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Abstract: Cost inefficiency in firms may arise due to in optimal input usage in the short 

run and a decline in market demand leading to excess capacity in the long run. The 

influence of these two forces: demand uncertainty and slack-ridden costs are explored 

here in respect of the recent nonparametric techniques which are essentially based on 

the concept of Pareto efficiency.

1. INTRODUCTION

 Recently nonparametric techniques based on Pareto efficiency have been increas-
ingly applied to compare the relative efficiency of public sector organizations. These 
techniques known as  ̀ data envelopment analysts' (DEA) have seen new developments 
in recent years in a number of directions, see e.g., Chaines et al. (1994) and Sengupta 

(1995, lgg8a). These new developments however have failed to introduce the DEA 
tool as a control theoretic device, e.g., how to use the DEA model as a policy tool in 
determining the optimal level of inputs and outputs. Two types of efficiency measures 
are usually distinguished at the microlevel. One is technical or production efficiency, 
which measures the firm's success in producing maximum output from a given set of 
inputs. The other is the price or allocative efficiency, which measures the firm's success 
in choosing an optimal set of inputs with a given set of input prices or observed input 
costs. In our approach we use the allocative efficiency criterion based on observed input 

prices or costs to determine the optimal level of inputs. 
 Recently the DEA approach has been applied extensively to measure the relative cost 

efficiency of competitive firms in the private sector, e.g., the efficiency of international 
airlines has been analyzed by Schefczyk (1993), Sengupta (1996) and cum and Yu 

(1998). These empirical studies have found that gross profit margins are not the sole 
determinant of firm efficiency, since other factors like market competition and long 
term viable strategies play an equal and possibly more important role. 

 Our object here is to develop a class of efficiency models which characterizes both ef-
ficiency ranking and the optimal level of inputs for attaining the highest level of relative
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14  JATE K. SENGUPTA

efficiency. These models are useful for both the public sector organizations where only 

input cost data are available but no output prices and also the private sector firms where 

both input and output prices are available from competitive market data. This second 

type of application to private sector firms is most important from an economic view-

point, since it links the DEA approach with the economic theory of market competition 
and also the concept of organizational slack or X-efficiency discussed by Leibenstein 

(1966) and more recently by Selten (1986).

2. ALLOCATIVE MODELS OF EFFICIENCY

 We consider first a model of relative efficiency, where a firm or decision making 
unit (DMU) is compared to the cluster of firms or DMUs and only input output data 
are available with no price data. This is the comparison of production or technical 
efficiency across firms. Secondly, we consider a model which minimizes overall unit 
costs subject to input and output constraints. This yields overall efficiency which can 
be decomposed into technical and allocative efficiency. Finally, we consider a more 

general class of models where demand considerations are introduced and both demand 
and cost uncertainty are incorporated. This type of model is generalized to dynamic 
frameworks, when intertemporal cost functions are minimized. Consider first a DEA 
model for characterizing the static efficiency of a reference unit k in a cluster of N 
units, where each unit j or DMUl has in inputs (x11) and s outputs (yrj): 

Min O 
a.0 

                 subject to 

<Oxik; i = 1, 2, ... , 
j=1 

                                             (1) 
yrjXl > yrk r = 1.2,... ,s 

j=I 

Ex.i = 1 , X, >0, 0 > 0. 
J=1 

In vector matrix form this is: 

Min O , s.t. X?. < OXk ; Ya. > Yk ; X'e = 1 ; X> 0 (2) 

where e is a column vector with N elements, each of which is unity and the prime 

denotes a transpose. Here the input (XI) and output (Yr) vectors (j = 1, 2, ... , N) 

are all observed and this is called an input oriented model in DEA literature. Here the 

reference unit k is compared with the other (N - 1) units in the cluster. Let X* = (X';) 
and 0* be the optimal solutions of the above DEA model with all the slack variables 

zero. Then the reference unit k or DMUk is technically efficient if 0* = 1 and the first 

two sets of inequalities in (1) hold with equality. Thus the optimal value of 0* provides 

a measure of technical efficiency (TE). If 0* is positive but less than unity, then it is not
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technically efficient at the 100 percent level. Overall efficiency  (OE  j) of a DMU or firm 

j however combines both technical (TE j) or production efficiency and the allocative 
(AE j) or price efficiency as follows: 

               0E1 = TE j x AE1 ; j = 1, 2, ... , N .(3) 

 Recently a number of research monographs have discussed the current state of re-
search in these areas of efficiency analysis. For example Ganley and Cubbin (1992) has 
discussed the specific problems of application in the public sector enterprises. Fried et 
al. (1993) have discussed several economic applications of the concepts of technical 
and allocative efficiency, whereas Chaines et al. (1994) have presented several types of 
theoretical generalizations. We present here some of the salient features of this recent 
research and discuss its relevance to demand and cost uncertainty. 

 To characterize overall efficiency of the reference unit DMUk one sets up the linear 

programming (LP) model as follows: 

Min q'x 
x,x

S.t. 

txjxj x 
   E Yj > > Yk 

l=1

(4)

X>0; x>0. 

Here q is an m-element vector of input prices as observed in the competitive market and 
x is an input vector to be optimally decided by DMUk along with the weights Xi . Here 
Xk and Yk are the observed input and output vectors for the reference unit k, whereas 
x is the unknown decision vector to be optimally determined. Let X* and x* be the 
optimal solution of the LP model (3) with all slacks zero. Then the minimal input cost 
is given by ck = q'x*, whereas the observed cost of the reference unit is ck = q'Xk• 
Hence the three efficiency measures are defined as follows: 

          TEk = 9* . OEk = ck/ck and AEk = OEk/TEk • (5) 

Two important points are to be noted when we compare the LP model (4) with (1). First 
of all, the input vector x in (4) is a decision vector to be optimally chosen, whereas Xk is 
the observed data in (1). If 9*Xk = x*, then the two models generate identical optimal 
solutions; otherwise the two optimal solutions are very different. The dual problems 
corresponding to (4) and (1) appear as follows: 

Max a'Yk + ac 
          s.t. ,l < q and ls'X j > aYj + aY1 + ac ; j = 1, 2, ... , N (6) 

              a, 8 > 0 ac free in sign



16 JATI K. SENGUPTA

and

 Max  a  Yk + 010 

    s.t. /3'X >aY+ac; j = 1,2,... , N 

a, /3 > 0 ac free in sign .

(7)

Let asterisks denote optimal values and let DMUk be efficient. Then it must follow from 

(6) that the production frontier for the k-th unit is as follows:

a'Yk=,B*/ 13*/Xk

 since /3* is constrained as /3* < q, we must have a*'Yk < q'Xk — ac. Thus so 

long as the actual inputs Xk are not equal to their optimal levels x*, this efficiency gap 

measured by (q'Xk — ao' — a*'Yk) may persist. Thus the constraint ,3* < q reflects 
the fact that the observed input Xk of the reference unit may or may not be equal to the 
optimal level x*, when all firms face the same competitive price q. There is no such 
constraint for the dual problem (7). Note that if ac is positive (negative or zero), then 
we have increasing (decreasing or constant) returns to scale. 

 The second point to note is that the overall efficiency and hence the allocative effi-
ciency in model (4) depend very critically on the observed vector q of market prices, 
which reflects the pattern of market demand for the whole industry. Farrell (1957), who 
is the first to develop the nonparametric method of efficiency measurement by an LP 
model similar to (2) but limited to the case of a single output recommended against the 
use of price or allocative efficiency, even when the market price data are available. He 
raised the objection that this efficiency measure would be seriously biased if the ob-
served input prices are widely fluctuating. However, this aspect of random variations in 
input prices can be easily incorporated in a risk averse efficiency measure, as has been 
shown by Sengupta (lgg8b).

3. GENERALIZED EFFICIENCY MODELS

 We now consider a more generalized version of the overall efficiency model (4), 

where both input (q) and output prices (p) are assumed to be available and the optimal 

vectors of input and output are optimally chosen as follows:

Maxp'y — q'x 

 NN 

s.t. XlXl <x; EY.ixi > y 

x <Xk; y>>Yk; X'e= 1 

                 x, y,X>0

(8)
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Here (x, y) are the control vectors of inputs and output to be optimally determined and 

(Xk, Yk) denote the observed levels for  DMUk. The dual of this problem then becomes

Max v'Yk — u'Xk — ac 

    s.t. p<a—v, q> ,3—u 

,B'Xl > ac , j = 1, 2, ... , N 

       (u, v, a, ,B) > 0 , cao free in sign

(9)

Two special cases of the generalized model (8) are of great importance. One is the sim-

pler output-oriented model where demand (dr) for output (yr) is subject to a probability 
distribution F(dr) and the objective function is to maximize the expected value of total 
revenue minus expected inventory cost. This yields the model

 ss 

Max E pr min(yr, dr) - E hr(yr — dr) 
  r=Ir=1 

   s.t. XA < Xk ; XA > y , e = 1 , A > 0

(10)

where X and y are the unknown vectors to be optimally solved for and hr is the observed 

unit cost of positive inventory for yr > dr. Denoting optimal values by asterisks, the 

efficient DMUk would then satisfy the following marginal condition:

F(yr) = (Pr + hr)1 (Pr -a) 

a Yk =,B Xk- ac

Clearly higher output price and lower inventory costs would increase the optimal output 

levels yr which may be compared with the observed outputs yrk in output vector Yk. 
 The second case is an input-oriented model, where the input decisions xi are equal to 

planned values plus an error term 61 with a zero mean and fixed variance. The errors 
are disturbances such as mistakes or unexpected difficulties in implementing a planned 
value xi . The planned values are the decision variables which have to be optimally 
chosen by each DMU and the error process El is realized after the planned value of xi (t) 
is optimally selected. The input constraints now turn out to be chance constrained

Prob E < Si ]= Si , 0 < 8i < 1 
j=1
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where (Si is the tolerance level of the i-th input constraint. The simpler model then takes 

the following form: 

117  

Min 

i=1 

         s.t. x,j~~ = +wt ; wt = F I(1 —8,)
(11) 

N  yr! j>yrk; X1e=1, )c>0 

i = 1.2.... ,m; r= 1,2,... ,s. 

Clearly the input uncertainty is here captured by the term wt which depends on the level 

61 of chance constraint, e.g., the higher the level of wt, the lower would be the optimal 

planned inputs x~ . 
 The main implication of the general model (8) is that the input and output gaps mea-

sured by (x - xlk - yrk can be quantified as a source of inefficiency. Even if the 
two constraints x < Xk, y > Yk are dropped, we would have the dual model

Min ac s.t. p < a , q> /3 

                 and /'X air; +ac, j=1,2, ... ,N 

                     a, /3 > 0 , ac free in sign . 

Note that a positive (negative or zero) value of ac indicates the size of increasing (de-
creasing or constant) returns to scale; hence the dual model can quantify the source of 
inefficiency of a relatively inefficient DMU in terms of returns to scale. Furthermore if 
a* = p and p* = q then the DEA based profit measure 7r; for DMUl becomes 

=P'Yi-q'Xi+ac<0, j=1,2....,N 

but the efficient DMUk must have zero profit nk = 0 always. 
 On using the optimal solutions X*, x*, y* of the LP model (8) one could define the 

composite input X( =ENS X X */ and composite output Y*. = EN i Yr X i and com-
pare with x* and y* respectively. This comparison would show if the Pareto efficiency 

property holds for the optimal input (x*) and output (y*) vectors or not.

4. MARKET COMPETITION AND EFFICIENCY

 We consider now the role of market competition in the efficiency framework. Hence 

we assume that each firm or DMUi produces a single homogenous output denoted by 

v where the totalindustryoutputis denotedbyvT=If Nislarge and the         yPy.~~-ill                      yi~g 

firms or DMUs are competitive, then the output price p is a constant, unaffected by the 

size of each individual firm. In this case the price can be viewed as p = p + s made 

up of two components: the expected price p and a random part s with a zero mean and
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a constant variance  o-8  . The total cost of inputs for each firm may now be related to 
output as 

c(yj) = cyj + Fi 

assuming a linear form, where Fi is the fixed cost and c is marginal cost that is assumed 
to be identical for each firm. Maximization of expected profits would then yield the LP 
model: 

Maxis =(p-c)y—F 
   NN 

           s.t.X)1<XXj>~'e = 1X> 0(12)              ~~k~yj~y;, 
i=1j=1 

where y is the unknown decision variable to be optimally selected. In case the mar-
ket is imperfectly competitive, the price variable then depends on the output supply of 
different firms. In the homogenous output case the firms are all alike, and the inverted 
demand function can be written as: 

=a — bYT, YT=Eyj; yk=y 
j=1 

The LP model (12) would then yield the following optimality conditions: 

(a — c) — bYT — by* — a* <0 

a*yj — 13*iXj — ac < 0(13) 

a*, ,B* > 0 , ac free in sign . 

If firm k is efficient, then one must have 

                                                a* 
                  Y* _ (atlb) — YT —b• y* >0 

al =a — c> 0 

where y* = yk is the efficient output of the k-th firm. If all firms are efficient, then 
YT = EN 1 yy and one obtains 

YT = (N/b)(1 + N)-1 [al — a*](14) 

 This analysis of the impact of competitive market pressure on the levels of firm and 

industry efficiency tends to neglect however a central cost variable in the behavioral 

theory of the firm. This has been called `the organizational slack' variable by Cyert and 

March (1963) and X-efficiency by Leibenstein (1966). In his book Beyond Economic 

Man Leibenstein (1976) has discussed a number of empirical studies which show the 

importance of the concept of organizational slack. Recently Selten (1986) has used 

this concept as a part of the cost function of individual firms and its role in imperfect 

competition. Two hypotheses have been proposed: the strong and the weak slack . The 
strong slack hypothesis maintains that the slack has a tendency to increase to long as 

profits are positive; slack can be reduced but only under the threat of losses. This has 
the consequence that long run profits tend to be zero , regardless of the market structure. 
The weak slack hypothesis has the implication that long run profits may not tend to
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zero. Thus in imperfect markets with slack, competition not only reduces profits, it also 

puts pressure on costs. This aspect will now be discussed in the context of DEA models 
of efficiency. 

 Now we introduce organization slack denoted by sk in the cost function

C(Y) = (C + sk)y + Fk; sk > O

Following Selten we interpret the slack concept due to Leibenstein's X-efficiency as a 

part of the cost function and introduce a `strong-slack' hypothesis which maintains that 

this type of slack has a tendency to increase so long as profits are positive, i.e., this slack 

can be reduced only under the threat of loses. Including this slack-ridden cost into the 

profit maximization model would yield the optimality condition for the efficient output 
as: 

y* = (al —a — sk) /b—YT; y* > 0 

where y* = yk is the efficient output of the firm k. If all firms are efficient then 

YT* =(N/b)(1-}-N)-1[a]—s—a*] 
=a+N(N+1)-1(a*+s—al)(15) 

7k = (p — Csk)y* — Fk 

when s = k i sk /N is the average rate of slack. Several implications follow from this 
set (15) of efficiency conditions. First of all, the long run pressure of competition would 
tend to lead to zero profits Jr k* = 0 for all k = 1, 2, ... , N according to the strong slack 
hypothesis. In this case the expected price becomes p = c+s+(F/y*). This shows that 
fixed costs have a strong positive role in determining the long run equilibrium price. The 
higher the average slack rates, the higher is the equilibrium expected price. Secondly, as 
the number N of firms increases, it increases the volume of total industry output YT and 
reduces the average price. Finally, as the average slack rate rises (falls), it increases 
(decreases) the equilibrium price. Note that in case of weak slack hypothesis all profits 
are not squeezed out and there remains a divergence of individual (sk) from the average 
slack rate (s), when the latter is positive. Thus some inefficiency may persist due to the 
existence of a positive slack. 

  So far we have assumed that the expected price p is the market clearing price equating 
market demand and supply. If however this is not the case, then the supply y would 
differ from demand d, where demand is subject to random fluctuations around the mean 
level d. In this framework we have to add to the cost function the costs of inventory 
and shortage C(y — d). Assuming this cost to be quadratic one may then formalize the 
decision model 

            Max n = 03— c — sk)y — (1/2)yE(y — d)2 — F(16) 
                  s.t. the same constraints as in (12) . 

In this case the optimality conditions for the efficient output becomes 

y* = (b + y)—1 [(al — a* — sk) + yd — bYT](17)



NONPARAMETRIC EFFICIENCY MEASUREMENT 21

where y is the unit cost of inventory or shortage and d is the expected level of de-
mand. In this case the marginal impact  ay.  lay of inventory/excess costs may be either 
negative or positive according as 

                  b(YT + d) > or, < (al - a* - sk) 

Again this explains the persistence of some inefficiency, when demand is uncertain and 
the firm chooses its optimal output by the quadratic criterion of adjusted profits. Fur-
thermore the higher the mean demand, the greater the optimal level of efficient output 

y*. In case of perfect competition with each firm a price taker, the optimality condition 
(17) reduces to 

y* = d + (1/Y)03 — c — sk — a*)(18) 

which shows unequivocally that higher inventory costs (y) lead to lower optimal out-

put. Again by comparing the observed output yk with the optimal output y*, one could 
evaluate the impact of inefficiency. Note that we still have the comparative static results: 
ay* lap- > 0 and ay* 'ask < 0. Since p = y(y* -d) +c+sk +a*, we have the results: 

p>MCT, ify*>d 

and(19) 

p< MCT , ify*<d 

where MCT = c + sk + a* is total marginal cost with three components: production 
costs (c), cost of slack (sk) and the cost of discrepancy of observed from optimal output 

(a*). Clearly the case of multiple output can be handled in a symmetrical way.

5. COST UNCERTAINTY AND CAPACITY UTILIZATION

  Capacity utilization has two basic roles in industrial price and output policies . The 
first is one of the basic propositions in macroeconomics which says that price inflation 

accelerates as capacity and resource utilization moves higher. The second is the in-

tertemporal implication of changes in capacity inputs, which affect both the fixed and 

variable costs in the short run. Since every short run production and cost function is 

conditional on a fixed supply of capacity inputs, the short run cost minimization model 

may not ordinarily yield the long run cost frontier. We consider here first , a two-period 
model of capacity expansion and derive the implication of varying the capacity utiliza-

tion rates. In the next section the long run implication of optimal capacity expansion 

and its impact on efficient outputs and prices is investigated in some detail . 
 The term `capacity' is often viewed as a ceiling on production or output , that is com-

monly referred to as the engineering definition of capacity. It has long been recognized 

that this definition is largely irrelevant to economics. For example , a number of empiri-
cal studies have found that the capital stock in the US is idle to a significant degree for 

most of the time. One of the earliest by Foss (1963) reported an average work week of 

capital of only 38 hours per week. Presumably most of the idleness is either optimal or 

useful in the managerial discretionary behavior .
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 Economists view capacity rather differently. According to Winston (1974), Klein 
and Long (1973) full capacity describes a firm's planned or intended level of utiliza-
tion; the level that reflects satisfied expectations and is built into the capital stock and 
embodied in the normal working schedule. Two empirical measures of capacity are 
commonly used in applied work in manufacturing industries. One is the US Federal 
Reserve Board (FRB) series on capacity indexes which attempt to capture the concept 
of sustainable practical capacity, which is defined as the greatest level of output that a 

plant can maintain within the framework of a realistic work schedule, taking account of 
normal down time and assuming sufficient availability of inputs to operate the machin-
ery and equipment in place. Hence this level of output does not necessarily represent 
either the maximum that can be extracted from the fixed plant (as indicated by utiliza-
tion rates that sometimes exceed 100 per cent) or the level associated with the minimum 

point of the short run average cost curve. More specifically, the first step in estimating 
capacity indexes is to divide an industrial production index (Qt) by a utilization rate 

(CUt) provided by the Census Department's Survey of Plant Capacity Utilization. This 
yields an initial estimate of implied capacity: ICt = Qt /CU1 . However the survey is 
conducted every four years and firms are asked to report utilization in the fourth quarter 
of that year. This generally leads to cyclical variability in implicit capacity. To eliminate 
this cyclical volatility the second step is used to regress implied capacity ICt on capital 
stock (Kt) and a deterministic function of time as

In IC( =lnKt-}-a+E/3;f (t): (20)

where Kl is the year end capital stock and fi (t) is an i-th order polynomial defined on 
time t. The fitted values from these regressions provide baselines for the annual FRB 
estimates of productive capacity (Cl). 

 A second method in estimating production capacity is to use a filter due to Hodrick 
and Prescott (i.e., HP filter), which decomposes a time series into a permanent and a 
transitory component. Hodrick and Prescott (1997) define the permanent component 
as including those variations which are sufficiently smooth to be consistent with slowly 
changing demographic and technological factors and the accumulation of capital stocks. 
The HP permanent component is used as a measure of capacity. Then the capacity 
utilization is calculated as production (Qt) divided by the HP permanent component. 
In the short run, both demand and supply shocks may cause the deviations of actual 
output from the permanent component. Note that firms may have several options in 
regard to raising output above its potential level, e.g., by adding shifts, varying the 

production line speeds, altering the product mix or even bringing mothballed facilities 
back into use. 

  Recently Kennedy (1995) used quarterly data (lg6oI-lgg2IV) for US manufactur-
ing to regress the rate of producer price index (PPI) on both utilization rates of FRB 
and HP capacity variables and found the HP variable to be dominant. For example in 
manufacturing the HP rate coefficient is 29.10 with a t-statistic of 2.8, whereas the FRB



NONPARAMETRIC EFFICIENCY MEASUREMENT 23

coefficient is —1.06 with a t-statistic close to zero. For the disaggregated industries (two 
digit SIC code industries) the results are similar. 

 In our approach we combine the two methods above to define a series of capacity 
levels  CAPit for j-th unit at time t. This is based on two steps. In the first step we 
assume an additive decomposition of implied capacity into a permanent component 

(ICPl) and a transitory component ((it): 

ICjt =ICPt . 

A filtering method (e.g., Kalman filter) is applied here to estimate the permanent com-

ponent, until the random component it turns out to be a white noise process. In the 
second step we use the data on capital stock (Kit) and the time variable to regress ICPt 
on Kit and fi (t) as defined in (20):

   _r InICjt = In Kt + a + E pi fij(t) 
=1 

Taking antilogs of the dependent variable we obtain the estimate CAPjt of capacity. On 
using this capacity series Zit = CAP it we set up two overall cost minimization models 
in the DEA framework: one involving the optimal utilization rate O.* and the other the 
optimal capacity z* and optimal variable inputs x*. 

Min 0+V

s.t. EAjxj <9Xk; 
    j=1 

     AjYl?Yk; 

    j=11 

     0

jZjt IfrZkt 
j=1

EAj=1=~µj
(21)

and

Min q'x z 

 s.t. E.l1X•<x; 

=1=

E µjzjt 

Eµ.i;

< Z; EA]Yj Yk

 ,µ)>0

(22)

Here capacity z is a scalar variable, (X 1, Y j) are input output vectors for unit j and q' is 
a row vector denoting unit costs (prices) for the variable inputs x. Denote by asterisks 
the optimal values of the decision variables. Then unit k is relatively inefficient in 
the use of capacity inputs if 1/r* < 1.9, whereas it is inefficient in the use of current 
inputs if 0* < 1.0. The optimal values x*, z* of current and capacity input may also be 
compared with the actual levels Xk, Zk used by unit k in order to locate efficiency gap if 
any. In case market price data (p) are available for the output vector y and a two-period 
framework is assumed, then the optimal inputs and outputs can be determined from the



24 JATI K. SENGUPTA

LP model as follows: 

            Max  7 = pry — qtx — wiz + (1 + 0-1 W:+1 
v,x,z 

s.t. XX < x ; YA > y; µ'zr < z; I 'zt > z (23) 

e=1=µ'e; X>0, ,u>0 

Here zt is a vector of durable inputs purchased at the beginning g of period t at prices 
wt, zr is a vector of depreciated durable inputs that will be available to the firm at 
the beginning of the subsequent period, wt+1 is the vector of durable input prices that 
the firm anticipates will prevail during period t + 1, and r is an appropriate discount 
rate exogenously given. Here the capacity-related inputs are the durable inputs and 
their unit costs are the input prices. With observed values (X, Y, zt, zr) of inputs and 
outputs the firm could now determine the optimal inputs and outputs (x*, y*, z*, z*). 
We note however some basic differences of this formulation from the traditional DEA 
models. First of all, the vector of spot prices wt+1 is not observed at time t and hence 
the producer's anticipation of future price is needed. In this sense this model yields 
anticipated or expected efficiency. Since the anticipated prices are uncertain, the firm's 
attitude towards uncertainty must be modeled. This is the framework where the rational 
expectations (RE) hypothesis may be introduced. Secondly, the durable inputs are used 
here to approximate the stock of capacity inputs, but for certain stocks like natural 
resources and goods inventories there may be no natural market prices. Finally, the 
relevant discount rate r must be common to all the firms and also known. In the static 
DEA models these basic questions are not addressed at all.

6. THE CASE OF STOCHASTIC DEMAND

 Uncertainty of demand affects the pattern of capacity utilization both in the short and 
the long run. Inventories in the form of unsold outputs may often trigger this process. 

 In case of stochastic demand di the DEA model (23) can be transformed as: 

          Max En = E[p; min(y, di) — qrx + (1 + r)-1z — wrz] 
             s.t. the same constraints as in (23) 

where E denotes expectation. On using the Lagrangian expression: 

L =En- + /31 (x — XX) + a'(Y — y) + y'(z — 'zr) + 8~(AI zr — z) 

+Po (1 -X'e)+yo(1 — 'e) 

We must have for the efficient unit: 

pr(1 - F(y*)) — a* = 0 

y*= tut ; 13*=qt; 8*=(1+r)-1 
Y'a* = X'/g* + /30*e ; y*'zr = 8*' Zr — )4e. 

This shows that the unit exhibits output inefficiency if EN 1 YJA,*; > y*, input effi-
ciency if E XjX < < x*, capacity inefficiency if /il*zt < z or µ*'zr > z*. Clearly
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there are five sources of inefficiency in this framework: the input, output, capacity and 

inefficiency due to market demand uncertainty. The theory of organizational slack deals 

specifically with the demand and capacity oriented sources of inefficiency which may 

apparently inflate the marginal costs. 

 In case we have a time horizon it is simpler to introduce investment variables denoted 

by a vector  It and rewrite the long run profit function as 

            00 

Max Ea(1 + r)-1[pt min(yt, di) — gtxt — prlt — wizt] 
t=o 

          s.t. XtXt < xi ; YtXt > yr ; It < (1 + So)zt+1 — zt 
Ate = 1 ; At > 0 

where investment is constrained by changes in capacity inputs with So denoting fixed 
rates of depreciation. The theory of adjustment costs which relates current production 
to capital stock and investment in new capital along with the variable inputs is implicit 
in this formulation and its implications have been discussed by Artus and Muet (1990) 
in an empirical framework and by Sengupta (lggsb) in the DEA framework. 

 For public sector enterprises however the market prices of output are generally un-
available and the profit maximization objective does not apply, since these are not for 

profit organizations. Hence in this case we may restrict ourselves to the cost frontier 
alone and use the theory of adjustment costs to develop a model of capacity utilization. 
Consider the production function 

                         y = ,f (v, x) 

of a firm, which produces a single output y by means of the vector v of variable in-

puts and the vector x of service flows from the quasi-fixed inputs (i.e., these inputs 
are fixed in the short run but variable in the long run). Since the production function 
may exhibit increasing returns to scale, the usual profit maximization principle may not 

yield determinate results. Hence we adopt the cost minimization model, where in the 
short run the firm minimizes variable costs q'v in the short run subject to the produc-
tion constraint y < f (v, x), where x is fixed. This yields the short run cost function 
C„ = g (y, q, x) . Denoting by w the vector of rental prices for the quasi-fixed inputs, 
the total cost C = C„ + Cx may be defined with w'x = Cx as the fixed cost. Ca-
pacity output y is now defined by that level of output for which total cost C above is 
minimized, i.e., 

y = h(q, x, w)(24) 
with the associated cost function for capacity output 

C = G(q, w, y)(25) 

Two implications of this concept of optimal capacity output must be noted. One is that 
the capacity output 9 may be viewed as a point of tangency between the short and the 
long run average total cost curves. Secondly, one can now define the rate of capacity 
utilization as u = y/9 where 0 < u < 1. Morris on and Berndt (1981) used this type of
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a dynamic cost function model with a single quasi-fixed input called capital to estimate 

the patterns of capacity utilization of US manufacturing over the period 1958-77 by 

using a regression model. One can also use a DEA model to specify a cost frontier as 

follows: 

 Minsk +sk 

             s.t. ac+Eaigij+ bixij+dyj+si=Cl 

11 ac + >2,~igij + hiwij + +si = Cl 

j=1,2, ... ,N 

where C j and C j are observed short run and long run costs for unit j and the observed 
data consist of input and output prices and the two outputs. If unit k is efficient then we 
must have sk and sk to be zero implying full capacity utilization. 

 If the short and long run cost components can be separately obtained as Cij and Cit, 

then these could be used more directly to characterize DEA efficiency as follows: 

Min e+~ 

N

s.t. Cit X J 

J=1 

N 

i = 1 2

ECik; EA1=1,A,•>0

Clk ; µi=1, µi>0

In this framework unit k is efficient in the short run if E* = 1.0, but not efficient in 

the long run if is less than one. The fact that some inputs are fixed in the short run 

makes it clear that the rate of capacity utilization may influence short and long run costs 

differently. 

 From an economic viewpoint the most important source of excess capacity is due to 

a fall in market demand, i.e., demand uncertainty and the existence of excess capacity 

tends to inflate the short and the long run costs of output. For public sector enterprises 

the competitive market pressure is very weak, hence the probability of incurring dead 

weight losses and hence inefficiency due to organizational slack is much higher.

I

7. EMPIRICAL APPLICATIONS

 Two types of empirical applications to the world airlines industry are considered here 

by way of illustration. One is the application of a cost competitiveness model in a 

static DEA framework involving input output data set of 14 airlines averaged over the 

period 1988-1990 taken from Schefczyk (1993). The second is an application of a 
dynamic production frontier model formulated in (9), where the annual data set for 11 

Latin America based airlines and 6 US based airlines over the 8 year period 1981-88 is
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Table 1. Cost efficiency based on the DEA model.

Airline
 9* 

(efficiency score)

Input x Input x2 Input x3

Actual Optimal Actual Optimal Actual Optimal

Air Canada 

AU Nippon 

American 

British Air 

Cathay Pacific 

Delta 

Iberia 

Japan 

KLM 

Korean Air 

Lufthansa 

Quantas 

Singapore 

UAL Corporation

0.893 

0.844 

0.948 

0.959 

1.000 

0.977 

0.999 

0.859 

0.973 

1.000 

1.000 

1.000 

1.000 

1.000

5,723 

5,895 

24,099 

13,565 

5,183 

19,080 

4,603 

12,097 

6,587 

5,654 

12,559 

5,728 

4,715 

22,793

5,111 

4,975 

22,846 

13,008 

5,183 

18,641 

4,598 

10,391 

6,409 

5,654 

12,559 

5,728 

4,715 

22,793

3,239 

4,225 

9,560 

7,499 

1,880 

8,032 

3,457 

6,779 

3,341 

1,878 

8,098 

2,481 

1,792 

9,874

2,892 

3,566 

9,063 

7,191 

1,880 

7,847 

3,453 

5,823 

3,251 

1,878 

8,098 

2,481 

1,792 

9,874

2,003 

4,557 

6,267 

3,213 

 783 

3,272 

2,360 

6,474 

3,581 

1,916 

3,310 

2,254 

2,485 

4,145

1,788 

3,846 

5,941 

3,081 

 783 

3,197 

2,358 

5,561 

3,484 

1,916 

3,310 

2,254 

2,485 

4,154

Note: xi = available ton kilometer , x2 = operating cost, x3 = nonflight assets.

considered. This application was previously considered for measuring technical change 
by Sengupta (lgg8c). 

 To illustrate the first application we have utilized the time series data set over the 

period 1988-90 for 14 airlines previously utilized by Schefczyk (1993). Each airline 
has three inputs (xi , x2, x3) and two outputs (yr , )72) all measured in logarithmic units. 
The input output data set exhibits widespread fluctuations for the airline industry due to 
various regulatory controls and cost uncertainties. One main reason for cost uncertainty 
is the relative fixity of the capacity-related cost elements, e.g., acquisition of aircraft, 
development of route systems etc. which have a multiperiod impact on costs and rev-
enues. This is why capital cost is considered an important long run factor in airline 
operations. 

 In this application three input costs (xi) and two output revenues (yr) are considered 
as follows: xi = available aircraft capacity in ton kilometers, x2 = operating cost de-
fined as total operating expenses minus rent, depreciation and amortization, x3 = cost 
of total nonflight assets, yr = passenger kilometer revenue and y2 = nonpassenger ton-
kilometer revenue. Besides these input costs and revenues, the other instrument vari-
ables which directly affect airlines efficiency are the following, that are reported by 
Schefczyk: z = gross profit margin and z2 = international passenger load. 
 Table 1 presents the nonparametric estimates of cost efficiency Bk for the 14 airlines 

with 6 efficient and 8 inefficient. However, since one airline (e.g., Iberia) attains the 
level 0.999 which can be rounded to 1.00, this one may be included in the efficient set 
SI, in which case half of the total is efficient, the other half being inefficient. The least
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efficient airline is AU Nippon with a value of efficiency score  0* = 0.844. This implies 
that this airline would have to reduce its input costs to 84.4 percent of the current level 
to become efficient. 

 To compare different airlines belonging to the efficient set SI, determined by model 

(2) where each has efficiency score 9* = 1.0, we estimated the optimal value ac in (8), 
as given by the dual LP model (7) and the results are as follows:

Table 2. Estimates of returns to scale.

Airline aet Returns to scale

Cathay Pacific 

Lufthansa 

Singapore 

Korean Air 

Quantas 

UAL 

Iberia

0.426 

0.015 

1.264 

0.0 

0.327 

0.0 

1.0

IRS 

IRS 

IRS 

CRS 

IRS 

CRS 

IRS

Clearly Singapore Airlines tops the list in terms of the size of IRS and Lufthansa the 

least, with Korean Air and UAL displaying CRS. 

 Table 3 presents a comparative view of production function estimates of the two sets 

SI, S2, the efficient and inefficient respectively. Here only the most important output yr

Table 3. Regression estimates of the linear production function (dependent variable: yr ).

Sample Intercept xi X2 x3 X4 R2

1. Total 

(N = 14) 

2. Efficient set 

 (NI = 6) 

3. Inefficient set 

  (N2 = 8)

 -49105 

(t = -0.86) 
 -78519 

 (-0.39) 

  61609 

  (0.62)

4. Total 

(N 14) 

5. Efficient set 

  (NI = 6) 

6. Inefficient set 

(N2=8)

7. Total 

 (N = 14) 

8. Total 

  (N = 14)

-4301 

(-1.12) 
-4987 

(-0.57) 
-3601 

(-1.18) 

-64292 

(-1.13) 
-70873 

(-1.17)

 6.91 

(7.86) 

 8.32 

(2.94) 

 4.24 

(1.81) 

 5.20 

(16.92) 

 5.23 

(6.87) 

 5.16 

(22.39) 

 5.59 

(11.76) 

 5.76 

(9.36)

-3 .62 

(-1.71) 

-7 .12 

(-0.99) 

  1.17 

 (0.24)

0.39 

(0.22) 

5.48 

(0.57) 

0.55 

(0.25)

-0 .86 

(-0.47)

 63.44 

 (0.82) 

 87.80 

 (0.33) 

-92 .53 

(-0.63)

80.63 

(1.06) 

91.56 

(1.11)

0.961

0.902

0.977

0.956

0.902

0.986

0.957

0.954

Note: R2 denotes adjusted R2, adjusted for degrees of freedom.
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Table 4. Efficiency regression on inputs and other instrument variables.

Dependent 
          Intercept 

variable

Inputs
Instrument 

 variable R2

 xi x2 X3 X4 Zr Z2

9*

6*

log(1008*)

log(1008*)

log y,

 0.737 

(t = 1.62) 

 0.944 

(33.46)

4.361 

(27.99) 

4.391 

(89.92) 

-1 .08 

(-0.32)

1.00 E-os -1.26 E-os 01.26 E-os 0.0003

 (1.42) (-0.74) 

1.64 E-o6 

(0.73)

(-0.84) (0.52)

Inputs and instrument variables in logs

0.063 

(1.99) 

0.064 

(2.16)

0.232

0.042

1.611 

(2.013)

-1 .371 

(-1.551)

0.894 

(1.679)

0.008 0.320 

(0.19)

0.317

0.496

 Note: z i = gross profit margin, z2 = volume of international passenger demand, yr = passenger revenue; 

E-os = 10-5.

is considered as the dependent variable; also x4 is added as an extra explanatory variable 
representing passenger load factors. Three interesting points come out very clearly. 

One is that the capacity variable xi emerges as the major explanatory variable; other 
explanatory variables x2, x3, x4 have either insignificant coefficients or wrong signs. 
Secondly, the intercept term for the efficient set Si is always negative, thus implying IRS 
in a consistent fashion. Finally, we tested by Chow test the difference in the coefficients 
between sets Si and S2 for two cases: four inputs (xi through x4) and one input (xi) and 
the results are: 0.318 (F6,2 = 5.14 at 5% level) and 0.021 (F2,10 = 7.56 at 5% level) 
respectively. This implies that the null hypothesis that the two coefficient structures 
are equal is not rejected at 5% level. Note that the sample sizes (NI = 6, N2 = 8) 
are quite small here and this may bias the tests. The difference in the average DEA 
efficiency scores is however 1 - 0.931 = 0.049 if Iberia is included in the efficient set 
and 1 - 0.922 = 0.078 if it is not. Thus the DEA estimate is more discriminating than 
the least squares estimate. 

 Finally, we have in Table 4 the estimated results on the possible sources of efficiency, 
where the efficiency measure (9*) or its log equivalent is regressed on the four inputs 
and two instrument variables zi and z2 representing gross profit margin and interna-
tional passenger demand. Only gross profit margin (z1) and the capacity input (xi ) 
turned out to be positively correlated with efficiency score, but only the gross profit 
margin has a significant coefficient at 5% level of t test, when z i alone is used as the 
explanatory variable. This suggests that the profit margin alone does not indicate a mea-
sure of higher efficiency, i.e., there is a trade off of short run profits to other goals like 
retaining market share and the competitive edge in international air travel market .
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 To illustrate the second application we have used the airline panel data set from 
Cooper and Gallegos (1992). Here output is measured by ton-kilometers performed 
and the thee inputs are: labor, fuel and capacity. Unlike the previous data set from 
Schefczyk (1993) this data set did not have detailed unit costs such as operating ex-

penses net of rents and depreciation and the cost of nonflight assets. Sengupta  (lgg8c) 
used this data set previously in terms of DEA models for analyzing changes in efficiency 
over time and also for filtering of systematic efficiency measures. 

 The capacity variable here (x3) is measured by available capacity in terms of ton-
kilometers. Labor (xi) is measured by the volume of employment and fuel (x2) by 
expenditure in US dollars. The inputs and output are all measured in logarithmic units. 
The following production function in log units is estimated by ordinary least squares 
over the period 1981-88 as a whole: 

                    Y = 010 + l + /s2x2 + PsXs 

The results are as follows:

Table 5. Least squares estimates of production function.

Airline an tlI /32 /33 R2

US

Latin American

  —0.691 

(t = —6.14) 

   1.632 

  (9.41)

—0.006 

(-0.22) 

  0.723 

(12.20)

—0.110 

(-2.98) 

—0.005 

 (0.095)

1.165 

(28.22) 

 0.224 

 (3.54)

0.996

0.975

where R2 is squared multiple correlation coefficient adjusted for degrees of freedom 
and the t-values are in parentheses below each regression coefficient. It is clear that the 
capacity input (x3) is the most significant of all the inputs over the whole period. Since 
the sum (Pi + 2 -+-,83) denotes the scale of returns, it is clear the US airlines exhibit IRS, 
while the Latin airlines exhibit DRS. The output elasticity of the capacity input for the 
US airlines is more than five times that of the Latin airlines. The changes in efficiency 
ranking measured by the optimal score 0* defined in model (2) may be shown in two 
ways. One is the trend in values of 07 for selected airlines for three subperiods 1981-88, 
1983-88 and 1985-88. The other is in terms of changes in the parameters values ac, 

[3,;, ,B7 of a typical airlines in the efficient and inefficient category, e.g., American 
and yarig. Two points clearly emerge. One is that the airlines do not usually retain their 

100% efficiency in every year, although some airlines maintain their efficiency score on 

or above 96%. This is clearly exhibited by the results in Table 7. If one estimates the 

proportion of efficient units for the three subperiods above the results are as follows:

Table 6. Proportion of efficient airlines.

Time average All inputs Capacity omitted

1981-88 

1983-88 

1985-88

70 

40 

20

80 

60 

50
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Table 7. Trend of efficiency score  (9*).

Airlines 1981-88 1983-88 1985-88

Amex 

Amer 

Varig 

Arge 

Mexi 

Eastern 

Delta 

Peru 

Contr

1.000 

1.000 

0.980 

0.975 

0.966 

0.960 

0.838 

0.802 

0.775

0.986 

0.992 

0.969 

0.817 

0.944 

0.864 

0.678 

0.531 

0.643

0.844 

0.963 

0.981 

0.909 

0.830 

0.955 

0.633 

0.556 

0.638

Table 8. Change in production frontier parameters for Varig and Amer.

13; 13* 2 )* 3

1981 (Varig) 

   (Amer)

1983

1985

1987

1988

  2.226 

(1.912) 

  0.943 

 (0.065) 

-1 .548 

(-0.951) 

-0 .554 

(-0.102) 

  0.064 

(0.012)

0.385 

(0.012) 

0.266 

(0.024) 

0.001 

(0.000) 

0.272 

(0.058) 

0.246 

(0.079)

0.485 

(0.002) 

0.337 

(0.045) 

0.192 

(0.051) 

0.001 

(0.010) 

0.005 

(0.041)

0.135 

(0.994) 

0.431 

(0.987) 

0.917 

(1.090) 

0.749 

(1.012) 

0.800 

(1.004)

Note: The values for Amer are in parentheses.

Clearly the omission of the capacity input increases the proportion of efficient airlines , 
which implies that the capacity is not fully utilized in many cases . 

 Table 8 shows very clearly the dominance of the capacity utilization factor in gener-

ating increasing returns to scale for the American airlines . The output elasticity of the 
capital input has increased over the years in case of Varig Airlines , although American 
airlines have always outperformed Varig very consistently .

8. CONCLUDING REMARKS

 The impact of demand and cost uncertainty on the efficiency evaluation by the Pareto 

criterion is investigated here in respect of the recent technique of data envelopment 

analysis. The role of organizational slack in the cost frontier and the influence of excess 

capacity of the production frontier are discussed here both theoretically and empiri -

cally. Some empirical applications to international airlines industry serve to illustrate 

the dominant role of the capacity variable, which changes in the long run and thereby 

affect the returns to scale in the production frontier .
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