
Title AN ADAPTIVE MONOPOLISTIC GENERAL EQUILIBRIUM MODEL WITH LOCAL KNOWLEDGE
OF DEMAND

Sub Title
Author D'AGATA, Antonio

Publisher Keio Economic Society, Keio University
Publication year 2000

Jtitle Keio economic studies Vol.37, No.2 (2000. ) ,p.1- 7 
JaLC DOI
Abstract A general equilibrium model with monopoly is developed in which the monopolist has only local

knowledge of the equilibrium manifold and behaves adaptively. We provide sufficient conditions
ensuring that the iterative process activated by the monopolist converges to an equilibrium.

Notes
Genre Journal Article
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=AA00260492-20000002-0

001

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


KEIO ECONOMIC STUDIES 37(2), 1-7 (2000)

AN ADAPTIVE MONOPOLISTIC GENERAL EQUILIBRIUM MODEL 
        WITH LOCAL KNOWLEDGE OF DEMAND

Antonio D' AGATA

Faculty of Political Science, Universita di Catania, Catania, Italy

First version received March  1998, final version accepted January 2001

Abstract: A general equilibrium model with monopoly is developed in which the mo-

nopolist has only local knowledge of the equilibrium manifold and behaves adaptively. 

We provide sufficient conditions ensuring that the iterative process activated by the mo-

nopolist converges to an equilibrium. 
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1. INTRODUCTION

 In this note we shall develop a general equilibrium model with a monopolistic pro-
ducer who has local knowledge of the equilibrium manifold, and, by using an adaptive 
approach (see e.g. Day (1975)), the problem of convergence to a local monopolistic 
equilibrium is analysed. We do not provide a theory of how the local knowledge is 
formed, but we simply assume that the subset of the equilibrium manifold known by the 
monopolist is defined by a correspondence which is exogenously given. Obviously, the 
way in which this knowledge is formed deserves study, and our simplicistic approach is 

justified in that our main aim is to provide sufficient conditions on the above-mentioned 
correspondence which ensure that the iterative process activated by the monopolist in 
trying to maximize his/her profits converges to a local monopolistic equilibrium. Fi-
nally, our approach can be considered an intermediate approach between the "objec-
tive" and the "subjective" approaches usually employed by the literature on general 
equilibrium theory with imperfect competition (for a survey see Hart (1985)) because 
we assume that the monopolist has complete knowledge of only a subset of the equi-
librium manifold. (General equilibrium models with monopoly within the "objective" 
and/or "subjective" demand approach are studied, among others, by Nikaido (1975), 
Cornwall (1977), Bohm (1990))
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2 ANTONIO  D'AGATA

2. THE MODEL

 Consider the following £-good economy: E((>h)hEH, (Xh)hEH, (wh)hEH, )h EH/ 
(Y)), where H = 1, 2, ... , n is the set of indices of households, symbol >h (resp. Xh, 
resp. wh, resp. Oh) indicates preferences (resp. consumption set, resp. initial endowment, 
resp. the profit share) of household h. Symbol Y indicates the production set of the sole 
producer in the economy, which is interpreted as the monopolist. Symbol xh (resp. y) 
indicates the generic element of set Xh (resp. of set Y). Finally, symbol p indicates the 
price vector and S is the price set { p E I i = 11. 

  ASSUMPTION 1. For every h E H: 
  (i) Xh = RC; 

  (il) preferences are complete, transitive, reflexive, continuous, strictly convex and 
bounded from below; 

 (iii) preferences of agent h can be represented by a smooth utility function, uh, 
which satisfies the conditions: (1) 8uh/axi > 0, for every j E G; (2) the quadratic 
form defined by the hessian matrix of uh, X' • Huh(xh) • X, restricted to the space 
Vuh (xh) • X = 0 is negative definite. 

 ASSUMPTION 2. Set Y is compact. 

 Assumption 1 is standard (see, e.g. Balasko (1988)), Assumption 2 can be replaced 
by any assumption ensuring boundedness of the feasible allocation set. Notice that as 
far as Propositions 1 and 2 below are concerned, Assumption 1 can be replaced by 
any standard assumption on consumers employed in non-differentiable models (see e.g. 
Debreu (1959)). 

 We shall consider two fictitious pure exchange economies: the first, denoted by 
Sw((>h)hEH, (Xh)hEH, (wh)hEH), is obtained by suppressing the production sector in 
economy S and considering the initial allocation w a parameter in Re". Now, supposing 
that in economy E the monopolist chooses the production plan y, the second kind of pure 
exchange economy we shall consider is the pure exchange economy obtained from E by 
suppressing the production side and assuming that the "initial" endowment of agent h is 
wh (y) = wh + 9h y (the "intermediate endowments"; see Gabszewicz and Vial (1972)). 
Denote this economy by Ev((>h)hEH, (Xh)hEH, (wh(y))hEH). Note that in S,, the allo-
cation w is the initial allocation of the original economy E. The mapping co : Y Rel?, 
defined as follows: w(y) = cvi (y) x w2(y) x • • • x con (y) will be called the intermediate 
endowment function. Set S2 (Y) _ {w' E ken I wh = wh (y), h E H, y E Y}. Symbol 
z(p, w) denotes the excess demand function in economy Sw. 

 Define the sets: E = {(p, w) E S x Re" ( z(p, w) = 0), Ey = {(p, w) E E I w E 
S2(Y)}. Set Ey is the equilibrium manifold. 

 The next Lemma provides an important property of this set; further interesting prop-
erties are provided in the Appendix. 

  LEMMA 1. Set Ey is compact.
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 Proof Ey =  re-l(S2  (Y)). By Assumption 2, set S2 (Y) is compact; thus the as-
sertion is verified since the natural projection mapping is proper (see Balasko (1988, 

pp. 89-90)). ^ 

 We assume that the monopolist behaves according to the following iterative pro-
cess: given a correspondence F : Ey –f Ey and an initial current strategy in Ey, 
say (p°, y°), the monopolist chooses the next strategy in set B(p°, y°) = {(p, y) E 
F(P y°) I P • y > P' • y', (pl, )7') E F(P°, y°)}. Call this strategy (pl, yr). Then, the 
subset F (pi, yr) is given and the monopolist chooses the next strategy in set B (p 1 y 1), 
say (p2, y2), and so on. If there is a t (t = 0, 1, ...) such that (pt+I yt+l) (e 
B(pr, yt)) (pt, yt), then from t on the monopolist chooses strategy (pt, yt). This 

process can be intuitively interpreted as follows: time is discrete (t = 0, 1, 2, ... ), and 
at the beginning of each period the monopolist has to choose the price/production plan 
configuration in Ey. At the beginning of period 0, he/she chooses (p°, y°) E Ey, then 
during the period 0 the monopolist makes "experiments" in the set of price/production 

plans configurations; by means of these "experiments", at the end of period 0 the mo-
nopolist knows set 0(p° ,  y°) c S x Y. Therefore, at the end of period 0 the subset 
of the equilibrium manifold known by the monopolist is F(p° y°) = 0(p° y°) n 
Ey, and at the beginning of time 1 the monopolist chooses the profit maximizing 

price/production plan configuration in F(p°, y°), say (p',yr).And so on. If it hap-
pens that (pt+I yt+1) _ (pt, yt),then (pt+I yt+I) is the profit maximizing strategy 
in F (pt , yt), hence the monopolist will stop the process. Therefore, the following def-
inition is now obvious: A local monopolistic equilibrium (LME) is a strategy (p*, y*) 
which satisfies the following conditions: (i) (p*, y*) E Ey; (il) p* • y* > p • y for 
every (p, y) E F(p*, y*) (For an equilibrium concept similar to this, but within a 

game-theoretic context, see Bonanno (1988)). 

  ASSUMPTION 3. The correspondence F : Ey –* Ey defined above is closed-
valued, continuous and non-empty. Moreover, (p, y) E F(p, y) for every (p, y) E Ey. 

 Continuity means that the subset of Ey which is known by the monopolist changes 
"smoothly" with respect to the current strategy. The condition (p, y) E F(p, y) can be 

justified on the ground that "experiments" are made "around" the status quo. Remark 1 
below provides an example of a correspondence F satisying Assumption 3. 

  According to the monopolist's behaviour described above, a sequence of "temporary" 
optimal strategies is generated and it is natural to ask whether this sequence converges 
toward a LME. 

PROPOSITION 1. Under Assumptions 1, 2 and 3 and for whatever initial strategy 

(p°, y°) E Ey, the sequence of strategies defined by the above iterative process either 
converges to a LME or the limit of every convergent subsequence is a LME. 

  Proof By Assumption 3, by Lemma 1 and by Beige's Maximum Theorem (Beige 

(1963)) it follows that the correspondence B : Ey — Ey defined by set B(p, y) is 
upper hemi-continuous; moreover, it is closed valued, hence it is closed (Border (1985, 
Proposition 11.9.(a))). The iterative behaviour of the monopolist as introduced above
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can be modelled as an algorithm a  la Zangwill (1969), and it is possible to verify that all 
conditions for applying Convergence Theorem A in Zangwill (1969, p. 91) are satisfied; 
thus, by this theorem, the assertion holds true. 

 A weak aspect of the preceding result is that the iterative process may converge to 
two or more LMEs. A straightforward way to exclude this possibility is to assume that 
there is a unique LME (hence a unique monopolistic equilibrium) (see, for example, 
Bazaraa, Sherali and Shetty (1993, p. 250)). The following is an alternative weaker 
sufficient condition: 

 ASSUMPTION 4. There exists a family of disjoint compact neighbourhoods of the 
LMEs, say D, such that each element of the family contains at most one LME and if 

(p, y) is a LME, then F(p, y) C D(p, y), where D(p, y) E D. 

 For future reference, it is worthwhile to emphasize that Assumption 4 implies that: 

(i) if (p, y) and (p', y') are LMEs, then (p', y') F(p, y) and (p, y) F(p', y'); (il) 
LMEs are isolated; i.e. if (p, y) is a LME, then there exists an s-ball around (p, y), 
BE (p, y), such that in 13,(p, y) n Ey no LMEs exist except (p, y). 

PROPOSITION 2. Under Assumptions 1, 2, 3 and 4 the whole sequence generated 
by the iterative process converges to a LME. 

 Proof. Preliminarly we show that if Lot , yt} is the sequence generated by the it- 
erative process, then d((pr                      yt(pt +1yt+~)) 0 as t co, where d(., -) is the 
distance function. Suppose not. Then there exists a subsequence {pi' , yti} such that 
d((ptr, yr) (pr+1 yr+l )) p > 0 as i , 00. We may assume that ((pti , yti) con-
verges to (p°, y°) and that (p4+1 yt/,+1) converges to (p°° y°°) Clearly, d((p°, y°), 

(p°° y°°)) > p By Proposition 1, (p°, y°) and (p°° y°°) are LMEs; moreover, 
(pt;+l yt;+l )) E F(pt%, yti), then by Assumption 3, (p°° y°°) E F(p°, y°). But this 
contradicts Assumption 4. 

 Suppose now that the assertion of Proposition 2 is not true. Therefore, if { pt , yt} is 
the sequence generated by theiterative process, there must exist (at least) two subse- 

quences, say (p1~,yt') and (pt", yt/) converging to (p', y') and (p", y"), respectively. 
By Proposition 1, every accumulation point of sequence {pt, yt} is an LME; therefore, 
by Assumption 4, it is possible to take two positive numbers s' and s" such that points 

(p', y') and (p", y") are the only accumulation points in 13,,(p' , y') and Bet (p", y"), 
where BE, (p', y') C D(p', y') and BE„(p", y") C D(p", y"). 

 Choose a positive number Z in such a way that d((pZ, yZ), (pz+l yz+I )) < s'/3 for 
z > Z (That such a number exists follows from the result at the beginning of this proof). 
However, (p', y') is an accumulation point of sequence {pt ,  yt }, therefore for infinitely 
many indices s one has that d((ps, yS), (p', y')) < s'/3. On the other hand, (p", y") 
is another accumulation point of {pi , yt}, hence, by the fact that (p", y") BE, (p', y'), 
there must exists infinitely many indices q such that d((pq, yq), (p', y')) > 2sis. 
From the way in which Z has been defined, it follows that there exist infinitely many in-
dices r > Z such that (s73) > d((pr, y' ), (p', y')) > (2s'/3). This implies that there
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exists an accumulation point in the set {(p, y) E Ey I  (s'/3) < d((p, y), (p', y')) < 

(2eis)} C D(p', y'). This result and Proposition 1 contradict Assumption 4. • 

 It remains to show that Assumptions 3 and 4 are consistent. In order to do this, 
the following further assumption concerning the representation of the production set is 
adopted (see also Smale (1974)): 

 ASSUMPTION 5. Y = {y E Re I g(y) < 0} where g : —+ R is a smooth func-
tion such that Vg(y) 0 if g(y) = 0. 

 LEMMA 2. Under Assumptions 1, 2 and 5 set Ey is a £-dimensional differentiable 
manifold with boundary. 

 Proof. Consider the function COE : E — Re defined as follows: coE(p, w') = 

(wit, — wh)/9h where h is chosen in such a way that 9h > 0. Obviously, cPE is smooth. 
This and Assumption 5 yields that also function G : E —* R defined as follows: G = 

g o cOE is smooth. Obviously, G(p, w) < 0 if (p, w) E Ey and that G(p, w) = 0 
if and only if g('PE(p, w)) = 0; i.e., the zero values of G are the zero values of g. 
If we show that G has zero as regular value, then Ey is a manifold with boundary 

(see e.g. Milnor (1965), Lemma 3, p. 12); i.e. we have to show that VG(p, w) 0 
if G(p, w) = 0. Take (p, w) such that G(p, w) = g(cpE(p, w)) = 0. But since 
VG(p, w) = [0' I Vg(ctE(p, w))]/9h, where 0' is a 1 x £ zero vector, by Assumption 
5 it follows that V G(p, w) 0. As for dimension, notice that Ey is diffeomorphic to, 
hence has the same dimension of, set {(p, y) E S x Y I z(p, w(y)) = 0}. By employing 
the same technique in Balasko (1988, p. 68-69)) it can be seen that the rank of the 
Jacobian matrix of z(—f)(p, w(y)) (i.e. z(p, w(y)) without the £-th element) is equal to 

—1. • 

 REMARK 1. Under Assumptions 1, 2 and 5: 

  (i) There exists a correspondence F : Ey Ey which satisfies Assumption 3. 
 (il) If LMEs are isolated, then there exists a correspondence F satisfying Assump-

tion 4 as well. 

 Proof. (i) Set: V = A-l (Ey), where µ denotes generically a parametrization 
function (they exist from Lemma 2). Because of Lemma 1, set V is a compact subset 
of Rt. Choose 6 > 0 and denote by B8µ-1(p, y) the closed ball of radius 6 in Rt cen-
tered at A-l(p, y). Define the correspondence F : Ey —* Ey as follows: F(p, y) = 

{(p', y') E Ey I (p', y') E A(V fl B6µ-1(p, y))}. Obviously, for every (p, y) > Ey, 
F(p, y) is non-empty, closed and, moreover, (p, y) E F(p, y). Since continuity is 
in variant under homeomorphism, it is enough to prove that V fl Bs µ-1(p, y) is con-
tinuous. That But-l(p, y) is upper hemi-continuous (uhc) is immediate. This and 
compactness of V allow to prove by standard arguments that V fl BS A-l (p, y) is uhc 
as well. Suppose that V fl B6µ-1(p, y) is not lower hemi-continuous. Thus, given an 
open set T such that T fl (V fl B6µ-1(p, y)) 0, one obtains that for every neighbour-
hood of (p, y) in R2t, say Ua, there exists at least one (pa, ya) E Ua fl Ey such that 
T fl (V fl B6µ-1(pa ya)) = 0. This generates a net (pa, ya) in Ey with limit (p, y), 
and which satisfies the condition that T fl (V fl Bs A-l(pa ya) = 0 for every a. Since
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 T  n (V n B6ll-l (p, y) 0, there exists q E T with d(µ-1(p, y), q) < 8. Since d(•) is 
continuous and since (pa, ya) has limit (p, y), it follows that there exists a* such that 
for every a > a* one obtains: d(µ-1 (pa , ya), q) < g, thus T n(V nBsµ(pa ya)) 0 0, 
a contradiction. 

 (il) Suppose that there are h isolated LMEs, {(p(i), y(1)), i = 1, 2, • • • , h}. Con-
sider the collection D = {D(p(`), y(`))} of disjoint neighbourhoods of the LMEs in R2e. 
For each i take a closed ball BV1 in 1,t-l(D(p(`), .0)) n R2t), and denote by el the ra-
dius of ball B Vi . Take ,8 < min{8, El,  £2.....8h }, where 8 has been defined in point 
(i), and define the correspondence F as follows F(p, y) = {(p', y') E EY I (p' y') E 
µ Bt3 µ-1(p, y) }. It clearly satisfies all the conditions required.

APPENDIX

 This Appendix is devoted to analyse some further topological properties of set Ey 
and establishing sufficient conditions ensuring that this set is arc-connected, simple 
connected or contractible (For justification for such an analysis see Balasko (1988, pp. 
69-72).) Notice first that set E is a differentiable manifold diffeomorphic to R6' (Bal-
asko (1988, p. 73)). By contrast, the following example shows that set Ey can be not 
connected. However, Proposition A below provides sufficient conditions ensuring the 
desired topological properties for set Ey. 

 Denote by R the set of regular initial allocations for the pure exchange economy 
E , by U the set of initial allocations yielding a unique walrasian equilibrium, and by 
C the connected component of the set of regular allocations which contains the set of 
Pareto-optima (Balasko (1988, Theorem (4.5.3.)). 

 EXAMPLE. Suppose that w E R, and that w E U. There exists a neighbourhood 
of w, say N (w), such that -1(N (w)) is the disjoint union of a family of open subset 
of S x RI" (see Balasko (1988, p. 91)). Consider now economy S where Y satisfies the 
condition S2 (Y) C N(w). It follows that Ey is the disjoint union of a family of closed 
sets; i.e. it is not connected. 

PROPOSITION A. Under Assumption 1, if S2 (Y) C U n R, then set Ey is arc-
connected, simple connected or contractible if set Y is arc-connected, simple connected 
or contractible. 

 Proof. Since S2 (Y) C U nR, there exists one diffeomorphism p : S2 (Y) S defin-
ing the walrasian price vector as a function of the initial allocation (see Balasko (1988, 
p. 93)). Consider the function q : Y Ey defined as follows: i = (p o co, co) where 
function p has been just defined and co is the "indirect" endowment function. Function 
i is differentiable because functions co and p are differentiable. Consider now the func-
tion cp : Ey -* Y defined as follows cp(p, w') = {y E Y I w' = co(y)}. Obviously, 
cp o q = i; moreover, cp is a differentiable function since cp(p, w') = (wh - wh)/ah 
where wh is the initial allocation of household h, and index h satisfies the condition 

9h > O.Thus, if S2 (Y) C U n R, set Ey is diffeomorphic to set Y.
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 By recalling that there is uniqueness of walrasian equilibrium for every economy 
whose initial allocation belongs to set C (Balasko (1988, Corollary (4.5.4.)) one obtains 
the result:

 COROLLARY. If  S2(Y) C C, then Ey is arc-connected, simple connected or con-
tractible if Y is, respectively, arc-connected, simple connected or contractible. 

 Corollary has a very clear economic meaning: it shows that Ey is diffeomorphic 
to the production set Y if the initial allocation is "close enough" to the set of Pareto-
optimal allocations (i.e. w E C) and the monopolist is "small enough" with respect to 
the economy (i.e. if £2 (Y) C C). Actually, by means of a replication argument, it is 

possible to show that if the initial allocation of the economy E is in C, then there exists a 
number of replication of the consumption sector beyond which the condition S2 (Y) C C 
is satisfied.
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