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Abstract: The paper begins by exploring the Path Independence Property. The possi-

bility of a lower and upper approximation of a choice function satisfying Path Indepen-

dence is dealt with in the paper. A significant property implied by Path Independence 

is Outcasting. We propose in the paper a unique characterisation of a choice func-

tion, called the batch choice function, which satisfies Outcasting. However, the relevant 

characterisation theorem requires a property stronger than Outcasting called the Choice 

Acyclicity Property. In an appendix to the paper, we provide a simple proof (without 

using Zorn's Lemma), of the fact that satisfaction of a property (a*) by a choice function 

is equivalent to the existence of a utility function, whose maximizers on a feasible set 

are always chosen. This result is originally due to Deb [1983]. This theorem is used in 

our paper to prove the existence of Path Independent lower approximations.

1. INTRODUCTION

 In choice theory, a decision maker is assumed to be equipped with a decision rule or 
a choice function which associates with each non-empty finite subset of a universal set, 
the set of all chosen points from the given set of feasible alternatives. The purpose of 
choice theory is to characterise choice functions satisfying desirable properties and also 
to establish interrelations between properties. 

 One such property is Path Independence, due to Plott [1973]. Along with a property 
called Concordance (which basically says that if a point is chosen from two sets, then it 
would also be chosen from their union), Path Independence is necessary and sufficient 
for a choice function to be rationalised by a quasi-transitive, reflexive and complete bi-
nary relation. Path Independence implies the Superset Property of Blair, Bardes, Kelly 
and Suzumura (1976) and has been shown to be equivalent to the simultaneous satisfac-
tion of this latter property and Chernoff's Axioms. 

  Acknowledgement. This paper was written while I was visiting the Economic Research Unit, Indian 
Statistical Institute, Calcutta. I would like to thank the unit for its kind hospitality and Satya Chakravarty in 
particular for useful discussions. I would like to put on record a very deep acknowledgement to an anonymous 
referee and the Editor of this journal for taking a lot of trouble in suggesting improvements and for providing 
illuminating comments. I would like to thank the Editor for encouraging me to revise the paper along lines, 
which would make it more accessible to the readers. I would also like to thank Rajat Deb and Martin van 
Hees for discussions on different aspects of this paper. However the usual disclaimer applies. Finally, I would 
like to dedicate this paper to the fond memory of Dada and Dindama.
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54 SOMDEB LAHIRI

 A slight strengthening of the Superset Property is the celebrated Outcasting axiom 

due to Nash  [ 1950]. The Superset property says that if two sets are given with the first 

contained in the second and if the chosen points of the second are contained in the set 

of chosen points of the first, then the two sets of chosen points coincide. Outcasting on 

the other hand requires that if the chosen points of the second set are contained in the 

first set, then the two sets of the chosen points coincide. Theorem 9 of Aizerman (1985) 

[Theorem 4.6 of Aizerman and Aleskerov (1995)] asserts that Path Independence is 
equivalent to the simultaneous satisfaction of Chernoff's Axiom and Outcasting. 

 In this paper we study lower and upper approximations of choice functions and pro-

pose a necessary and sufficient condition for a choice function to have a Path Inde-

pendent lower approximation. On lower approximations, the condition is shown by 

property (a*) presented in Deb [ 1983]. Property (a*) means that given any feasible 
set, there exists a chosen point from that set, such that if this chosen point continues 

to belong to a subset, then it is necessarily chosen from the latter set. However, for 

upper approximations, the scene is a lot more dismal. Satisfaction of well known and 

reasonable conditions, fail to guarantee the existence of path independent upper approx-

imations. The concept of lower and upper approximations is due to Litvakov [1981]. 

Given a choice function, the lower approximation of the choice function satisfying a set 

of properties is the union of all choice functions contained in the given choice function 

and satisfying, the stated properties. The upper approximation on the other hand is the 

intersection of all choice functions containing the given choice function and satisfying 

the stated properties. The natural question is: whether the lower approximations and 

the upper approximation continue to satisfy the stated properties? To prove our results 

we make significant use of Theorem 9 of Aizerman (1985). An alternative, proof of 

Theorem 9 is also provided in the paper (see Theorem 4.6 of Aizerman and Aleskerov 

[ 1995]). In an appendix to this paper we provide a simple proof of Theorem 2.10 in 
Deb [ 1983] in the case when the universal set is finite. This theorem says, that if a 

choice function satisfies Property (a*), then there exists a real-valued function defined 

on the universal set, such that its maximizers from a feasible set are always chosen by 

the given choice function. We use this theorem to establish the existence of Path Inde-

pendent lower approximations. Our proof does not require the use of Zorn's Lemma, 
which has been used in Deb [1983] to prove Theorem 2.10. Our method of proof is 

entirely constructive. 

 In a final section of this paper, we explore another concept related to Outcasting. This 

property is called Choice Acyclicity Property (CAP). This property is stronger than Out-
casting. It turns out that choice functions satisfy the Choice Acyclicity Property if and 

only if they are batch choice functions [see Aizerman and Aleskerov (1995)]. A batch 

choice function assigns to each set the unique subset which maximises a real valued 

function (defined on all non-empty subsets of the universal set) amongst all subsets of 

the given set. Although a batch choice function satisfies Choice Acyclicity Property and 

hence Outcasting, it is shown in this paper that it may fail to satisfy Path Independence 

Hence, a batch choice function need not coincide with the set of maximizers (from a 

feasible set) of a utility function (defined on the universal set). This latter consequence
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would of necessity require the satisfaction of Path Independence. This interesting result 

gives additional appeal to choice theory. 
 To the extent that our batch choice functions are choice functions rationalized by re-

flexive, complete and transitive binary relations on the set of all non-empty subsets of 
a given set, the analysis reported here is closely related to the modest yet significant 
literature on "freedom of choice". In the "freedom of choice" literature, the principal 

problem is to define a binary relation on non-empty subsets of a given set, so as to for-
malize the notion of "preference for freedom" which any non-empty set of alternatives 

provides to a decision maker. Presumably, the idea is to use this binary relation to rank 
opportunity sets and arrive at decisions on the basis of such a ranking. This field has 
been pioneered by Pattanaik and Xu  [ 1990], with subsequent contributions by Pattanaik 
and Xu [ 1997, 1998], Arrow [ 1995], Carter [ 1996], Puppe [ 1996], Sen [ 1990, 1991], 
Rosenbaum [ 1996], Van Hees [ 1998, 1999] and Van flees and Wissenburg [ 1999]. In 
this paper we are interested in the converse problem given a choice function, is there 
anything akin to a "preference for freedom" (however, queer that may be) which ratio-
nalizes the observed behaviour of a decision maker? 

 It is interesting to note that the Choice Acyclicity Property is implied by a property 
called Functional Acyclicity [see, Aizerman and Aleskerov (1995), Lahiri (1999)]. In 
Aizerman and Aleskerov (1995), it is asserted that a choice function satisfies Functional 
Acyclicity if and only if there is a real valued function defined on the universal set and 
a real valued function defined on all nonempty subsets of the universal set, such that 
the chosen points from each feasible set of alternatives coincides exactly with those 
feasible points whose value according to the first function is greater than or equal to 
the real number assigned by the second function to the given feasible set. Such choice 
functions are called threshold rationalizable in Lahiri [ 1999]. In Lahiri [ 1999] a correct 

proof of this equivalence is available.

2. THE MODEL

 Let X be a non-empty universal set and let [X] denote the set of all non-empty finite 

subsets of X. A choice function is a function C : [X] [X] such that C(S) C S VS E 

[X]. 
 A choice function C is said to satisfy Chernoff's Axiom (CA) if S, T E [X], S C T 

implies C(T) 11 S C C(S). 

 A choice function C is said to satisfy Outcasting (0) if C(T) C S C T e[X] implies 

C(S) = C(T). 

 A choice function C is said to satisfy Superset Property (Sn) if C(T) C C(S) C S C 

T E [X] implies C(S) = C(T). 

 It is easy to see that Outcasting implies Superset Property. 

 A choice function C is said to satisfy Path Independence (PI) if YS, T E [X], C(S U 

T) = C(C(S) U C(T)). 

 Suzumura [1983] proves that a choice function satisfies Path Independence (PI) if 

and only if it satisfies Chernoff's Axiom and the Superset Property.
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 We will proceed (for the sake of completeness and for the purpose of being self 
contained) to provide a complete proof of Theorem 9 in Aizerman  [ 1985], which is 
Theorem 1 in our paper. 

 LEMMA 1. C satisfies PIH C(S U T) = C(C(S) U T) VS, T E [X]. 

 LEMMA 2. C satisfies CAH C(S U T) C C(S) U C(T) VS, T E [X]. 

 Proof Let C satisfy CA. Thus for S, T E [X], 

C(S UT)nSCC(S), 

C(SLIT)nTCC(T). 

 Hence C(S U T) C C(S) U C(T). 

 Conversely suppose, C(S U T) C C(S) U C(T) VS, T E [X]. 
 Let S, T E [X] with S cc T. 

C(T) C C(S) U C(T \ S) . 

If x E C(T) n S, then x C(T \S). 
                         Thus x E C(S).

Thus C(T)fSCC(S). 

LEMMA 3. C satisfies PI implies C(C(S)) = C(S) VS E [X]. 

Proof Simply put S = T in the definition of PI. 

THEOREM 1. C satisfies PIH C satisfies CA and O. 

Alternative Proof Suppose C satisfies CA and O. 
By Lemma 2, VS, T E [X], 

C(SLIT)CC(S)UC(T)CSUT. 

By '0', C(S U T) = C(C(S) U C(T)). 
Thus C satisfies PI. 
Now suppose C satisfies PI. 
Thus VS, T E [X], 

         C(S U T) = C(C(S) U C(T)) C C(S) U C(T) . 

By Lemma 2, C satisfies CA. 
Let C(T)CSCTE[X]. 
By CA, C(T) = C(T) n S C C(S). 
Now, 

           C(T) = C(T U S) = C(C(T) U C(S)) by PI 

                      = C(C(S)) 

                          = C(S) by Lemma 3 . 

Thus C satisfies O.

Q.E.D.

Q.E.D.

Q.E.D.
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3. LOWER APPROXIMATIONS

 Let C :  [X] - * [X] be a choice function and let Q(0 ab) be a class of choice functions 
on [X]. 

 Say that a choice function C' is contained in C if C'(S) C C(S) VS E [X]. In such a 
situation we write C' C C. 

 The lower approximation of C given Q is the choice function 

CL : [X] [X] such that CL(S) = U C'(S) 
                                                 C'CC,C'EQ 

 Suppose X is finite. A choice function C is said to satisfy Property (a*) [see Deb 

[1983]] if VS E [X], there exists Xe E C(S) such that (4) 0)T C S, x0 e T implies 
xo E C(T). 

  LEMMA 4. If C' satisfies CA and C' C C then C satisfies Property (a*). 

 Proof Given S E [X], let xo E C'(S) C C(S). 
 Now T C S implies C'(S) n T C C'(T) by CA. 

 Therefore xo E T implies xo e C' (T) C C(T). 
                       Thus C satisfies Property (a*).Q.E.D. 

 Actually, Deb [ 1983] proves that choice function C on [X] contains a choice function 
C' satisfying Arrow's Axiom (Arrow [1959]) (which implies CA, CON and 0) if and 
only if C satisfies Property (a*). 

  THEOREM 2. Let Q be the set of all Path Independent choice function. A choice 

function C has a lower approximation in Q if and only if C satisfies Property (a*). 

 Proof Suppose C satisfies Property (a*). Then by the main result in Deb [ 1983], 
and Theorem 1, there exists C' in Q such that C' C C. Let CL : [X] [X] be defined 
as the lower approximation of C from Q. We have to show CL is in Q. 

 Let (0 0) T C S. Then

CL(s) n T = U [C'(S) n T] C 
C'cC,C'EQ 

where we appeal to CA for C'. 
 Thus CL satisfies CA. 

Let CL(T)CSCTC[X]. 
 Thus, UC'cC' ,C'EQ C'(T) C S C T E [X].

U C~(T) = CL (T), 
C'cC,C'EQ

Therefore C' (T) C Sc T E [X] VC' C C, C E Q.

By '0' applied to C', C'(T) = C'(S). 
Therefore, UCcc ,CEQ C'(T) = UC'cC,C'EQ C'(S). 
Therefore, CL(T) = CL(S). 
Thus, CL satisfies O. 
Thus, CL is in Q.

 Conversely, suppose C has a lower approximation CL in Q. Since CL satisfies CA, 

by the previous lemma C satisfies Property (a*).Q.E.D.
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 A choice function C on [X] is said to satisfy Concordance (CON) if VS, T E  [X], 
C(S) n C(T) c C(S U T). 

 THEOREM 3. Let Q be the set of all choice functions satisfying CA. A choice func-
tion C has a lower approximation in Q if and only if C satisfies Property (a*). 

 The above analysis is considerably different from a similar analysis reported in Lit-
vakov (1981), Aizerman (1985) and Aizerman and Aleskerov (1995), because we re-

quire all our choice functions to be non-empty valued. This makes a lot of difference in 
the analysis. 

 A related question posed in Litvakov (1981), Aizerman (1985) and Aizerman and 
Aleskerov (1995) is about the existence of upper approximations. 

 Let C : [X] —* [X] be a choice function and let Q(0 4)) be a class of choice functions 
on [X]. Say that a choice function C' contains C if C(S) C C'(S) VS e [X]. In such 
a situation we write C C C'. The upper approximation of C given Q is the choice 
function C : [X] -+ [X] such that 

CU(S) = 1-1 C'(S) . 
CCC',C'EQ 

 The question that naturally arises is if C satisfies CA (which is considerably stronger 
than Property (a*)) does it have an upper approximation which satisfies Path Indepen-
dence? The answer is in the negative. 

 EXAMPLE 1. Let X = {x, y, z}, C(X) = (x) and C(S) = S otherwise. Let 
C'(X) = {x, y} and C'(S) = S otherwise. Let C"(X) = {x, z} and C"(S) = S 
otherwise. Here C satisfies CA but not O. Both C' and C" contain C and satisfy Path 
Independence. However, C'(S) n CH(S) = C(S) VS E [X]. Thus C has no upper 
approximation satisfying Path Independence. 

 In fact we can show that even if C satisfies CA and CON, it may fail to have an upper 
approximation which satisfies PI (and CON). 

 EXAMPLE 2. Let X = {x, y, x}. Let C(X) = {x}, C({x, y}) = {x}, C({x, z}) = 

(x, z}, C({y, z}) = {y} and C({a}) = [a} Va E X. C satisfies CA and CON but 
does not satisfy PI: {x} = C(X) = C({x, y}) U ({x, y}) {x, z} = C(C({x, y}) U 
C({x, z}). Let C'(X) = {x, y}, C'{x, y} = {x, y}, C'({x, z}) = {x, z}, C({y, z}) = 

{y}, C'((a}) = {a} Va E X. C' satisfies PI and CON. Let C"(X) = {x, z}, C'' (lx y}) = 
{x}, C"({x, z}) = {x, z}, C"({y, z}) = {y, z}, C"({a}) = {a} Va E X. C" satisfies PI 
and CON. 

 Observe C C C' and C C C". However, C(S) = C'(S) n C"(S) VS E [X]. Thus C 
has no upper approximation satisfying PI (and CON).
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4. CHOICE FUNCTIONS SATISFYING CHOICE ACYCLICITY

 Let f : [X]  — gr satisfy the property: [VS E [X], {T C S/f (T) > f (T') VT' C S} 
is a singleton]. Then the choice function C f : [X] — [X] defined by 

Cf(S) = argmax [f(T)], 
TCS,TE[X] 

is called a batch choice function. Aizerman and Aleskerov (1995) show that batch 
choice functions satisfy Outcasting. Batch choice functions satisfy an even stronger 

property: 

 Choice Acyclicity Property (CAP). There does not exist a positive integer k and sets 
Si, ... , Sk E [X], all distinct such that: (1) C(Si) C(S3) for some i, j (i j); (2) 
C(Si) C Si+i, i =1, ... , k — 1; (3) C(Sk) C Si. 

 If k = 2 and Si C S2, we get Outcasting. 

 Let Cf : [X] [X] be a batch choice function. Suppose there exists Si , S2, ..., Sk E 

[X] such that C(Si) C Si+i Vi = 1, ... , k — 1, C(Sk) C Si and C(Si) C(Si) for 
some i, j (i j). Then f (C(Si+1)) > f (C(Si)), i = 1, ... , k — 1 and f (C (Si)) > 

f (C(Sk)) with at least one strict inequality. But this is impossible. 
 We can now prove the converse result, that every choice function satisfying Choice 

Acyclicity Property is a batch choice function. 
 Assume in what follows that X is a non-empty finite set. 

 THEOREM 4. A choice function is a batch choice function if and only if it satisfies 
CAP. 

 Proof The fact that a batch choice function satisfies CAP has been established 
above. Hence, let us assume that C satisfies CAP. 

 Given S E [X], let [S] denote the set of all non-empty subsets of S and let 2s = 

[5] U {0}. Given 0 Y c [X], [S] C Y will be said to be maximal for Y if there 
does not exist [T] c Y with S CC T and C(T) C S. Given (0 0)Y C [X], let [Ti], 
i = 1, ... , m be maximal for Y (: provided there exists at least one [S] maximal for 
Y). Note: If Y = [S], for some S C [X], then [S] is the only one of its kind maximal 
for Y. Consider Tl. If i 1 implies [C(Tl) not a subset of Ti or C(Ti) = C(Ti)], 
let F (Y) = C(Tl). If there exists T E {T1I, i such that C (Tl) C T, C (Tl) C (T), 
then consider C(T). Say T = T2. By CAP, C(T2) is not a subset of Tl. If i 0 2 
implies [C(T2) not a subset of Ti or C(T2) = C(T )], let F(Y) = C(T2). If not there 
exists T3 say such that C(T2) C T3, C(T2) C(T3). Repeat the above procedure for 
C(T3). By CAP, and the finiteness of [X], there exists C(Ti) such that for j i, either 
C(Ti) = C(Ti) or C(Ti) not a subset of Ti. Let F(Y) = C(Ti). 

 If there does not exist any T E [X] such that [T] C Y, then put F(Y) = ~.
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Now consider  Si,  ... , Sk such that

F([X])=C(X)=Si, 

F([x] \ (Sip = S2, 

F([X]\{Si,S2})=53,

F([X]\{Si,S2,..., Ski) = ,

where k is the first positive integer to satisfy the above property. 
 Since C satisfies Outcasting, F satisfies the following property: [S] C Y C [X], 

F(Y) E [S] implies F([S]) = C(S) = F(Y). The reasoning goes thus: 
 If [S] is not maximal in Y, then there exists [S'] maximal in Y such that S CC S', 

C(S') C S. Thus by Outcasting C(St) = C(S). If F (Y) C (S'), then there exists 

[T] maximal in Y such that F(Y) = C(T) C S C S', contradicting definition of F(Y). 
                                                               Hence we get the assertion. 

 Let 

f(SI) =k—i +1 Vi= 1,... ,k 

and 

f(S)=-1 if SE[X]\(Si,..., Ski 

. 

 Thus f : [X] 31 is well defined. 
 Let S E [X]. Clearly S C X. If Si C S, then by 0, 

 C(S) = Si = argmaxTcs,TE[x] [f(T)]. 
 If Si is not a subset of S, then [S] C [X] \ {Si }. 

 If F([X] \ [Sip E [S], then F([X] \ (SID = F([S]) = C(S). 
 Therefore C(S) = S2 = argmaxTcs,TE[x] [f (7')]• 

 If S2 is not a subset of S, then [S] C [X] \ (Si, S2} and we repeat the above process 
again. At each new step we need to undertake, because SI is not a subset of S, either 
Si C S, so that 

                 C(S) = Si = alg max [ f (T)] , 
TCS,TE[X] 

(since [S] C [X] \ { Si , S2, . . . , Si _ i }) or Si is not a subset of S. 
 Since [X] is finite, there exists `i' such that Si_i is not a subset of S and Si C S. 

Thus C(S) = Si = argmaxTcs,TE[x] [f (T)].Q.E.D. 

  Note. In the above iterative construction of Si, S2, ... , Sk, when Si is removed, 
then only those [S]'s are affected for which [S] C [X] \ [Si , S2, ... , Si-ll and Si E [S]. 
But then, by the construction of F, C(S) = Si. 

 EXAMPLE 3. Let X = {x, y}, C(X) = {x}, C({a}) = {a} Va E X. [X] _ 

{{x, y}, {x}, {y}}. Thus F[X] = {x}, F({{x, y}, {y}}) = {y}, F({{x, y}}) = (/). 

 EXAMPLE 4. 0 does not imply CAP: Let X = {x, y, z}, let C(X) = X, C({x, y)) 
= {x}, C({y, z}) = {y}, C({x, z}) = {z}, C({a}) = {a} `'a E X. C satisfies 0
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vacuously. However, let  Si = {x, y}, 52 = {x, z} and S3 = {y, z}. Then C(SI) C S2, 
C(S2) C S3, C(S3) C Si. Further C(Si) 0 C(S i) for i j. Thus C violates CAP. 

 EXAMPLE 5. A batch choice function need not satisfy PI: Let X = {x, y, z}. De-
fine f : [X] —* 91 as follows: f (X) = 0, f ({x, y}) = 5, f ({x, z}) = f ({y, z}) = 1, 

f ({x}) = 2, f({y}) = 4, f ({z}) = 3. Let C be the batch choice function gener-
ated by f . Thus, C(X) = C({x, y}) = {x, y}, C({x, z}) = {z}, C({y, z}) = {y}, 
C({a}) = {a} Va E X. Let S = {x, z} and T = {y, z}. Thus, S U T = X. 
C(X) = {x, y} {y} = C(C(S) U C(T)). 

 It is instructive to note that batch choice functions satisfy Outcasting and hence the 
Superset property. However, as shown here, we require the stronger choice acyclicity 

property to uniquely characterise all batch choice functions. Batch choice functions are 
obtained by maximising a utility function defined on subsets of a given set. The decision 
maker is now in a position to compare not only alternatives (which are singletons) but 
finite sets of alternatives. 

 The choice acyclicity property says that it is not possible to find an arrangement of 
a collection of feasible sets (all distinct) such that the corresponding sets of chosen 
alternatives are also all distinct and the chosen alternatives from a set are contained in 
the succeeding one, so as to form a cycle. 

 It is worthwhile to consider the analogue of the weak ordinality result due to Deb 

[1983] in the present context. Towards that goal we formulate the following property: 

 Weak Choice Acyclicity Property (W.CAP): For all S E [X], there exists a non-
empty subset T(S) C C(S) for which the following holds: it is not possible to find a 

positive integer k and sets Si, ... , Sk in [X] such that T (Si) T (Si) for some i and j 
and T(Si)CSI+I,i=1,...,k-l, with T(Sk)CSI. 

 The proof of the following theorem is analogous to the proof of Theorem 4. 

 THEOREM 5. Suppose X is finite. Then there exists a function f : [X] -* 
satisfying 

 (a) {T C S/f (T) > f (T') VT' C S} is a singleton VS E [X], 
 (b) argmaxTcs,TE[x] [f(T)] C C(S) VS E [X], 

if and only if C satisfies W.CAP.

APPENDIX

 In this appendix we provide a simple proof of Theorem 2.10 in Deb [ 1983] in the case 

where the universal set is finite. Our proof does not require the use of Zorn's Lemma, 

which has been used in Deb [ 1983] to prove Theorem 2.10. 

 Let X be a finite set of alternatives. A choice function C is said to satisfy Property 

(a*) if VS E [X], there exists xo E S such that T E [X], T C S, x0 E T implies 
xo E C(T). 

 It is easy to see that this xo (which depends on S) must belong to C(S). [Simply take 

T = S in the definition.]
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 THEOREM. Given a choice function C, there exists a function  1/i : X —± such 
that VS E [X], 

             {x E S/*(x) > i(y) Vy E S} C C(S) (*) 

if and only if C satisfies Property (a*). 

 Proof Let C be a choice function satisfying (*). Given S E [X], pick xo E {x E 
S/i/tr(x) > i/i(y) Vy E S}. Then T E [X], T C S, xo E T implies i(xo) > i(y) Vy E 
T. 

Thus x0 E C(T). 
 Now suppose C satisfies Property (a*). 

 Let xi E C(X) satisfy the conditions of Property (a*) for X. 
 Let x2 E C(X \ {xi }) satisfy the conditions of Property (a*) for X \ {xi }. 

 Having selected xi ,  x2, ... , xi_ 1 choose xi E C(X \ [xi, ... , xi-ll) satisfying the 
conditions of Property (a*) for X \ {xi, ... • xi _ l 1. 

  Since X is finite, X = {xi, x2, ... , xs} for some positive integer `s'. 
Define, 1/r(xi) = s — i + 1, i = 1, ... , s. 

 Let S = {yr, ... , y,m } E [X]. Assume that the elements of S are ordered in such a 
way that yr = xk, yj = x„ and i < j implies k < n. Suppose yr = xh. 

 Now, {x e S/i(x) > *(y) Vy E S} = {xh}. 
 Further S C X \ {xi, X2, ... , xh_1 } and xh E S. 

 By Property (a*) and construction of xh, xh E C(S). 
 Therefore, {x E S/i/i(x) > (y) Vy E S} C C(S).Q.E.D.
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