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Abstract: We present results on finite population evolutionarily stable strategies 

(ESSs) and stochastically stable states for a model of evolution with an imitative rule of 
strategy choice in a symmetric duopoly with differentiated goods. Two firms play price 
setting and quantity setting duopoly games under general demand functions. We will 
show that the stochastically stable state in a price setting duopoly and that in a quantity 
setting duopoly coincide. 

JEL Classification Number: C72,  L  13

1. INTRODUCTION

 Duopolistic or oligopolistic markets are typically analyzed under two alternative as-
sumptions about firms' behavior: a quantity setting or Cournot approach and a price 
setting or Bertrand approach. It is well known that, when goods are substitutes, the 
Bertrand equilibrium is more efficient than the Cournot equilibrium (see Singh and 
Vives (1984), Cheng (1985) and Vives (1985)). These analyses are based on the Nash 
equilibrium concept. In this paper we present an evolutionary game theoretic analysis 
of duopoly. We consider a duopoly with differentiated goods, and study finite popula-
tion evolutionarily stable strategies (ESSs) defined by Schaffer (1988) and stochastically 
stable states (or long run equilibria in terms of Kandori et al. (1993)) for a model of evo-
lution with an imitative rule of strategy choice with mutations. A stochastically stable 
state is a state where most of the time is spent in the long run when the probability of 
mutation becomes very small. Our formulation of a model of evolution with an imitative 
rule of strategy choice follows Robson and Vega-Redondo (1996) and Vega-Redondo 

(1997). 
 Vega-Redondo (1997) studied imitative behavior in a symmetric oligopoly with a 

homogeneous good, and showed that Walrasian behavior (profit maximization given 
the market clearing price) is a stochastically stable strategy. Tanaka (1999) extended 
the result of Vega-Redondo (1997) to a case of asymmetric homogeneous oligopoly 
with low cost and high cost firms, and showed that under the assumption that marginal 
cost is increasing a stochastically stable outcome is the competitive (Walrasian) output 
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for each group of firms. Rhode and Stegeman (2001) analyzed Darwinian dynamics 
of a symmetric, differentiated duopoly with linear demand functions . They showed 
that firms' strategy choices cluster around a strategy profile that is not a one-shot Nash 
equilibrium, and this profile is in variant under a class of transformations of the strategy 
spaces (Bertrand vs. Cournot). They considered a stationary distribution of a Markov 
chain with large and frequent mutations. By contrast, we consider a limit of a stationary 
distribution of a Markov chain as mutations vanish according to the formulation by 
Robson and Vega-Redondo (1996) and Vega-Redondo (1997). 

 Schaffer (1988) proposed a concept of an evolutionarily stable strategy (ESS) for a 
finite (or small) population as a generalization of the standard ESS concept for an infi-
nite (or large) population by Maynard-Smith(1982). We call it  a  finite population ESS. 
He showed that a finite population ESS is not generally a Nash equilibrium strategy. 
In Schaffer (1989) he applied this concept to an economic game, and showed that the 
strategy which survives in economic natural selection is a relative, not absolute, payoff 
maximizing strategy. He considered the following survival rule. Firms are born with 
strategies and cannot change their strategies in response to changing circumstances. At 
the end of each period, if the payoff of Firm i is larger than the payoff of Firm j, the 

probability that Firm i survives in the next period is larger than the probability that Firm 
j survives in the next period. Alternatively we consider that the survival rule operates 
on strategies, not firms, and the proportion of successful strategies in the population 

grows by firms' imitation of strategies) 
 In this paper we consider the following model of a duopoly. Every firm can observe 

decisions each other, but does not know the exact form of demand functions, and can 
not compute its best response to the other firm's strategy. On the other hand, the firms 
know that the demand functions for them are symmetric, and their cost functions are the 
same. When two firms choose the same strategy (output or price), denoting it by si,  in a 
symmetric duopoly their profits are equal, and they do not have incentive to change their 
strategies. Now, suppose that one firm (a mutant firm) experiments a different strategy, 
s2. If this firm makes higher profit than the other firm, it will wish to imitate the mutant 
firm's success. On the other hand, if the mutant firm makes lower profit than the other 
firm, it will not wish to imitate the mutant firm's failure, and in fact the mutant firm will 
wish to switch from s2 to s i . If, starting from Si,  experimenting always leads to lower 

profit for the mutant firm than for the other firm, then si is a finite population ESS. 
 The mechanism of an imitative strategy choice will be explained in Section 4. Some 

recent papers such as Robson and Vega-Redondo (1996) and Vega-Redondo (1997)

I Hansen and Samuelson (1988) also presented analyses about evolution in economic games . They showed 

that with small number of firms a surviving strategy in economic natural selection, they called such a strategy 

a universal survival strategy, is not a Nash equilibrium strategy. Their universal survival strategy is essentially 
equivalent to Schaffer's finite population evolutionarily stable strategy. They said, "In real-world competition, 

firms will be uncertain about the profit outcomes of alternative strategies. This presents an obvious obstacle 

to instantaneous optimization. Instead, firms must search for and learn about more profitable strategies. As 
Alchian (1965) emphasizes, an important mechanism for such a search depends on a comparison of observed 

profitability across the strategies used by market participants. That is, search for better strategies is based on 
relative profit comparisons." For more recent analyses of imitation behavior, see Schlag (1998) and (1999).
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considered a model of evolution with an imitative strategy choice. On the other hand, 
some other papers such as Kandori and Rob (1995) and (1998), and Galesloot and 
Goyal (1997) considered a model of evolution based on best response dynamics. In 
best response dynamics each player chooses a strategy in period t  + 1 which is a best 
response to other players' strategies in period t. Thus players must know the whole 

payoff structure of the game, and be able to compute their best responses. While in 
imitation dynamics, players simply mimic successful strategies of other players. We 
think that imitation dynamics is more appropriate than best response dynamics for an 
economic game with boundedly rational players. 

 We are concerned with showing the following results. In a quantity setting duopoly 
the finite population ESS output is a stochastically stable strategy, and when the goods 
are substitutes, it is between the Nash-Cournot equilibrium output and the competitive 
output. In a price setting duopoly the finite population ESS price is a stochastically 
stable strategy, and when the goods are substitutes, it is between the Nash-Bertrand 
equilibrium price and the competitive price. The ESS output in the quantity setting 
case and the ESS price in the price setting case yield equivalent outcomes. Therefore 
the stochastically stable state in a quantity setting duopoly and that in a price setting 
duopoly coincide. 

 In the next section we consider finite population ESSs. In Section 3 we will show 
the equivalence of dual ESSs. In Section 4 we will show that the finite population ESSs 
are stochastically stable strategies in both quantity setting and price setting cases. From 
the equivalence of the finite population ESSs we obtain the  conclusion that the stochas-
tically stable state in a quantity setting duopoly and that in a price setting duopoly 
coincide. The last section contains concluding remarks.

2. FINITE POPULATION EVOLUTIONARILY STABLE STRATEGIES

 There is a duopoly with two firms producing differentiated goods. We call two firms 
Firm 1 and Firm 2. Let xi and x2 be the outputs of Firm 1 and Firm 2, and let pl and 

P2 be the prices of the goods of Firm 1 and Firm 2. Then, the direct demand functions 
for the goods are given by 

xi = xi (Pi ,P2),(1) 

and 

x2 = x2(pl, P2) .(2) 

We assume that the demand functions are symmetric for two firm, that is,

xi (pi, p2) = x2(P2, pl) • 

And we assume that xi (pi, p2) and x2 (p 1, P2) are twice differentiable, and 

ax1 
< oax2< oaxi>axiandax2>ax2 8

P1 aP2 8P1 aP2 aP2 apt
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The latter two inequalities mean that own effects are larger than cross effects. From the 
above demand functions, we obtain the following inverse demand functions 

 pl =Pi (xi , x2) ,(3) 

and 

                P2 = P2 (x 1 , x2) •(4) 

pl (x  1, x2) and P2 (x l , x2) are also symmetric and twice differentiable, and 

apt 
< 0,ap2<0,apt>aplandaP2aP2  a

xi ax2axi ax2ax2 axi 

 The cost function of Firm i is denoted by c(xi), which is twice differentiable. Two 
firms have the same cost function. The marginal cost of Firm i, c' (xi), is positive and 
increasing. 
 Further we assume that the following relations hold. 

apt apt a2Pi 82pi       2 
+ + + xi — c (xi) < 0 , j(5) axi ax; ax? axix; 

and 

       axi axi,a2xia2xi          2
+----+ (pi—c(x•)) ------2+ ------- apt aplapiapipi 

                      axi axi axi 
                       + -----c"(xi)<0, j i. (6)                    apt apt apt 

c"(x) is the second order derivative of c(x). Eq. (5) is derived from the stability con-
dition with the second order condition for the Nash-Cournot equilibrium, and Eq. (6) 
is derived from the stability condition with the second order condition for the Nash-
Bertrand equilibrium (see Appendix). 

 In a quantity setting duopoly the profit of Firm 1 is 

71(xi,x2) = pl(xi,x2)xi —c(xi), 

and the profit of Firm 2 is 

72(xi, x2) = P2(xi, x2)x2 — c(x2) • 

We consider an evolutionary game in which two firms repeatedly play a duopoly stage 

game. In this game the population is two, and the stage game is also a two players 
game. Thus it is a so called playing the fields model. Strategies for the firms are their 
outputs. The firms repeatedly play the stage game in each period, and may change their 
strategies between one period and the next period. Such a dynamic problem is treated in 
Section 4. In this section we consider finite population evolutionarily stable strategies 
of the stage game. 

  Consider a state in which both firms choose x*. If, when one firm (a mutant firm) 
chooses a different strategy x', the profit of the firm who chooses x* is larger than the 

profit of the mutant firm, and this relation holds for all x' x*, then x* is a finite
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population evolutionarily stable strategy (ESS).2 Without loss of generality, assuming 
that the mutant player is Firm 1,  x* is a finite population ESS if 

72(xi, x*) > hl(xi, x*) , `dxi x* . (7) 

We define 

it (x2) = alg max (pi (xi,x2),(8) 

xi where

Col (xi ,x2) = hl(xi ,x2) — 72(xi,x2) 
= Pi (xi ,x2)xi — c(xi) — P2(xi,x2)x2 + c(x2)• (9) 

If there is a unique maximizer x* in Eq. (8) such that x* = xi (x*), then x* satisfies Eq. 

(7) since col (xi , x*) has the maximum value, which is zero, only when xi = x*. 
                                                     Differentiating Eq. (9) with respect to xi yields 

aplap2 
                     pl+
OX]xi -c,(xi)-axlX2=0. 

Substituting xi = x2 = x* into this, we obtain the following condition for a finite 

population ESS, 

                     a 
           pi (x*, x*) +pi—p~x*— c/(x*)=0,j O i . (10)                        ax

i axi 

We assume that there is a unique ESS output x*. 

 Now suppose that the goods of the firms are substitutes. Then we haveap<< 0, 
j i. The profit maximizing condition for Firm i, i = 1, 2, in a Cournot game (a 
quantity game) is 

                        Bpi 
                    pi + ax

i                    xi —c(xi) =0.(11) 
Let xc be the Nash-Cournot equilibrium output. We assume xc > 0. Since the demand 
functions are symmetric, and the firms have the same cost function, the Nash-Cournot 
equilibrium is symmetric. Then, when xi = x2 = xc, the left hand side of (11) is zero. 

From Eq. (10) and ap'< 0 we find that when xi = x2 = x* the left hand side of Eq. 
(11) is equal to t4 x*, and it is negative. Eq. (5) implies that the left hand side of Eq. 
(11) is decreasing with respect to the outputs of the firms provided xi = x2. Thus we 
obtain x* > xc . 

 In a competitive industry the profit maximizing condition for Firm i is 

pi — c' (xi) = 0 .(12) 

Let x,,, be the competitive (or Walrasian) equilibrium output. When xi = x2 = xw , the 
left hand side of (12) is zero. In symmetric situations we have--It =apt. From Eq. 

                                                                              j 

 2 Schaffer's original definition is weaker . He defines x* as a finite population ESS if Eq. (7) is satisfied with 
weak inequality. We adopt the definition with strong inequality . About the definition of a finite population 
ESS, see Crawford (1991).
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(10) we obtain 

                           (aPiaPi(x*,x*)-cl(x*)=-- P~x*>0  j  i. axi axi 

That is, when xi = x2 = x*, the left hand side of (12) is positive. Sinceap;+op`—c" < 
ax,7x, 

0, the left hand side of Eq. (12) is decreasing with respect to the outputs of the firms 

provided xi = x2. Thus we obtain x* < xw . 
 Next, in a price setting duopoly the profits of Firm 1 and 2 are represented as 

71(pl, P2) = plxl(pl, P2) — c(xi(Pi, P2)) , 

and 

72(pl, P2) = P2x2(pl, P2) — c(x2(pl, P2)) • 

Similarly to the quantity setting case we consider an evolutionary game in which two 
firms repeatedly play the duopoly stage game. Denote the finite population ESS price 
by p*. The condition for the finite population ESS price is written as follows, 

xi (P*, P*) + a~-a>(p*-(xi (p*, p*))) =0,ji. (13) 
               P~P' 

We assume that there is a unique ESS price p*. 

 Now suppose that the goods of the firms are substitutes. Then we have a; > 0, 
j i. The profit maximizing condition for Firm i, i = 1, 2, in a Bertrand game (a price 
game) is 

xi +ax`----(pi — c' (xi)) = 0.(14)                       apt 

Let pb be the Nash-Bertrand equilibrium price.3 Then, when 131 = p2 = pb, the left 

hand side of (14) is zero. From Eq. (13) and -axpi > 0 we find that when pl = P2 = p* 

the left hand side of Eq. (14) is equal toapi (p* — c' (xi) ), and it is positive. Eq. (6) 
implies that the left hand side of Eq. (14) is decreasing with respect to the prices of the 

goods provided pl = p2. Thus we have p* < pb. 
  In a competitive industry the profit maximizing condition for Firm i is the same as 

(12). Let pw be the competitive (or Walrasian) equilibrium price. Since c' (xi) > 0 we 
have pw > 0. When pl = P2 = pw, the left hand side of (12) is zero. From Eq. (13) 
we have 

p* — c'(xi (p*, p*)) =— xi(P*, P*) > 0 , j i . (15) axi axi 

apt apt 

That is, when pi = p2 = p*, the left hand side of (12) is positive. Since 1 — 

c" (xi) (c'-+d p~)> 0, the left hand side of Eq. (12) is increasing with respect to 
the prices of the goods provided pi = p2. Thus we have p* > pw. 

3 Since the demand functions are symmetric , and the firms have the same cost function, the Nash-Bertrand 

equilibrium is symmetric.
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Therefore we have shown the following proposition.4 

PROPOSITION 1. When the goods of the firms are substitutes, 
1. The finite population ESS output in a quantity setting duopoly is between the 

   Nash-Cournot equilibrium output and the competitive output; and 
2. The finite population ESS price in a price setting duopoly is between the Nash-

   Bertrand equilibrium price and the competitive price.

3. THE EQUIVALENCE OF DUAL FINITE POPULATION ESSs

  The inverse demand functions in the quantity setting case, Eq. (3) and Eq. (4), are 
obtained by inverting the demand functions in the price setting case, Eq. (1) and Eq. (2). 
These two systems represent the same demand structure. 

 Totally differentiating Eq. (3) and Eq. (4) yields the following expressions, 

                 dpi =~PIdxi+apidx2 
          12 

and 

 d  p2 =~P2dxi+aaP2dx2 . 
                Iax2 

Solving these equations for dxi and dx2, we obtain 

           1 ( 
              dxi =D aP2dpi —aPIdP2 ,(16) 

          22 

and                  1 ( dx2 =(_dpiaP2+aPldP2,(17) 
        DtI 

where 

D =apt aP2api aP2 
                         axi ax2ax2 axi 

In symmetric situations in which xi = x2, we have 

aP2 apt 
andaPI=ap2(18)              a

x2 axi ax2 axi 

Then D is rewritten as follows, 

        D _api2aP22aPi—aP2aPi+8192           a
xl axi axi axiaxl axi 

From Eq. (16), Eq. (17) and Eq. (18) we obtain 

axi _ 1 apt 
apt D axi 

and 
axi 1 apt ----- 

7 J i • apt D axi 

4 On the other hand, when the goods are complements, we obtain x* < xc < xw and p* > Pb > pw•
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Then we find 

        axi  axi  1 a  pi a pi  1 

apt apt Daxi+axi _BPiapii.(19) 
                                     axi axi 

Substituting Eq. (19) into Eq. (13), which is the condition for the finite population ESS 
in a price setting duopoly, yields 

      *apt _apt* *        P+ 
axaxxi(P'P)—c(xi(P'P*)) =,J}i. 

        ll This is equivalent to Eq. (10), which is the condition for the finite population ESS in a 

quantity setting duopoly. Thus we obtain the following proposition. 

 PROPOSITION 2. The finite population ESS in a quantity setting duopoly and that 
in a price setting duopoly are equivalent. 

 Note that this result holds regardless of whether the goods are substitutes or comple-
ments. It means that the ESS outputs in a quantity setting duopoly and the outputs with 
the ESS prices in a price setting duopoly are equal, and the ESS prices in a price setting 
duopoly and the prices with the ESS outputs in a quantity setting duopoly are equal.

4. STOCHASTICALLY STABLE STATES

 In this section we will show that the finite population ESS output and the finite popu-
lation ESS price obtained in Section 2 are stochastically stable strategies for a model of 
evolution with an imitative rule of strategy choice with mutations. Kandori et al. (1993), 
Kandori and Rob (1995), Robson and Vega-Redondo (1996) and Vega-Redondo (1997) 

presented analyses of stochastically stable states in evolutionary games. In our model, 
two players (firms) play a symmetric duopoly game in each period. According to Rob-
son and Vega-Redondo (1996) and Vega-Redondo (1997) we consider the following 
imitation dynamics of the firms' strategies. In period t + 1 every firm has a chance with 

positive probability less than one to change its strategy to the strategy which achieved 
the highest profit in period t among the strategies chosen by the firms in period t. If 
the strategy of a firm in period t achieved the strictly highest profit, this firm does not 
change its strategy. If the profits of two firms were equal even when they chose different 
strategies in period t, each firm may choose either strategy in period t + 1 among the 
strategies chosen by some firms in period t. 

  First consider the quantity setting case. As in Vega-Redondo (1997) we assume that 
the firms must choose their outputs from a finite grid F = {0, 8, 26, • • • , v6} where 
8 > 0 and v E N are arbitrary. It is required that the finite population ESS output 
belongs to this grid. A state of the imitation dynamics is represented by the number 
of firms choosing each output. The state space is denoted by Q which is equal to 
F2. Denote the transition matrix of this dynamics by T (co, w'), and by T (m) (co, w') the 
corresponding m-step transition matrix, where w, w' E Q. 

  In addition to this dynamic adjustment, there is a random mutation. In each period, 
each firm switches (mutates) its strategy with probability E. Mutation may be interpreted
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as experimentation of a new strategy by the firms. All strategies may be chosen with 

positive probability. Thus the complete dynamic is an ergodic Markov chain, and it 
has a unique stationary distribution. Consider the limit of the stationary distribution of 
the Markov chain as  s 0. Stochastically stable states are states which are assigned 

positive probability in the limit.5 
 We define a limit set of the dynamics without mutation. A set A is a limit set of T if 

this set is closed in a finite chain of positive probability transitions. That is, 

         (1)  `de  E  A, Vw A, T (co, co') = 0 . 

        (2) `doo E A, co' E A, 3m E N such that T (m) (co, > 0 .

If in period t two firms choose different strategies, at least one firm has a chance to 
change its strategy with positive probability without mutation. Thus, such a state can 
not be included in a limit set, and in any state included in some limit set two firms must 
choose the same strategy.6 On the other hand, in any state in which two firms choose 
the same strategy, no firm has incentive to change its strategy except for mutation. Ac-
cordingly, a limit set is identified as a set which includes a single state in which two 
firms choose the same strategy. We need no mutation to move from any state which is 
not included in a limit set to a state in some limit set. Thus a stochastically stable state 
must be in some limit set. 

 Denote the state in which two firms choose the output x by av (x) . The number of the 
states (including the state where x = 0) is v + 1. Denote the subset of S2 consisting of 
limit sets of T by S21. Define an co (x) -tree as follows. An av (x)-tree is a function t : 
S21 - S21 such that t (co (x)) = av(x) and such that for all av 0 CO (X), there exists m with 
tin(co) = av(x). We may think of an co(x)-tree as a set of arrows connecting elements of 
S2lin which every element has a unique successor t (av), and all paths eventually lead to 
av (x).7 Define the cost of a move from av to t (av), c (co , t (av)), to be the minimum number 
of mutations needed to transit from av to t (co) under TE, where TE is the transition matrix 
on Di when the mutation probability is E. Then the cost of an av-tree is the total cost of 
all moves in the tree, 

E c(w, t(w)) 
WEO/ 

And finally define C(x) to be the minimum cost of all possible av(x)-trees. This is the 
minimum number of mutations needed to reach av (x) from all the other limit sets. Based 
on the results in Freidlin and Wentzel (1984), in their Proposition 4 Kandori and Rob

5 This adjustment process is the same as that in Robson and Vega-Redondo (1996) and Vega-Redondo 

(1997). It has a stochastic nature even without mutation since each firm has a chance to change its strategy 
independently with some positive probability, and the number of firms who change their strategies in period 
t + 1 to the most profitable strategy in period t is a stochastic variable without mutation. In period t + 1 both 
firms may choose the most profitable strategy in period t with strictly positive probability . 

 6 This result is similar to Proposition 1 in Vega-Redondo (1997) . 
7 For more details about a tree see Kandori et al. (1993), Vega-Redondo (1996), Vega-Redondo (1997) and 

Young (1998).
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(1995) showed that the stochastically stable states comprise the states having minimum 
C(x). 
 From the arguments in the previous section we see that, since  x* is the finite popu-

lation ESS and any other output is not ESS, and we have 71(x*, x2) > 72(x*, x2) for 
x2 x*, one mutation is sufficient to reach the state w(x*)  from any state w(x),  x x*. 

                                                             Therefore C(x*) = v. On the other hand, one mutation is not sufficient and we need 
two mutations to move from the state w(x*) to some other state. Thus C(x) > v + 1 for 
x x*. Hence x* is the stochastically stable output. The transition to w(x*) from any 
other state occurs with one mutation. On the other hand the transition from w(x*)  to 
any other state occurs with two mutations. Thus the former transition is more probable 
than the latter. This is the reason why w(x*)  is the stochastically stable state. Therefore 
we have shown the following result. 

 PROPOSITION 3. In a quantity setting duopoly the finite population ESS output, 
which is obtained from Eq. (10), is a stochastically stable output. 

 In the price setting case, by essentially the same procedures as in the quantity setting 
case we can show the following result. 

 PROPOSITION 4. In a price setting duopoly the finite population ESS price, which 
is obtained from Eq. (13), is a stochastically stable price. 

 In Proposition 2 we have shown that the finite population ESS in a quantity setting 
duopoly and the finite population ESS in a price setting duopoly are equivalent. There-
fore we obtain the following conclusion. 

 PROPOSITION 5. The stochastically stable state in a quantity setting duopoly and 
that in a price setting duopoly coincide.

5. CONCLUDING REMARKS

 Let us consider the difference between stochastically stable strategies and Nash equi-
librium strategies. In a quantity setting duopoly, when the goods are substitutes, each 
firm determines its output with a conjecture that even if it increases its output, the out-

put of the other firm keeps constant. On the other hand, in a price setting duopoly, each 
firm determines the price of its good with a conjecture that if it reduces the price of its 

good, the output of the other firm will decrease (the price of the other firm's good keeps 
constant). Then the firms in a price setting duopoly should be more aggressive than the 
firms in a quantity setting duopoly. These are why the Nash equilibrium in a quantity 
setting duopoly and that in a price setting duopoly are different.8 

 With imitation dynamics what matters is that a quantity increase in a quantity setting 
duopoly or a price increase in a price setting duopoly, as long as it raises a firm's profit 

8 When the goods are complements, in a price setting duopoly, each firm determines the price of its good 
with a conjecture that if it reduces the price of its good, the output of the other firm will increase. Then the 
firms in a price setting duopoly should be less aggressive than the firms in a quantity setting duopoly. The 
Nash equilibrium in a quantity setting duopoly and that in a price setting duopoly are different in this case, 
too.
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relatively to that of the other firm, it will be imitated. This suggests why both games 

lead to the same outcome.

APPENDIX: DERIVATIONS OF EQ. (5) AND (6)

 The stability condition for the Nash-Cournot equilibrium is that the slopes of the 

reaction curves of the firms are smaller than one. This condition for Firm 1 is 

 apt
+ a2pl xi a

x2 axix2 
< 1.                             2 

                    2apl+2 xi — cit(xi)               
axil 

The denominator is negative from the second order condition. From this expression we 

obtain 

           2apl+apt+a2pl+a2plxi — c"(xi) < 0. axi ax2axi axix2 
 The stability condition for the Nash-Bertrand equilibrium is that the slopes of the 

reaction curves of the firms are smaller than one. This condition for Firm 1 is

axi 
+ (pl—c'(xi)) a

p2

a2xi

apt p2

axi axi „ — ---------c(xi) 
apt ap2

2axl+a2 2(pl —(xi )) —axl2c„(xi ) 
apt aplam

<1.

The denominator is negative from the second order condition. From this expression we 

obtain 

ax1 axi(a2xi 82xlaxl axi axi 
2 ++ (pl—c'(xi))+------—+----c,'(xi) < 0.  aplap2ap~aplP22 aplaplap2
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