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Abstract : Modeling the learning process in new growth theory involves an un-

derstanding of the stochastic sources implicit in the diffusion process of modern 

technology and its spillover across the global trade. Stochasticity of this diffusion 

process and its impact on instability are discussed here in a theoretical setup. The 

empirical relevance of this type of analysis is also discussed in relation to the rapid 

growth episodes of newly industrializing countries of Southeast Asia. Various 
aspects of the stochastic learning process as they affect economic growth are 

discussed and their economic implications analyzed both theoretically and 

empirically.

1. INTRODUCTION

 New growth theory refers to the recent developments in endogeneous models 

of economic growth, which purport to explain the rate of sustained growth of per 
capita income in the long run. From an applied perspective three types of forces 
have played an active dynamic role in this growth process. One is the technology 
and innovation as the engine of sustained growth. The endogeneity of technological 

progress is mostly due to the direct and intentional investment by profit-seeking 
entrepreneurs, who held a forward looking view of the state of the world. 
Schumpeter (1934), So low (1994) and many others, e.g., Grossman and Helpman 

(1994) have emphasized this dynamic role of technology for future sustained 
growth. A second important factor is the dynamic externalities due to the 
international diffusion of `knowledge capital' and the rapid advance of information 
technology. According to Lucas (1993) this knowledge spillover effect may be 
the most significant factor explaining the large differences in marginal productivity 
of capital between a less developed and a fast developing or developed economy, 
when the concept of capital is broadened to include human capital. The third 
important source of endogenous growth, as evidenced by the rapid growth 

Acknowledgment. The author is greatly indebted to a referee for valuable suggestions on an earlier 
version of this paper. The detailed suggestions have considerably helped improve the presentation of 
the economic implications of the stochastic learning process and its relation to economic growth. The 
usual disclaimer applies.
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episodes of the newly industrializing countries (NICs) of southeast Asia is the 
openness in trade and its impact on sectoral growth of output. Thus Lucas (1993) 
has strongly emphasized that the diffusion of spillover research technology implies 
the strong connection we observe between rapid productivity growth and trade 
or openness. Consider for example two small economies like Korea and the 
Philippines in 1960. Suppose now as Lucas argues that Korea shifts its work-
force into producing new goods intended for the world market, but Philippines 
continues to produce the traditional goods. Then according to a learning-based 

growth theory, Korean production would grow more rapidly. Thus a large volume 
of trade is essential for this type of growth episode. 

 Modeling the learning process in the framework of new growth theory and 
empirically applying it over time series data have posed several challenges before 
the researchers. Two basic reasons may be cited for this. One is that the learning 

process has a core component of stochasticity. This is evidenced both in the 
inception of R&D  technology and its diffusion across industries and over 
international boundaries. The second is the adjustment process, linking future 
expectations and gradual policy adjustments in the short run. The gap between 
the myopic and the steady state optimal paths of the policy variables has several 
stochastic components, which are important in a policy framework. 

 Learning in growth models may take several forms. Here we restrict ourselves 
to three types of learning phenomena. One is called learning by doing in the capital 

goods industry, where the productive efficiency of each producer depends on the 
cumulative aggregate output of capital goods. Arrow's model exploited this aspect 
of learning, which is unrelated to both research and new inventions. The second 
view of learning involves adopting newer and more efficient technology. This leads 
to scale economies and a decline in the level of minimum average cost over time. 
In endogenous growth theory this comes about through different sources such 
as knowledge spillover across domestic sectors and through international trade 
by means of either final products embodying new technology, or intermediate 
inputs bearing the blueprints of more efficient technology. Romer (1990), Grossman 
and Helpman (1991) and Jovanovic (1997) have explored this type of learning as 
a source of persistent growth of an economy. Finally, learning involves a process 
of dynamic adjustment in producer behavior, which is influenced both by past 
history and future expectations. Whereas `history' accounts for the initial resource 
endowments, preferences and the existing technology, the `expectations' refer to 
the innovations and investments for newer technologies which have a future goal. 
Thus history emphasizes a backward looking view, whereas expectations presume 
a more active role by the forward looking entrepreneurs who take a global view 
of the world market in future much in the Schumpterian tradition of a capitalist 
innovator. This type of learning phenomena has been explored by Kenan (1979), 
Krugman (1991) and Sengupta and Okamura (1996). 

 The impact of stochasticity of the learning process in growth is examined in 
this paper by comparing two types of formulation as follows:
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 (a) deterministic and stochastic environment with learning, and 
 (b) the stochastic environment with and without learning. 

Section 2 discusses the comparative formulations of the deterministic and stochastic 
framework of the So low model, both under learning by doing. To emphasize 
endogeneity of this learning process this section starts from the formulation due 
to Nordhaus (1967) and others, where the savings rate and the rate of technical 
change are determined by the producer's optimizing objective. The risk averse 
attitude of the producer and its consequences for the optimal growth path of 
output are analyzed here in terms of the variance characteristics of the optimal 
trajectory. In general it is shown that the temporal fluctuations in variance tend 
to be positively correlated with the growth trend of mean output. For nonlinear 
dynamics this may give rise to a chaotic instability. A producer who is averse 
to the high rate of fluctuations in the variance process will tend to prefer a 
lower output trajectory in a stochastic environment than in a deterministic 
environment. 
  Section 3 discusses openness in international trade and its stochastic impact on 
overall growth under conditions of positive learning and no learning. Here 
knowledge spillover occurs through the interaction of two groups of sectors, one 
oriented to exports and international trade and the other to the domestic economy. 
Recently Helpman (1997) analyzed the empirical data of about 100 countries over 
the period 1971-90 and found substantial  R  &  D spillovers. For example a 
developing country that has an import share of foreign machinery and equipment 
of about 7% enjoys a TFP (teal factor productivity) elasticity with respect to 
foreign R & D capital of about 0.06, which is quite substantial. Since the 
international transmission of knowledge capital and know-how occurs mainly 
through the human capital, it is useful here to empirically evaluate the role of 
human capital accumulation in the context of specific NICs in Asia, which exhibited 
rapid economic growth episodes. Hence Section 3 attempts to empirically estimate 
for South Korea the growth trend in human capital and the influence of past 
history and future expectations. 

 Finally, Section 4 presents the stochastic framework of a dynamic limit pricing 
model, where risk aversion is directly incorporated into the objective function of 
a representative producer, who is competing in the international market. Here 
learning takes two forms: one is in the form of cost declines due to improved 
technology adoption and scale and the other in the form of new entry to an 
oligopolistic market which is sensitive to new technology and the persistence of 
high profits in the short run. Whereas the first type of learning emphasizes the 
role of first-time innovators in the Schumpterian process of `creative destruction', 
the second type shows in a direct fashion the impact of stochastic market growth 
on the two groups of Cournot producers. In the latter case the impact of increased 
or decreased risk aversion on the price and output trajectories can be directly 
evaluated. Hence one can more directly compare the optimal paths for deterministic 
and stochastic versions.
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                     2. STOCHASTIC SOLOW MODELS 

 The earliest form of learning by doing is due to Arrow (1962) , who modeled 
the technical innovation process in terms of the experience of the airframe industry . 
Here the experience is measured by cumulated gross investment K(t): 

t K(t)= 1 I(u)du(1) 

and the production function is specified as 

Y(t) = F[K(t), A(t)L(t)](2) 

where the current efficiency of labor is measured by 

A(t) _ [K(t)Y, 0 <y < 1 .(3) 

Note that even if the production function F(K, AL) has constant returns to scale 
in the two inputs K and AL, as in the neoclassical model, the overall function 
exhibits homogeneity of degree greater than one, e.g., in the Cobb—Douglas case 

F(K, AL)=K'`(AL)l-I'=K'+;"-TLi-li 0<13<l .(4) 

Assume a constant ratio (s) of savings to output. Then the ratio k(t) of output 
to augmented labor (k(t) = Y(t)/AL(t)) follows the differential equation 

ti= s(l-y) .f(k)-nk(5) 

where L/L =11 is the fixed growth rate of labor. Let k° be the capital-labor ratio 
defined by 

.f (k°)/k° = n(s( 1 -7))- 1(6) 

then by the property of the production function f (k) > 0, ,f'(k) > 0, f"(k) < 0 for 
all 0 <k < x it follows that starting from any arbitrary initial stock of capital k° 
the unique solution of (5) tends to k°, i.e., rim,7 , k(t) =k°, where k° is the balanced 
growth capital-labor ratio corresponding to a fixed savings rate. 

 It is clear that in a state of balanced growth with fixed k and a fixed level of 
savings per capita, the process of learning by doing follows the following path: 

              A/A = y(K/K) = yk +n) 
1—y k 

               i.e., A(t)=[k(t)I=  ----exp tyn.(7) 
                                            1—y/ 

Clearly the higher the level of y, the higher is the learning curve effect in raising 
output. Also this effect is enhanced by increasing the level of k(t) itself, i.e., capital 
augmenting. 

 A second approach to learning by doing is to allow this effect through both
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labor and capital, i.e., 

 Y=  F(yK, RL) 

where the rates of factor augmentation are assumed to follow the rule 

,)/y = g(µ/µ)(8) 

where g' <0 and g" <O. 
 This approach is due to Kennedy (1964), who has interpreted the g(•) function 

as an innovation possibility curve. With a fixed savings ratio s and the following 

per capita variables y = Y/L, k = K/L and x = yK/uL. Nordhaus (1967) has analyzed 
the time path of capital labor ratio as follows 

k=sµf(x)—nk .(9) 

To determine the optimal trajectory of technical change, Nordhaus assumes a 

planning authority which controls the aggregate savings rate s and the direction 
of technical change = z = µ/µ. The objective is to maximize the discounted stream 
of per capita consumption, i.e., 

Max J= exp( — pt)[(1 —s)pf (x)]di .(10) 

0 Forming the Hamiltonian 

H= exp( —Pt) (1—s)µfk +pi sµf ?I< — nk +pzehtg(i)A+p3iµ 

and applying Pontryagin principle, the optimal trajectories must satisfy the 
following conditions on the continuous adjoint variables p, (t) (i = 1, 2, 3) as follows: 

01 =(P+n)P '(x)y)L 

P2 = (p — h — g(z))P2 —f '(x)kye -ht(11) 

1)3=(P—z)ps-y[.f(x)—xf'(x)] 

where y = 1 — s + sp i, h is the solution to the equation g('c) = 0, prime denotes 
derivatives and a dot over a variable denotes its time derivative. In addition, the 
optimal trajectories of s(t) and z(t) must satisfy at each time point the conditions 

               s(t) maximizes {1 —  s + sp Jo} 

         and(12) 

aH/az =0 =p2(t)g'(z)2eht+p3(t)µ 
2H/az 2 < 0 and g(z) is concave in z . 

 It is clear that these optimizing conditions may be interpreted in two different 
ways. One is to view it as a central planner's problem, where knowledge capital
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is in the public domain and both the savings rate and the direction of the public 
innovation process are endogenously determined as an optimal choice problem . 
This is very different from the So low model, where these two variables are more 
or less exogenous. Secondly, it may be viewed as a monopolistically competitive 
market equilibrium solution, where the private firms undertake research 
innovations in order to exploit the dynamic profits and rents over time until new 
entry occurs with improved innovations. Aghion and Hewitt (1992) have analyzed 
this second aspect in a framework of vertical innovations, when the amount of 
research in any period depends upon the expected amount of research in the next 

period and furthermore the productivity of research or R & D investment is 
measured by a parameter indicating the effect of research on the Poisson arrival 
rate of innovation. We discuss in Section 3 an alternative formulation of a two-tier 
model of technical diffusion, where the productivity shock is reflected in terms  of 
a stochastic parameter. Note that this model of optimal technical innovation has 
several flexible features. First of all, the innovation possibility function (8) links 
capital augmentation to the efficiency of labor or human capital and this is very 
much in line with the modern theory of 'knowledge capital'. Secondly, the use of 
i = µ/µ as the control variable by the planning authority suggests that R & D 
expenditures have to be optimally allocated, since the ratio u/) must satisfy the 
optimality rule given in (12): 

=(-e1u '(t))/2/1)3 

where —car) is positive. However the condition g" (i) < 0 which is required for 
optimality may not hold if the production set is nonconvex and the competitive 
market equilibrium has to obtain. Thus there is a direct conflict between the 

planned economy setup and the competitive equilibrium. In endogeneous growth 
theory this conflict is handled in two ways, e.g., either one replaces the competi-
tive framework by monopolistic competition, or the objective function (10) is re-

placed by a discounted profit functional for a private producer. In the latter case 
a two-tier framework of directing technical innovation is of central importance. 
In the domestic front the producer acts jointly with the state support like a 
large quasi-monopoly firm, which exploits all the scale economies, whereas in 
the international front it acts more like a price taker. This aspect will be dis-
cussed later in section 3. Finally, the steady state level of k determined by (9) 

yields 

.f.(-v°)/x("=,i(s).) .(13) 

This may be compared with the equation (6) when learning by doing occurs only 
through labor augmentation. Clearly when ,u rises, r falls and this leads to an 
increase in the output-capital ratio in efficiency units given by the left hand side 
variable in (13). For the labor augmenting variety of learning by doing, a rise in 

y in (6) leads to an increase in output-capital ratio. Recently Binder and Pesaran 
(1996) have empirically investigated the degree to which stochasticity in tech-
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no logical progress and the labor input can contribute to differences in steady 
state capital output ratios across countries. In the framework of this  model (8), 
the parameters % and ,u would be stochastic in character, which would affect the 
transient and the steady state behavior of the capital-output ratio in the extended 
So low model. The sources of this stochasticity are two-fold. One is the uncertainty 
associated with the R & D investments, which not only generates new information 
embodied in new products or new services, but also enhances the firm's ability to 
exploit existing information. Recently Cohen and Levinthal (1989) have empirically 
analyzed R & D investment data of 1302 business units representing 151 lines of 
business from the FTC's data file and found that learning or absorptive capacity 
represents an important part of a firm's ability to create new knowledge or a new 

product. This explains why firms may conduct basic research, e.g., for reasons 
that they are more able to identify and exploit useful scientific and tecknowledge, 
whereby they may gain a first-mover advantage in exploiting new technologies. A 
second source of uncertainty involves adjusting labor and capital stocks to their 
desired levels. For example a firm which finds that its current stocks of capital 
and labor are inconsistent with the long run equilibrium implied by current factor 

prices and their expected changes in future, will generally spread the planned 
adjustment to long run equilibrium over time. This imparts a stochasticity to the 
changes in labor and capital. Treadway (1974), Kennan (1979) and Gregory et 
al. (1993) have analyzed such problems. 

 So far we have discussed learning by doing through the labor and capital inputs, 
a third type arises through the Hicksian technical progress fuction, where the 

production function is specified as

Y(t) = F[K(t), L(t), t] . 

Here t on the right hand side represents a time trend variable used as a proxy for 
neutral technological progress, e.g., a shift in production function. Recently 
Norsworthy and Jang (1992) have discussed the disadvantages of this type of 
specification and suggested other types of explanatory variables such as `cumulative 
output' which has a learning curve effect of economies of scale. Assuming a 
Cobb—Douglas form, the production function here takes the form 

Y=Z=AZoLa'K"2; al>0, 0<0<1(14) 

where Z(t) = $ o Y(i)d'r is cumulative output representing the embodied form of 
all knowledge capital and cumulative experience. With the other assumptions 
of the So low model, i.e., a fixed savings ratio s and the growth of labor as n= 
L/L, one could easily derive the logistic equation in terms of the variable u = Z/Z 
as follows

it/u=nail-o—
saZZ

sZ + K~
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This yields the reduced form 

= r(m — u)(15) 

where r = 1 — —0, r = nx, (1 —0 — /2)-1 and Kc is set to zero as a starting point. 
This can also be written in a convenient form as follows: 

il/u=b(1 —u/u)(16) 

where b is a suitable positive parameter and u is the maximum level of u, e.g., 
h = rm and 14=1  /nn in the case above. 

 Two important types of economic interpretation may be emphasized in terms 
of the learning capability parameter 0 in (15), when one compares the determin-
istic version of this model with the stochastic version. One type of stochastic 
version assumes that the parameter n = m(t) in (16) which incorporates the 
learning capability parameter 0 follows a Gaussian process m(t) = mo + y W(t) 
with W(t) being white noise, then the mean and variance processes take the 
simple forms 

It(.1)=x(x—x) 02(x)=y2x' 

Clearly 0,u(x)/0a2(x)<0, which implies that increased volatility tends to lower the 
mean level of output growth in the long run. Thus the .deterministic model (15) 
implies that countries with high learning ability will evidence high rate of growth , 
since C(u/u)/30 = u is positive. But the stochastic analogue of this model would 
imply in the long run that this process may not be self sustained due to the negative 
correlation of the mean and the variance. Note also that the time varying 

propagation of the u-process would be markedly different in a stochastic framework 
from that of a deterministic framework, due to the existence of the variance process 
a 2(x). So long as this variance 52(x) is positive for any time t, the mean of the 
u(1) process would differ from the deterministic solution. This has the further 
implication for the risk averse agents involved in the macrodynamic innovation 
and investment decisions. Since higher risk aversion implies more sensitivity to 
fluctuations measured by variance, these agents would prefer lower levels of mean 

growth rates in investment and hence output. Unlike consumption risk this 
stochastic impact implies a high cost of economic fluctuations on the firms whose 

production technology entails commitments that are costly to reverse. Since most 
of these fluctuations are unanticipated, they cannot be incorporated into the firm's 

production plans, hence volatility due to variance a2(x) leads to lower mean output 
as a consequence of ex post technological inefficiency. This issue also remains very 
important in econometric estimation of the output trajectory, since the specification 
of the deterministic model must incorporate some form of cost due to unanticipated 
fluctuations. Now consider two types of stochasticity in the logistic process models 

(I 5) and (16). One arises through the variations in the random parameters m in 
(15) and h in (16). The sources of randomness may be due to the Hicksian technical 
progress function. A second type of stochasticity arises throught interpreting u(t)di
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as a stochastic process satisfying a birth and death process for example. Here we 
consider the probability that u(t) takes a particular value at time t, when the 
transitions to other states are Markovian. 

 Consider the first case and assume that the parameter m varies randomly, i.e., 
m =1110 + y(t) around the mean value m with y(t) as a white noise component with 
mean zero and variance a2. One can then derive the appropriate Fokker—Planck 
equation for the population probability distribution f (u, t) by following the 
methods outlined in Bharucha-Reid (1960). The steady state probability dis-
tribution f *(u) then takes the limiting form 

f *(u) = c exp( — 2µ/o- 2) 

where c is the normalization constant, making the integrated probability unity. 
The mean M=E(u) and the root mean square relative fluctuation R can be derived 
as

M=Mo[1—(a2/2mo)] 

              R= E(µ—M)2= Q2/2mo                       11/2.(17) ML 1-(0-2/2m0) 

                                         Note that relative fluctuations become increasingly severe as a 2 increases towards 
2mo, beyond which no equilibrium or steady state solution exists. Thus the mean 
variance ratio mo/a2 taking the value 0.50 provides a critical level of volatility 
measured by the relative fluctuations. 

 Consider now the second form of the logistic equation (16) and assume that 
the parameter b = bo + a (t) fluctuates like a Gaussian variable around the mean 
value bo with a variance a 2 where (t) represents white noise. This yields a Gaussian 
delta continuous process for u(t), which satisfies the Fokker—Planck equation 

       ea oPiot = —----[a(u)P] + 1 ------
a[c(u)P] (18) au2 3u 

where P = p[u y, t] is the conditional probability that the random variable U will 
take the value u at time t given that it takes a value y at time zero and a(u) , c(u) 
are defined as follows

a(u) = a(u) + ----(f3(u)2);a(u) = bout—u
4auu

c(u) = [Mu)] 2; [3(u) = au 1 —  u_

and

                  du/di = a(u) + f(u)c(t) . 

Again one can show that such stochastic processes , which are completely de-
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termined by the coefficients a(u) and  c(u) of the Fokker—Planck equation have 
unlimited state spaces if c(u) > 0 and a(u) is infinite. In such cases the relative 
fluctuations enter an explosive phase as in (17). For the normalized variable 
z = exp(au) the mean Ez and variance V(z) can be derived as follows 

         Ez=exp~-t exp 6 no+ hot , no=u(t) at t=0 

2 Varz=(Ez)2[e' 2-1] 

.^rarz/Ez=(el'2-l)1/2 —+'Y.; as t . 

Note also that the deterministic model is

du/di = hon(1 —u/a) 

which completely ignores the effects of /3(u) (t), which combines the noise terms 
a2 and '(t). Thus the effect of variance o-2  may be stabilizing when it tends to 
reduce the mean level of u as t gets larger; or it may be destabilizing when it tends 
to make the u-process explosive. The zones of stability and chaotic instability are 
thus characterized by the stochastic interpretation of the growth model subject to 
the Hicksian type of neutral technological progress. The empirical estimation by 
Binder and Pesaran (1996) of the volatility of the capital-output ratio over 72 
countries (1960-92) shows the importance of such issues for stochastic growth 
models. The steady state probability density function p(u) of the process defined 
by (18) is of the form 

p(u)=Cu(2n(,i6') 1(1—u/u)-(2u/62)-1 (19) 

which shows that if 2ho/a2 is less than one, then the density function is U-shaped, 
indicating that it approaches zero or u. But if 2ho > a2 then the density is 
monotonically increasing in a J-shaped form; which suggests the existence of 
explosive regions where the steady state equilibrium may not exist at all. 

 There is an alternative way of looking at the deterministic growth equation (15) 
for u(t). One can rewrite it with an additive error term de: 

                   du = [au — nu 2)111] + de ,(20) 

where the first term under square bracket on the right hand side represents the 
systematic part of the stochastic changes du and the error term de, has a mean 
zero in the limit with a variance (gw — nu 2)di. Note that the parameters g and h 
are functions of the parameters r and in defined before in (15), i.e., the learning 
and experience effects in the R&D  processes. Let u be the asymptotic mean of 
the u(t) process and X(t)=u(t)-ll. Then 

X(t+At)—X(t)=[gw(t)—hU2(t)]di+dE(t) .

This implies
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 E[X  (t+At)—X  (t)] = [gE(u(t)—hE(u2(t))]di + E(de) . 

Letting At —> 0 this yields 

(g/h)µ — u 2=o-u2 

                                  where cr is the asymptotic variance of p. This shows very clearly that 

3a U /au = (g/h) — µ < 0, according as u= _ (g/h) . 

Hence aµ/a6u < 0 if u > g/h. 
 Thus as the mean income level it increases above the level set by g, 

variance of u leads to a lower mean level of u, i.e., higher volatility tenc 
lower means. But for the other case when 12<g th, the correlation betwel 
cr is expected to be strongly positive. 

 Now we consider a stochastic birth and death process model for u(t) ar 
that the 
standard 
increments, 
utou -

                                                higher which can be neglected for At 0 and (il) the probability of no 
is(l — A 
the neighboring 

pu(t) of u(t) taking a value u at time t satisfies the following Chapman—Kc 
equation (see, e.g., Tintner and Sengupta (1972): 

where the parameters 
death rate parameters, 
experience) and the latter to decay (e.g., obsolescence due to the introd 
new technology). 
creasing u but the death rate parameter ,un remains proportional to u2, 

'u=ua1(1—u) , u=a2u2 

where al, a2 are positive constants. Then the mean value function m(t) 
would follow the trajectory as follows:

(21)

           mean income level it increases above the level set by /h, higher 
          leads to a lower mean level of u, i.e., higher volatility is to have 

          But for the other case when 12<g th, the correlation cen µ and

     we consider a stochastic birth and death process model for u(t) and assume 

satisfies the 
d Markovian assumptions, e.g., (i) assumption of stationary independent 
nts, i.e., the transition from u to u + 1 is given by AuAt +0(At) and from 
- 1 by ,uAt +0(At)t), where 0(At) denotes infinitesimals of er two or 

     vhich can be neglected for At 0 and (il) the probability of no transition 

umuu)At +0(At) and (iii) the probability of transition to a value other than 
,hboring value is 0(At). Under these assumptions the transition probability 

     v(t) taking a value u at time t satisfies the following lmogorov

                                 (22) 

                                      birth and 
ameters, since the former leads to positive growth (e.g., effect of 
d the latter to decay (e.g., obsolescence due to the uction of 

y). Now assume that the birth rate parameter .tu declines with in-
                                                                            i.e.,

                                 mean value function = E[u(t)]

           dm(t)/di=(al+a2) -a'm(t)—m2(t)—v(t)(23) 
                                 al+a2 

where v(t) is the variance function for the income process u(t) . For the deterministic 
growth model the differential equation (23) reduces to a simpler form 

u(t)=a1u(t)—u2(t)(24) 

if we normalize as a 1 + a2 = 1.0. The stochastic case however is of the form
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ill(t)=a,m(t)—m2(t)—v(t) . (25) 

On comparing the deterministic and stochastic forms of the growth equations (24) 
and (25), one may derive some useful results. First of all, in the steady state one 
obtains 

em/i v <0 if and only if in > (1 /2)a, 

whereas u(t) is zero at the level u(t)=a, and positive for u(t)<a,. Otherwise the 
higher variance would tend to be associated with a larger mean. Clearly some 
countries would correspond with the latter case, as Goodwin (1990) has shown 
in his nonlinear model of economic growth. Secondly, the presence of a positive 
variance function in (25) implies that the deterministic trajectory u(t) in (24) would 
tend to be shifted downward in the stochastic growth model. Due to this downward 
bias the steady state value of the mean m° would be less than the steady state 
deterministic value of u, i.e., ,n° < a, = u°. Note that the shift in the mean value 

process m(t) can be empirically analyzed through the econometric tests on the 
variance process v(t), i.e., whether it follows random walk or other Arch processes. 
Recently Sengupta and Zheng (1995) have empirically estimated mean variance 
models of stock market volatility, where chaotic behavior could not be ruled out. 
Finally, one may consider a discrete time variant of the logistic model (24) as 
u, = f (u, _ ,) and analyze the stability of the map f (•) given an initial point no. 
The sequence of points no, Pao), f2(no), • is called the orbit of the map where 
the iterates f "(no) are defined by .f' ' (no) _, f [ f "(no)] and ff°(no)= no. The 
following classification for the stability of the map f (•) is often used in chaos 
theory: 

I . f' I > 1 : linearly unstable 
1 : linearly stable 

f ' l< 1 : strongly stable 

1.1'1=1  : marginally stable 

f =0 : superstable 

where f is the slope of the map f at a fixed point with i fl denoting its absolute 
value. Note that the equation in discrete time form: 

u,/u,_, =a(1 —u- ,) 

has its critical parameter a acting as a bifurcation parameter in the sense that the 

qualitative behavior of a, suddenly changes for different value of a. For example, 
the range 1 <a <2 defines monotonic growth of a, converging to the steady state 
u° —(1 — 1 /a), but for a > 3 the steady state becomes unstable and a two-period 
cycle emerges. In fact the simulation studies by Lorenz (1963) showed that as an 
increases beyond 1 + ,/ 6 = 3.45, higher and higher even-order cycles emerge; 
beyond 3.57 he found that very higher odd-period cycles appear and so on. This 

type of chaotic behavior may sometimes be reduced or aggravated by the variance



STOCHASTIC LEARNING IN NEW GROWTH THEORY 21

process in the stochastic process model.

3. TRADE AND ECONOMIC GROWTH

 The dynamic effects of openness in trade have been strongly emphasized in new 

growth theory. Export growth and the impact of the export-intensive sectors on 
the other sectors of the economy have played a very critical role in the rapid 

growth episode of countries like the NICs in Southeast Asia. In new growth 
theory openness in trade has been viewed as a catalytic mechanism which alleviates 
the bottlenecks that impede the steady growth of the less developed countries 

(LDCs). Empirical studies of the growth of exports have revealed two broad trends 
for the successful NICs. Thus Bradford (1987) examined empirical data for more 
than a dozen countries over 1965-80 covering the link between structural change 
and economic growth, where the index of structural change was derived from 16 
manufacturing sectors and concluded that high rates of growth and rapid structural 
change are closely associated with those countries which are the successful NICS. 
Moreover for some countries like South  Korea the pace of rapid structural change 
was also associated with a change in export-mix in response to world competition. 
The shift from traditional to R& D intensive products in export growth has been 
remarkable for the four successful NICs in Asia as follows:

Product-group

1. Traditional 
2. R & D intensive 

   (general) 
3. R & D intensive 

  (sophisticated) 

This analysis 

characteristic, e 

were very dissii 

insensitive to cl-

TABLE 1. Percentage distribution of exports to the US. 

Hong Kong KoreaTaiwan

1966

67.9 

9.8

17.5

1986 

62.2 

23.8

29.5

1966

56.5 

2.0

3.9

Singapore

1986

52.7 

19.2

29.6

1966

44.6 

15.8

20.3

1986

49.1 

22.3

29.2

1966

73.6 

0.0

0.20

1986

13.9 

58.2

78.1
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 Several key channels have been identified in modern growth theory in order to 
explain the close association by the openness in trade via exports and the rapid 
overall growth. One channel is the 'trade-knowledge externality" which was 
originally emphasized by Alfred Marshall. The benefits of this trade-knowledge 
cannot be fully appropriate internally. As Caballero and Lyons (1992) have 
interpreted, the expression of 'trade-knowledge' includes according to Marshall 
not only R & D but also knowledge along the lines of process innovation and best 

practice technology in general. In Romer's (1990) endogeneous growth theory, 
the capital input embodies this trade knowledge externality. The export sector's 
externality spills over to the other sectors and generates a feedback effect. A second 
channel of interaction why the export sector plays a leading role is that it is more 

productive and more intensive in modern technological inputs. Hence the export 
sector exerts a strong positive influence on the rest of the economy. A direct 
empirical test of this dominance effect of the export sector may be made by means 
of a two-sector model with outputs X and N for the export and the non-export 
sector subject to two production functions 

N= F(KN, LN, X) 

X= G(KX, LX, N)(26) 

where K= KN + KX is total capital and L= LN + LX is total labor. It follows there-
fore 

AN= FKAKN + FLALN + FXAX(27) 

AX = GKAKX + GLALX + GNAN 

where the subscripts on F and G denote the marginal productivity of the two 
inputs in the two sectors. A direct empirical estimate of the two sector model (27) 
from Korean national income statistics data produced the following results.

F1 
GN 
17,/GA

1964--83 1964-861969--861970-90

1.92 

0.28 

6.90

1.00 

0.31 

3.20

0.99 

0.32 

3.11

0.89 

0.30 

2.96

It is clear that the dynamic interdependence effect from the export to the non-export 

sector is roughly between three and seven times larger than the reverse effect from 

the non-export to the export sector. The estimates for other successful NICs in 

Asia analyzed by Sengupta (1993) confirm this dominance hypothesis for the 

export sector. Finally, Lucas (1993) has emphasized the knowledge spillover effect 

as the most significant factor which explains the difference in capital productivity 

between an LDC and a developed economy. Thus the external benefits of human 

capital in his theory can be captured by specifying the production function for
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sector  i  (i  =  1,  2) as 

yr = ; Ahi = h,(1— u,)0,(28) 

where the three variables y, x and h denote output, physical and human capital 

per effective worker. The term hi' is interpreted as an externality which multiplies 
the productivity of a worker at any skill level just as the shift factor A For the 
export-intensive sector (i = 1, e.g.) we have higher hi and higher 7, then the other 
sector. Also h tends to grow faster over time, since the proportion (1— u 1) devoted 
to human capital accumulation and its productivity effect (or) is likely to be 
higher for the export sector (i=1). 

 There is an alternative way of modelling the knowledge spillover effect through 
human capital in the global economy. This follows the approach of Grossman 
and Helpman (1991) and more recently the learning models due to Jovanovic 
(1997), where endogeneous quality increments follow the process of learning 
through research. Here there are invention costs but no adoption costs and the 
output of research is designs, which are sold by innovators to intermediate-goods 

producers. Specifically the use of the new intermediate good augments the 
productivity parameter A in (28). This formulation allows the direct introduction 
of the Schumpeterian innovation process which is sufficiently important to affect 
the entire economy, as has been shown by Aghion and Hewitt (1992). 

 We now consider an empirical econometric application of the learning mech-
anism, as it influences the behavior of the representative producer as the dy-
namic agent. The model, which follows the formulations of Kennan (1979) and 
Gregory et al. (1993) involves a two-step decision process. In the first step the 

producer decides on the optimal inputs given by the vector x * say by minimizing 
a steady state cost function. The second step then postulates an optimal adjustment 
or learning rule towards the optimal target - levels of input x* and output 
Y,* = F(X*). The learning mechanism in the second step explicitly assumes a 
short-run adjustment behavior of the producer, who finds his current factor uses 
are inconsistent with the steady state equilibrium path (X*, Y*) determined in the 
first step by the relative factor prices and their expected changes in the future. In 
order to resolve or reduce the inconsistency problem the producer minimizes an 
intertemporal adjustment cost function, which includes the expected cost of 
deviations from the steady state equilibrium levels. Recently Sengupta and 
Okamura (1996) have introduced a quadratic adjustment cost function involving 
two types of costs, e.g., disequilibrium costs due to deviation of X, from X,* and 
risk aversion costs due to input fluctuations. Thus the two components of the 
expected adjustment costs illustrate the learning behavior through adaptivity. This 
dynamic adjustment model was applied to explain the trend of economic 
fluctuations in Japan over the period 1965-90 for the time series of input and 
output growth. The specific adjustment model minimizes the expected value of a
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quadratic loss function as follows:

 Min  E,L 
x,

where

L= r`[(xi—xi*YA(xi—x,*)+(xi—xi-i)'iG(xi—xi 01 
t=o

(29a)

where El(•) is expectations of time t, r=(1 +p)' is the exogenous rate of 
discount, x, =In X„ xi= In X,* and A, tp are matrices of nonnegative weights. The 
first component of the cost function is an inefficiency cost due to deviations of 
short run input levels from their optimal long run levels. The second component 
reflects the cost of successive movement towards the optimal input combination . 
On applying the necessary condition for minimization of the expected loss function 
above, one could easily derive the optimal linear decision rule as follows: 

[—(1/r)(P+(1 +r)1,,,)Z+(1/r°)Z2+J ]E,.~, =(-1/r)E,x,* (29b) 

where P =,' -' A, I,,, = identity matrix of order in for in inputs and Z is a backward 
lag operator. It is well known that the characteristic equation of this difference 
equation system (29b) will have half of the roots stable and half unstable . Let ,u 
be the square matrix of stable roots of this system. Then one could define a long 
run input demand vector as al: 

                         d, = (1,,,—rµ)r",,uvt*, . 
=o

Based on this estimated demand vector, one could derive the partial adjust-
ment rule as the final estimating equation. For example with one input this would 
yield 

Ax,=ab(di—xt-,)+E,(29c) 

where q5= I — µ, , d, = (1 —rµ, )E, [is -  r•sµ; x,* s] and it is assumed that the rational 
expectations (RE) hypothesis holds as 

E,(xi+1)=xi+1(29d) 

i.e., the expected value of the x, + 1 equals the observed value. 
 If the error component E, is a white noise process and d, estimated consistently 

by the instrument variable mechod as Kennan has done, then this dynamic 
adjustment equation (29d) which incorporates active learning by the producer can 
be estimated by a statistically consistent way. 

 Several important features of the learning mechanism are to be specifically 
noted. First, if there is no learning, the producer would have no adjustment, so 
that the observed input and output paths would exhibit more fluctuations due 
to the uncertainty in the exogenous variables and the various unanticipated
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externality effects of international trade. With some learning through the ad-

justment cost, the optimal producer behavior is more risk averse. As in portfolio 
theory it tends to reduce the variance of fluctuations around the selected decision 
rule. Secondly, the rational expectations (RE) hypothesis implies that the estimated 
input demand turns out to be equal to the observed level on the average. This is 
the perfect foresight condition of the stochastic control model. If this condition 
is not fulfilled or fulfilled only partially, there would occur more divergence of 
the optimal from the actual trajectory. Finally, the objective function (29a) involves 
only the minimization of the expected loss function. A more general risk sensitive 
rule would be to minimize a weighted combination of mean and variance as follows: 

 Min  E1L  +  w  Var  L 

Risk sensitive optimal decision rules of this type have been recently applied by 
Sengupta and Fanchon (1997). 

 Finally, the optimal linear decision rule equation (29b) may be directly used to 
test which of the two forces: past history or future expectations played a more 
dominant role in the optimal capital expansion policies of the producers in Japan. 
Since future expectations are forward looking and hence more oriented to dynamic 
learning, its significance in an estimated equation would inducate the presence of 
active learning. The backward looking view represented by the past history and 
its trend would be comparison represent the less learning and less adjustment . 

 The detailed empirical model of dynamic adjustment was estimated by Sengupta 
and Okamura (1996) for Japan (1965-90) based on aggregate time series data. 
We report here two major findings that are relevant for learning-based growth of 
inputs. Based on a Cobb—Douglas production function 

Qr = B(A, V,)K, Lr 

with the technical progress variable B as a function of export vt and an external 
shock variable At for international transmission of knowledge, the linear decision 
rules for optimal demand for labor (Lr) and capital (Kl) appear as follows: 

                  A In L,= 4L(d L — In Lr _ 1) + error 

AlnK,=(/)k(d"—lnK,_,)+error . 

Note that we could derive here a relationship between the speed of adjustment 

parameter 0, and the ratio Hi of the weights on two cost components in (29a): 

or—oil+or(1 -Y'i) 1 , i= L, K. 

Since the target demand di can be estimated in terms of either the past lagged 
instrument variables (backward looking view), or the expected values of future 
instrument variables (forward looking view), we may derive two types of estimates 
as follows:
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TABLE 2. Estimate of the speed of adjustment parameters ((/);) 
and the weight ratio 0,= A,* (i= K, L)

Output 

(In Y,)

Input 

(In X;,)
0,

ch. root 

IA; =l-ob,

I. GNP

2. GDP

backward looking

forward looking

backward looking

forward looking

K 

L 

K 

L

K 

L 

K 

L

0.118* 

0.898* 

0.082* 

0.837*

0.120 

0.924* 

0.086* 

0.569*

0.016 

7.873 

0.007 

4.281

0.016 

11.231 

0.008 

0.753

0.882* 

0.102 

0.918* 

0.163**

0.880 

0.076* 

0.914* 

0.431

Note: I. One and two asterisks denote significant t-values at 5% and 1% levels. 

The stable characteristic roots p; are only reported.

 Clearly labor adjusts much faster than capital. Thus the ratio cbL/0K varies from 
6.6 to 10.2. The implications of a slow adjustment speed for capital are two-fold. 
First, the characteristic root for capital is very close to unity. Secondly, much of 
capital expansion is in the form of capital deepening, thus reflecting a stronger 
role of future expectations. Also the forward looking estimates of the characteristic 
root ,uK = 1 —OK are higher than the backward looking ones. A more direct estimate 
of the optimal demand equations produced the following results:

AI,=2.241-0.545!n, 
(1= —3.47)

_, +0.4321,+, 
   (2.53)

R2=0.372, DW=3.02

Ak, = —0.026-0.silk 

(-0.21)(-8.62)
,_,+0.sl2k,+, R2=0.893 , DW=2.67 

   (8.00)

Ay, = 0.039 — 0.sosy, 
(0.21)(-6.47)

+0.sooy,+, 

   (5.45)

R2=0.735 , DW=2.73 .

Here the lower case letters are in logs of labor, capital and output and the t-values 
are in parentheses. The tilda over a variable denotes its estimated value at t+ 1 
and this is used as a regressor in order to reduce the bias due to autocorrelation 
of errors. It is clear that the future variables 1,+, k,+, and y+, play a more 
dominant and significant role than the past denoted by 1, _ ,, kl_, and y, _ , . 

 Similar estimates for South Korea over the period 1971-1990 produced very 
similar results as follows:
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 A4  =  0.099  —  0.5104_1+  0.so4T,  +1 
(-4.58) (3.94)

Akt= —0.110-0.ss6k,_1+0.s44k,+, 
(— 7.41) (6.79)

R2=0.61 , DW=2.49

R2=0.86 , DW=1.64

Ay, = —0.023-0.so4y,_ +0.sisyt+1 
(— 5.13) (4.83) 

 These results seem to support the hypothesis that learning-based future ex-

pectations play a more dynamic positive role in the growth of inputs and output 
in the Asian NICs. 

 Consider now the stochastic view of learning through the bivariate interaction 
of the two sectors in the growth process model in the form (26). Assume a bivariate 
birth and death process satisfying the Chapman-Kolmogorov equations as before. 
Then the system of differential equations for the transition probability px,n(t) at 
time t can be written

(as               dp x.n(t) — —(),x+  /lx + /lx - 1px - 1,„(t) 

+llx-iPx+1 .n(t)+An-lPx.n-l(t)+µn+11)x.n+1(t) (29) 

for x, n=0,  1, 2, • • . We now consider the application of the above system of 
differential equations to two special cases. The first case occurs when there is no 
death rate, i.e., µx = 0 = µ and the deterministic system in x(t) and n(t) follows 
one way interdependence as follows 

ox(t)/di = MO= bivx(t) 

do(t)/di=ti(t)=a2n(t)+b2(1—v)x(t); 0<v<1. 

Here n(t) depends on x(t) for its growth, whereas x(t) grows due to the high 

proportion of total output x(t)+n(t) devoted to human capital, i.e., high level of 
v which implies a low level allocated for the growth of the n(t) sector. The means 

(Mx, Mn) and variances (V x, Vn) may then be calculated as 

Mx(t) = exp(b ivt) 

Vx(t) = v(2 — v)' exp(bivt)[exp(b i vt) —1 ] 

where the initial value x(0) is set equal to one. However the non export sector 
output follows a different mean variance structure. The mean is 

Mn(t)=b2(1—v)(biv—a2)- exp(b,vt)+exp(a2t) 

but the variance is a more complicated function with a dominant , term proportional 
to exp(2a2t). It is clear from these mean variance relationships that 

aMx(t)/aVV(t) <0 as Mx(t) < 1.0 

i.e., countries with a higher volatility of export output would tend to have a lower
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mean export level, otherwise  OM  „10  U,  >0 as M,(t) > 1.0. Secondly, the allocation 
ratio u can be used directly by public policy favoring the export sector. The national 

governments in NICs in Asia have always stressed these policy measures. For 
example the government planners in Japan and Korea have consistently allocated 
a growing share of domestic and foreign resources through credit rationing and 
other export subsidy measures to capital-intensive industries and also consumer 
electronics. Finally, as t —* Tx:,  the coefficient of variation (CV) measuring the rel-
ative level of fluctuations tends to settle down in both sectors, CV, (v/(2—r))1/2. 
This implies that the CV_, ratio increases as u rises. 

 A second case of the strochastic process model (28) occurs when the sectoral 
interdependence takes the following form 

_ =xi(x ,n)=x(p11 +pl2n) 

),„—/2n, tun=n.f (x, n)=n(µ21x+I/22n) 

with f (x, n)=x,x + a2 denoting the interaction term. This form allows various 
types of interaction effects through the functions 1( • )  and g(• ). One could derive 
from this system differential equations involving the first two moments of the 
stochastic process as follows: 

19111(t)=~,nlll(t)—~llnll2(t) ~12{7711(t)(30) 

iil2l(t)=)2/3121(t)—p2ltll(t)—p2inn22(t) • 

Here nlll(t)=EIX(t)1, nil2(t)=E:X2(t)i, ln2l(t)=EN(t)}, ni22(t)=EN2(t)land 
di t , (1)= F.{X(t)N(t)} and the dot over a variable denotes its time derivative. Clearly 
if there is no interaction between the sectors, then the two sectoral outputs nit 1(0 
and M21(t) grow at the exponential rates 21 and 2, respectively. But if µ, 2=0  =µ2t, 
and both µ, , and P22 are negative, then both sectoral outputs tend to grow 
expoentially. The deterministic system corresponding to (30) may be specified as 

X(t)=21X(t)—plxlX2(t)—Iu1 2X(t)N(t) 

N(t)=22N(t)—RilX(t)N(t)—µ2x2N2(t) . 

Note that this system has a logistic time profile for the export sector output if 
x2 is negligibly small, i.e., 

X(t)=21X(t)—µ,xlX2(t) 

with steady state values 

2, 21 X*=2i/(p'lcl), N* =— --
                                       x2µ2 x2Rl 

The stability of these steady state values depends of course on the underlying 
characteristic roots. However the stability of the steady state values mt,, m*, of 
the stochastic system (30) depends on much more restrictive conditions. As May
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(1973) has shown that the probability of unstable steady states is much higher 
and there exist biological systems where this type of instability phenomenon is 

persistent. For example consider the second equation of the Lucas model (28) and 
assume a two-sector interacting framework as 

                  h,=hi(t)fi(hl, 112)(31) 

/12 =h2(t)f2(h~, h2) 

where

fi(')=k, —h,(t)—ah2(t) 

f2(')=k2—h2(t)—ahi(t) . 

Here the coefficient a measures the symmetric competition between the two sectors 
for the common pool of human capital in the population and kl, k2 are the 
sector-specific parameters, which are constants in the deterministic case but random 
around a mean in a stochastic environment. In the steady state of the deterministic 
model the levels of h; and hz are found by putting the growth rates h, =1z2 to 
zero and then the linearized version around these steady states has the coefficient 
matrix

                   A— 
                          —h,—ahz 

                            —ant 

Clearly both the eigenvablues of this matrix are negative if and only if the coefficient 
a< 1.0. This is the well known Gauss—Lotka—Volterra criterion for a stable 
bivariate population. Now let us consider a stochastic framework: 

k, =kc+y,(t) 

k2= kc + y2(t) 

where the random parameters k,, k2 have a common mean value kc and two 
independent white noise random variables with zero mean and a common variance 
a 2. Let R denote the root mean square measure of relative fluctuation as is used 
in (17) before. Then it holds approximately that 

                                                         0_2                                      R2
", 

kc(1 — a) 

This result derived by May (1973) has two important implications. One is that 
the system is stable so long as a< 1.0. But as soon as the magnitude of a increases 
up to 1.0 the interaction dynamics provide a weaker and weaker stabilizing influence 
and in the limit R2 tends to be explosive. Secondly, the common parameter kc is 
only assumed for simplicity, the result would hold even if it is different for the 
two sectors. Clearly as k decreases to lower and lower values and satisfies the 
inequality kc(1—a) <o-2, then the fluctuations measured by R2 in (32) would tend
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to be higher and higher. This implies a tendency favoring increased random 
fluctuations in the 00 process and hence in the output process yJt) defined in 
the Lucas model (28).

4. INDUSTRIAL ORGANIZATION AND DYNAMIC GAMES

 Rapid growth episodes in the NICs in Asia have been closely associated with 
some key trends in these countries. One is the persistence of scale economies which 
tends to produce oligopolistic firms even if there are no formal barriers to entry 
under competitive world trade. In this framework the output of each firm is given 
by a Cournot—Nash equilibrium. Openness in world trade implying a larger market 
will tend to reduce the oligopolistic mark-up of price (p) over marginal cost (c). 
A second trend is the learning curve effect of cumulative experinece of knowledge 
capital, which is undergoing an international spillover. For example Norsworthy 
and Japan (1992), have empirically shown this effect to be substantial in Japan 
and other Asian NICs in microelectronics and semiconductor indudstries in 

particular. In a dynamic limit pricing model discussed, e.g., by Sengupta (1983) 
and more recently by Sengupta and Fanchon (1997) the entry into the market by 
other oligopolistic firms depends on the mark-up of price over marginal cost, 
where the actual price lies somewhere between the short-run monopoly price 
and the competitive price, the exact positioning depending on the barriers to entry, 
risk aversion and the impact on cost reduction through cumulative experience 
and learning. The third trend in the rapidly growing NICs in Asia is to capture 
the cost savings over time due to building capacity ahead of demand and to adopt 
flexible manufacturing practices. In this set-up it is important to distinguish between 
current ouptut (y=dy/di) and cumulative output y(t) in the production function 
F(y(t), x(t)) where x(t) denotes the variable inputs, e.g., the functional form 

(t)= Ay' x(t)i; 

summarizes the dynamic process of producing the joint products of learning and 
output from resources and experiences. Assume now a duopolistic framework 
with two producers producing output 5',(t), yz(t) at prices p,(t), p2(t). The NICs 
may represent one producer and the rest of the world as the second producer. 
The dynamic optimization model for the first producer may then take the form

Max J, = e "(pt(t)—c,(tff,di 

0

           subject to yr(t)=F,(y,(t), yz(t), p,(t), p2(t)) ; i= 1, 2 (32) 

On using the current value Hamiltonian H=e r`{(p, —c, +))1)F1 +(p2—c2+ 
) 2)F71 and assuming the regularity conditions for the existence of an optimal 
trajectory the Pontryagin maximum principle specifies the following necessary 
conditions for optimality (for i = 12,):
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 OH 

      ay~ 

' =F t(yr,y2,pi,p2) 

H/apt =0 for all t

(33)

and

rim e - tr)i (t) = 0 (transversality) . 

By using Dµil=(0Fi/apt)(pi/Fi) and µil=(0Fi/apt)(pi/Fi) when 1 Oj as the own price 
elasticity and cross elasticity of demand, the optimal price rule can be written as 

Pi =(1 +1111) 1[µ11(cl—Al)—, 2R2l](34) 

with the optimal trajectory for Al(t) as 

Al =rA1 +(cl—Al)Fly, —plFiy, +clyFl 

          i.e.,.1.(t)=~e-r(t-llPi +A2ll2l Frl.1 +clyiF dT (35) 
            rµ t t [L 

where

Fe,1=0F,/0y 

cry, =aclioy,< 0 , i.e., future cost decline 

p„<0 ,  R21>0. 

Clearly the optimal pricing rules involve the trajectories of both the current price 

p,(t) and the shadow prices kl(t). The current pricing rule (34) shows the price to 
be much lower than the monopoly price (1 +µ11)- 'Pi i(cl —Al) since A2 is usually 
negative, since more competition hurts the market position of y, more. Secondly, 
the extent of future cost declines (— cty~ >0) tends to reduce the dynamic shadow 

price .11(t). Thirdly, if the demand function in (33) is a function of prices alone, 
i.e., = F(p tp2) then the sign of p = op/di may be shown as 

sign(p)= sign( —IA,1+c~r-Azµ21) 

where c 1 t = ac 1 /at is the decline of cost over time due to learning and experience 
since c , <0. This shows a strong pressure for price declines over time . This has 
happened exactly in the semi-conductor and R & D intensive industries such as 
electronics, telecommunications and personal computers . Recently Helpman (1997) 
analyzed the empirical data of about 100 countries over the period 1971-90 and 
found substantial impact of R &D investment through foreign capital stock . 

 A simpler form of the decision model (32) results when we assume one average 
market price p(t) for a homogeneous product and a dynamic Cournot model with 
two outputs yt and y2 as decision variables . In this case we re formulate the 
model as
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Max J, = e-"(p(t)—c,(t))y,di

                 s.t. is(t)=k(p—p) , j3=a—b(i', + '2) (36) 

where 13 = is(t) is the demand price expected and p is the market price. Assuming 

quadratic cost functions, i.e., cif', = i ti'µ + 1/2u; where u, _ and the parameter 
w declines over time due to learning and experience, the above is a linear quadratic 
control model and hence the optimal feedback strategies a,* (t) can be easily 
calculated as 

u;*(t)=[I —bkh(t)]p(t)+hkni(t)—w(37) 

with 

h(t)=(6k2b2)-'[r+4hk+2k— {(r+4hk+2k)2-l2k-h2)}1/2] 

in(t)=(r-sh2k2h(t)+k+2bk)-' [Tv —ash(t)-2bkwh(t)] . 
Here zero conjectural variation on the part of each player is assumed. Clearly this 
linear feedback form of the conjectural equilibrium output path in (36) yields a 
steady state price level p* as 

p*=[2b(1 —hkh*+1]-1[a+2b(w—hkm*)] 

where h*, m* are the steady state values of h(t) and m(t) respectively. 
 Stochasticity in this framework may now be introduced in two simple ways. 

One is in the LQG (linear quadratic Gaussian) framework with the dynamic price 
equation rewritten as 

op(t)=k(p—p)di+dr(t) 

where r(t) is a zero mean Gaussian process with stationary independent increments 
and a constant variance a 2. The objective function now is to maximize the expected 
value of J, in (36). In this case the optimal h(t) which is called the Kalman gain 
in filtering theory is directly influenced by the variances a 2 of the error term and 
hence the steady state price level p* changes due to a2. Generally the price level 
p* gets higher with higher a. Secondly, the conjectural variation assumption that 
3u,/awl = 0 for i 0j may not hold due to the presence of random noise in the market 
demand equation. In this case there may be stochastic instability in the convergence 
process and the steady state p* ,  u * may not be stable. In such cases the duopolists 
may see implicit cooperation by `subjective random devices' as proposed by 
Aumann (1974). As Ohyama and Fukushima (1995) have recently shown that in 
dualistic market structures of the NICs in Asia, the Asian producers adopt a 
two-tier policy. In the domestic front they act more like a monopoly and tend 
to exploit all scale economies due to learning and experinece, whereas in the 
international market they attempt to build up implicit cooperation with the US 
producers, since they do not have a large base in R & D investment. 

  Finally, one could directly introduce risk aversion into the objective function
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by rewriting it as:

                    e- ~t[Err(t) — (1 /2)varix(t)]di 

                          0 where  it(t)  =  p(t)  — cJt) with E and V denoting the mean and variance of profits . 
Market growth can be postulated as P(t)= ac ht — bo% + yz). The stochastic model 
then would incorporate learning through risk adjustment and influencing market 

growth through knowledge spillover and uncertain entry. This type of model 
analyzed by Sengupta (1983) elsewhere compares the effects of learning on the 
steady state levels of optimal price, quantity and the market share . If S* denotes 
the steady state optimal market share and p* the optimal price , then the following 
results illustrate the impact of learning: 

aS*/on>0 , aS*/ak<0 

aS*/or<0, ap*/on<0, if n>r/2 

8p*/ar>0 and ap*/ak>0 , if n>r 

These results show that increased market growth increases the market share of 
the dominant firm and reduces the market price . An increase in risk aversion 
tends to increase the steady state optimal price and also reduce the market share 
of the dominant firm. But it imparts more stability to the optimal trajectories . 
Since a risk averse optimal strategy tends to minimize variance of profits , it yields 
a more robust policy of price and output , when the conditions of entry are 
uncertain.

5. CONCLUDING REMARKS

  The impact of learning by doing and human capital in the modern endogenous 

growth theory has been mostly deterministic. Yet the stochastic aspects arise very 
naturally in this framework through learning about the furture outcome of current 
R & D investment, expectations about future demand and even projecting a long 
run state of the world market . Three basic sources of uncertainty and their economic 
implications for instability are briefly discussed here . First, we consider learning 
through the optimizing process of the producer deciding on the optimal direction 
of technical change. Stochastic versions of the So low model are here compared 
with the new growth theory formulations . Secondly, we consider learning by 
knowledge spillovers through international trade and empirically estimate a linear 
decision rule for Japan, where learning-based expectations about the future play 
a more dynamic role than the past history . Finally, a dynamic limit pricing model 
of uncertain entry is considered for a firm facing international competition and 
impact of learning through risk adjustment and uncertain market growth is 
analyzed.
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