict attention to stationary Markov equilibria. In our setup this implies that 

the prescribed strategies must be identical at every period.

3 With positive memory we would have a stochastic game with an uncountable state and action space
, 

which raises a number of technical difficulties. In view of the problems in even guaranteeing existence of 

equilibria in such games, we do not try to examine the game with positive memory.
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 The technique followed is to approximate this game by a sequence of truncated games 
where the freedom of action of the firms is taken away after a certain period. Define 
GT to be the game truncated at  T, if for t > T + 1, it is the case that elf = e1T and 
e2t = e2T , where e13 is the amount of effort put in by the ith firm in period j . Effectively 
after the Tth period the firms' freedom of action is taken away and they are forced to 
choose the same effort levels as in the Tth period. 

 Fortunately there exists a unique subgame perfect equilibrium for any truncation pe-
riod. Besides, the same strategies are prescribed for all truncation periods. Next we let 
these games approximate the real game by indefinitely postponing the truncation date 
to later periods. We find that the equilibrium of these truncated games is an equilibrium 
of the untruncated game as well. (This technique draws heavily on Harris (1985).) 

 Consider the game GT at period T . Clearly, if Pi denotes the profit of the ith firm, 
then, under the above truncation rules we obtain 

Rel 
Pl = A(el + e2) 2 — K - hic(el)del + (1 -~(el + e2))Pi , (12) 

                              0 

                                            e2 

      P2 = ).(el + e2) R — K - h2c(e2)de2+ (1 — X(el+e2))P2•(13) 

                              0 

 Taking the Nash equilibrium of the above game we obtain the following first order 

conditions 

el 

                     K + hi fc(el)del 
       gel +e2)p(14) 

                A'(el + e2) hic(e)) 

                                fe2                         K + h2Jc(e2)de2        A.(el + e2)0(15) 
X'(el + e2) h2c(e2) 

 In Proposition 4(il) we show that the above equations have a unique solution. Denote 
the solution vector by (el', e2). 

 From equations (12) and (13) we find 

                   _ 

                         K +hic(el)del 
         Pl(el,e2)2 X(

eT+e2)(16) 
e* 2 

R K + h2 f c(e2)de2 
P2(el, e2) 

2  A(el+ e*)(17) 

                                           2 

 We next look at the game starting from period T - 1. Letting Pi denote the profit of 

the ith firm 

                                   el Pi = ?(el + e2)  — hi fc(el)de"1 + (1 — A(el+e2))Pi (el,e2) , (18) 

                        0 

                                     e2 P2 = A(el + e2)  — h2 fc(e2)de2 + (1 — A,(el+ e2))P2(e7,e2) . (19) 

                         0
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The subgame perfect solution in this case is therefore given by

 X  (el

?.(el

    R -~ e2) 2 

    R + e2) 2

— PI(e

— P2 (e

, 4)1 
,e2)

— hic(el) = 0 ,

— h2c(e2) = 0 .

(20)

(21)

 From equations (16) and (17) it is easy to see that, (e*,, ez) solves the above equation 
pair. 

 Since equations (20) and (21) have a unique solution4 it must be (el , e2). Therefore at 
T —1 also the equilibrium levels of effort will be (el , e2). Hence FT, the equilibrium of 
the game truncated at T , involves playing (e 1, e2) at each period. Clearly this strategy is 
independent of the period of truncation and for all GT the same unique strategy F = FT 
obtains. 
 Next we identify the unique stationary equilibrium of the game. We begin by intro-

ducing some notations and assumptions. 
 If k is some strategy pair of the infinite horizon game, we let (k, x) denote the con-

tinuation strategies prescribed by k following some subgame x. The strategy pair where 
firm i plays hi instead of the action sequence prescribed by k, is denoted by k/ hi. 
Finally nshi denotes a truncation of firm i s strategy (h,) at period s i.e. it denotes the 
strategy where from period s +1 onwards firm i will choose the same action as in period 
S. 

 ASSUMPTION E. X(0) > 0. 

 Note that in this model the discount factor is 1. Instead (1 — A(E)) plays the role of 
a discount factor in this model. Though this is endogenous rather than exogenous, the 
above assumption ensures that it is always strictly less than 1. 

  ASSUMPTION F. el E [0, el]. 
 This assumption can be justified on the following grounds. Take such that R = 

hi fore-l c(el)del. Clearly firm i is never going to put in an effort level greater than e~ 
because for any higher effort level his payoff is going to be negative. Technically we 
need this assumption to put a bound on the one-shot payoffs. Clearly this implies that 
the deviations in one-shot payoffs are bounded. 

 Note that assumption E and the fact that the deviations in one-shot payoffs are bounded 
implies that P j (k/irshi) — Pi (k/ hi) goes towards zero as s goes towards infinity. 

                                       K+he' c(e)de  D
efine g (e i-I-e2) = X,(e 1 +e2)and y (ej) = t ~o  X (el+e2)h,c(e,) 

 We next introduce the following assumption which is required in Proposition 4(il) to 

prove that the strategy pair F is unique in the class of stationary equilibrium.

 4 This follows because in equation (20), E decreases for an increase in e i , (i.e. 

rically in equation (21), E decreases for an increase in e2, (i.e.> —1).

< —1), and symmet-
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  ASSUMPTION G. Either (i)  y(el) is decreasing in el or (il) y(el) is increasing in 

es andag(e,+e;)> ay(e,)Ve.e aae~ae;i,J 
 Proposition 4 shows that the unique equilibrium of the truncated games is a stationary 

equilibrium of the untruncated infinite horizon game as well. We also demonstrate 
that for simple linear cost functions the probability of success increases for a mean 

preserving spread of the technology levels. 

 PROPOSITION 4. (i) F is a stationary equilibrium of the infinite horizon game. 

  (il) F is unique in the class of stationary Markov equilibria. 
 (iii) For a linear cost function of the form Ci (el) = K hi el , the joint effort stream 

increases for a mean preserving spread of hi and h2.6 

 Proof (i) We have to show that for any subgame x, (F, x) is a Nash equilibrium 
for the subgame x. 

Pi (F/ hi, x) — Pi (F, x) 

        = Pi (F/ hi, x) — Pi (F/nshi, x) + Pi (FT /JTshi, x) — Pi (FT, x) (22) 

 For T > s, the second difference is less than equal to zero, as Trshi can be taken to 
be any strategy of the truncated game and FT is optimal in the truncated game. Now 
keeping T > s take (T, s) towards infinity. Clearly ns h i hi so the first difference 

goes towards zero. This follows from assumption E and the fact that the deviations in 
one shot payoff are bounded. The second difference is less than equal to zero, therefore 

Pi (F/ hi, x) — Pi (F, x) < 0 . 

 (il) First observe that assumption G implies that equations (14) and (15) are nega-
tively sloped. 
 If assumption G(i) holds then it is clear that for equation (14), de~ < —1 and for 

equation (15), de > —1. Therefore equations (14) and (15) have a unique intersection. 
If, however, assumption G(il) holds a similar argument applies, with the sign of the 
slopes reversed.7 

 (iii) Consider the case where hl < h2. Totally differentiating equations (14) and 
(15) and manipulating we obtain,

del de2

(hKhK22
1

dh2 (2g'(E) — 1)

5 Note that this implies that assumption D can no lo
nger hold. 

 6 In this case clearly y'(el) = 1. Assumption G is however satisfied since, for any return function satisfy-
ing A"(E) < 0, it follows that g'(E) > 1. 

7 Consider the case where assumptionG(i)h
olds. Define e' by~(el =K+hl for c(el)de~„                            plyA' (

e')—he(e')ande~by                     1~1 
(eCi) = 0 (using assumption D). Therefore, e'1 < el . We can similarly define e2 and e'2 and show that 

e12 <Therefore it follows that the intersection is interior . If, however, assumption G(il) holds, we cannot 
use the previous argument. In this case we must assume that the technology levels are not too far apart .
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for dh2  = —dhl > 0. For all X(E) such that A"(E) < 0 it follows that g'(E) 
(E)2—A(E)X"(E) > 1 and so the effort stream increases . 

 Note that the equilibrium first order conditions are independent of the sharing rule, so 
that the analysis in this section goes through even when the sharing rule is endogenously 
determined. In particular this shows that the result in the previous section, that for some 
endogenous sharing rules an increase in technological diversity may lead to a decrease 
in the divergence between the two effort streams,8 is, to some extent, an artifact of the 
finite horizon nature of the model. 

 Therefore in the infinite horizon game also we find that while an increase in techno-
logical diversity increases the success probability in absolute terms, it also leads to an 
increase in the divergence between the efficient and the equilibrium effort levels. 

 We then compare the profit levels of the two firms under joint product development 
and competitive R & D.9 Given the complexity of the question, however, we restrict 
attention to the case where both the cost and the return functions are linear, i.e. the cost 
function is K + hiei and the return function is min{e, 1}. 

 We first consider the profit level of the two firms under joint product development. 
                                                   K+h; e* N

ext from Note that from equations (14) and (15) we can write that hi=(el+ez). 

eequations(16)andliwe find that theprofitlevel of the i-th firm isx—K*Thush` e;  q()()P2 el+e2 
in equilibrium the profit level of the i -th firms is 

R 

                              2— hi. 
 We then consider the case of competitive R &D. Clearly, the competitive profit level 
Di for a constant effort stream (el , e2) is given by 

Di = el (1 — ej)R — K — hie, + (1— el)(1 — e2)Di , i j • (23) 

Re-arranging the above equation we can write 

el(1 — el)R K + hiei 
Di = ---------------—iJ•(24) 

                  el + e2— ele2 el + e2— ele2 

We can then mimic the argument for the case of joint product development to argue that 
the first order condition yields 

Ka-h:p:P; Rh;
-•(LJ) 

el + e2 — ele2 el + e2 — ele2 1 — ej 

 Note that we can use equations (24) and (25) to write that Di = R — ----he Moreover, 
from equation (25) we find that I-------he.=R+e.Combining the two together we find 

                                    i that 

Di = — K > 0 .(26) 
e• 

8 For sharing rules that are responsive enough to a change in efficiency. 

9 We are indebted to an anonymous referee for pointing out the importance of this issue and the need for 

analysis.
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 Thus whenever  2  - hi > 0, for i = 1, 2, both firms prefer to opt for joint product 
development rather than pursue competitive R&D. Summarising the above discussion 
we obtain our last proposition. 

 PROPOSITION 5. Assume that the cost function is K + hiei, the return function is 
min{e, 11 and R - hi > 0, for i = 1, 2. Then both the firms strictly prefer joint product 
development to competitive R&D. 

 Note that the condition that R — hi > 0, for i = 1, 2, is more likely to be satisfied 
if the firms are symmetric. Whereas if the firms are asymmetric then it is possible that 

  — hl> 0 >R— h2. In that case profit from joint product development is also 
negative and firm 2 might prefer to opt for competitive R&D.  Thus even in the infinite 
horizon case the results are qualitatively similar to that in Section 2, that joint product 
development is more likely if the firms are similar, whereas with asymmetric firms we 
might have competitive R&D. 

5. CONCLUSION

 In this paper we examine the impact of technological diversity on the incentive for 

joint product development. 
 In a static framework our model predicts that if technological diversity increases, then 

the chance that a joint venture forms at all is reduced. Given that a joint venture forms 
however, an increase in technological diversity increases the probability of success. Ex-
tending our analysis to a dynamic two period model we find that the earlier sufficient 
conditions no longer ensure that the effort stream increases as the firms become more 
technologically diverse. In the infinite horizon game, however, we find that under some 
restrictions on the cost and the return functions all the earlier results still hold qualita-
tively. Moreover, the above results are independent of the nature of the sharing rule and 
are therefore consistent with any endogenous sharing rule. 

 Thus the results are critically dependent on the perceptions of the partner firms re-

garding the longevity of the joint venture, i.e. whether they expect the joint venture to 
break up soon, or whether they expect it to last for a long time.
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