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 Abstract: This paper generalizes the constrained equal award rule (or, solution), 
one of well-known allocation rules of a bankruptcy problem so that differences 
of relative importance over agents can be reflected and shows that the asymmetric 
Nash solution coincides with such a generalized solution called the constrained 
weighted award solution over a bargaining problem with the 0 disagreement point 
derived from a bankruptcy problem. This result is further extended to cover those 

problems with the non-zero disagreement point.

1. INTRODUCTION

 Bankruptcy problems treat the issues of how to allocate E, the fixed amount 
of a perfectly divisible good to agents in accordance with their claims over the 

good. The most well-knowns are the proportional rule (w.r.t. claims) and the 
constrained equal award rule (for short, the CEA rule). The former divides the 

good according to relative weights generated by the claims, and the latter 
disemburses E in such a way that an agent receives his claim if it is less than a 
threshold parameter and otherwise, the threshold itself, where the parameter is 
so determined that the resulting allocation satiates E. On the other hand, bargaining 

problems deal with solution concepts resulting from negotiations among agents 
over a set of utility tuples satisfying some regular conditions with the disagreement 

point, starting from Nash's seminal paper (1950) in which what has now become 
known as the Nash solution is suggested.' There are two approaches to a 
bankruptcy problem. One is a coalitional approach and the other is a bargaining 
approach. O'Neill (1982), Aumann and Maschler (1985), Curiel, Maschler and 
Tijs (1988) and Driessen (1988) belong to the first category , and Dagan and Volij 

 Acknowledgement. The author is grateful to refree's helpful comments. Errors and shortcomings 

are the responsibility of the author.

1 For an extensive survey on bargaining problems see Thomson (1992).
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(1993) to the second. This paper follows the second line. 
 Dagan and Volij derived a specific bargaining problem with the o-normalized 

disagreement point from each bankruptcy problem and probed relations between 
some bargaining solutions and allocation rules, among which our interest is on 
the inducement of the CEA rule allocation by the Nash solution. This result is 

generalized in the following fashion: First, unlike Dagan and Volij we interprete 
the CEA rule allocation as a bargaining solution. Secondly, the CEA solution is 

generalized so that different evalutions over agents may be considered, which we 
call the constrained weighted award solution (for short, the CWA solution) and 
it will be shown that the asymmetric Nash solution, the usual Nash solution 
skewed by evaluations, coincides with the CWA solution. Finally, the CWA 
solution is further generalized so as to incorporate the non-zero disagreement 

point and we show that the above result still remains effective. 
 Section 2 introduces the CWA rule of bankruptcy problems with some of its 

properties in comparison with axioms of the CEA rule. In section 3 we show that 
over a specific bargaining problem derived from any bankruptcy game with the 

 0 disagreement point the asymmetric Nash solution is equivalent to the CWA 
solution, of which the result can be extended to the case of the non-zero 
disagreement point.

2. BANKRUPTCY PROBLEMS AND THE CWA RULE

 Let  N  = { 1, 2, • • • , n} be a set of agents. E denotes the amount of a perfectly 
divisible good and CE R, the claims vector of agents. A pair (E, c) is called a 
bankruptcy problem if 0 < E < c(N) where 66 is a set of such problems.' A vector 
x E RN is called an allocation if it satisfies 0 < x < c, x(N) = E.' An allocation rule, 
or simply a rule is a mapping which associates each bankruptcy problem with a 
unique allocation. For any vectors x, y ERN, let x A y be an n-dimensional vector 
defined by (x A y)i = min{ xi, y}, i E N. Also, an evaluation vector is denoted by a 
= (a t, a2, • - • , an) where 0 «a and (N) =1, i.e., a is an element of AN, the interior 
of the n l-dimensional simplex. Note that al is the weight of relative importance 
over agent i given exogenously. For any evaluation vector a E AN, a rule 0' is 
called the CWA rule if the following condition is satisfied: 

C"(E,c)=ciAt*al, IEN(1) 

where t = t* is a solution of (c A ta)(N) = E.4

a c(N) = E c,. 
ieN 

3 For any vectors x, x' e RN, x' <x implies x < < xi for any te N; x' <x if x' <x and x Ox'; x' «x if 
x'i < xi for any i E N. Note that for any bankruptcy problem (E, c) E', if 0 < E, then there exists at 
least one allocation. 

4 Since t* is non-negative , the vector c A t*a is an allocation. Also, note that if E<c(N), then t* 
is unique and so does the CWA rule allocation. Otherwise, any t greater than t* is a solution where 

t *al = cl. and i* = argmax cl. In this case we regard t* = cl./a;, as a solution. 

IEN
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  Note that  t* can be interpreted as a common upper bound and t *al, agent i's 
individual upper bound which plays a role of the threshold when E is disembursed 
among agents. I.e., the CWA rule divides E in such a way that an agent whose 
claim exceeds the inidividual threshold receives the amount of the good equivalent 
to it and otherwise, the amount what he claims is awarded to him . If the evaluation 
vector is an equi-length vector, i.e., all agents are treated equally , it is called the 
CEA rule.' The CEA rule, from a view point of a bankruptcy problem , is 
characterized by Dagan (1994) with such axioms as follows: 
• Axiom ST (Symmetric Treatment): For any bankruptcy problem (E, c) e cc if 

cl = cj, then 4)i(E, c) = 4; (E, c). 
• Axiom IIC (Independence of Irrelevant Claims): For any bankruptcy problem 

 (E, c) e ~, 4)(E, c) = 4)(E, c A El) where 1 e RN is a unit equi-length vector. 
• Axiom C (Composition): For any bankruptcy problem (E , c) E and any 

0 < E' ,� E, 0(E, c) _ 0(E', c) + 4(E— E', c — 0(E', c)). 
• Axiom NN (No-claim No-pie): For any bankruptcy problem (E , c) E W, if cl = 0, 

 then 4(E, c) = 0. 
 Axiom ST implies that equal awards are assigned to those agents whose claims 

are equivalent to each other, and Axiom IIC says that if agents claim more than 
there is, it is ineffective. A rule satisfies Axiom C if the original allocation generated 
by it can be decomposed according to any step-by-step bases . Since an allocation 
is non-negative, this axiom implies strong monotonicity , i.e., given any bankruptcy 
problem (E, c) E W, if 0 �E' �E, then 0(E', c) < 0(E, c). The last axiom implies 
that whoever claims nothing receives nothing .' The CWA rule satisfies all the 
axioms referred above except Axiom ST. Instead, it satisfies proportional treatment 

(PT), i.e., for any bankruptcy problem (E, c) E W' if a; cl = aicj, then aj or (E, c) = 
ai4)j(E, c), which implies that if claims are proportional w.r.t. relative evaluations, 
then so do awards.

3. EQUIVALENCY BETWEEN THE ASYMMETRIC NASH SOLUTION 

               AND THE CWA SOLUTION

 Let S g_ RN be a set of utility tuples and de S is a disagreement point . S is 
d-comprehensive if x E S and d < y < x , then y E S. Also, it is called non-degenerate 
if there exists x E S such that d«x . A pair (S, d) is called a bargaining problem if 
S is closed, bounded, convex , d-comprehensive and non-degenerate, where . is 

5 The nomenclature originates from Aumann and Maschler (1985), of which the purpose is to find 
general rules behind numerical examples appeared in the Babylonian Talmud. Also, note that it was 
introduced by Bennasy (1982) as the rationing function for markets in disequilibria, and Sprumont 
(1991) named it the uniform rule and characterized it from a view point of a strategy-proof allocative 
schema. 

 6 The last axiom is not referred in Dagan (1994), but which is a necessary and harmless assumption. 
Also, note that from the setting of a bankruptcy problem the CEA rule must satisfy (strong) Pareto 
optimality (PO), i.e., for any bankruptcy problem (E, c) E' , 0(E, c) < y implies that y is not an 
allocation.
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a set of all bargaining  problems.' A bargaining solution, or simply a solution is a 
function which maps each bargaining problem to a unique utility tuple in S. S 
can be interpreted as a set of agreements to which agents may reach possibly by 
a negotiation process where the disagreement point guarantees the minimum level 
of utilities in case that the negotiation fails. Therefore, a bargaining solution is a 
unique utility tuple, seeminingly desirable, selected from S. Among several 
well-known solutions we are interested in the asymmetric Nash solution defined 
as follows: Given a bargaining problem (5, d) el and an evaluation vector a E AN, 
a solution r(S, d) is called the asymmetric Nash solution if 

                r(S, d) = argmax x (xi — di)"i(2) 
d<xES ieN 

 This solution is a generalization of the Nash solution (Nash, 1950) and first 
introduced by Harasanyi and Selten (1972). We next derive a specific bargaining 

problem from a bankruptcy problem. For that purpose, given any bankruptcy 
problem (E, c) E 66, a set of utility tuples is defined by A(E, c)= {x E RN 1 x < 
c, x(N) < E}. This means that bargainings over all possible divisions of any amount 
of the good less than E are feasible as far as they satisfy the claims constraint. 
Note that this set satisfies all properties aforementioned except non-degeneracy, 
which is guaranteed whenever 0 < E and 0«c. Evidently, this condition ensures 
that 0 E A(E, c). For the time being we only consider the case of the 0 disagreement 
point and call a pair (A(E,c), 0) o-associated bargaining problem corresponding to 
a bankruptcy problem (E, c). Note that essentially, the CWA rule allocation can 
be interpreted as a solution of o-associated bargaining problem such as follows: 
A solution i/la is called the CWA solution if t "(A(E, c), 0) = cl A t*al, i e N 
where t = t* is a maximum scaling factor over {t E R+ c A to E A(E, c)}. 

PROPOSITION 1. For any o-associated bargaining problem (A(E, c), 0) and any 
bankruptcy problem (E, c) E satisfying 0 < E and 0 « c, the a-asymmetric Nash 
solution induces the a-CWA solution and vice versa where a E AN is an evaluation 
vector.

 PROOF. Consider a constrained maximization problem as follows: max x x"i 
x IEN 

s.t. x E A(E, c). First, note that since the feasible region A(E, c) of the above 

problem is compact, convex and nonempty by non-degeneracy and the objective 
function is strictly quasi-concave, the unique maximizer x* e RN exists. Also, note 
that W(•) is monotonic over the n-dimensional non-negative orthant, i.e., if x E 

 x <— x', then W(x) <_ W(x').8 Hence, x *, i E N should be positive and E should 

   Closedness is a technical assumption, and boundedness implies that each agent's utility is finite. 
Convexity implies randomization of any of distinct utility tuples. S is d-comprehensive if free 
disposability of utility tuples is allowed, which implies that OS, the boundary of S is weakly Pareto 
optimal, i.e., if x E as, x «y, then y OS. If S is d-comprehensive with the Pareto optimal 0S, it is called 
strictly d-comprehensive. The last assumption requires that the result of any bargaining be non-trivial. 

8 For notational simplicity let W(x) = x xa and W* = W(x*). 
te N
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be tightly distributed over every agent, i.e.,  x*(N) = E since otherwise, by 

non-degeneracy it contradicts the maximality of x*. Let L(x, µ, .1) = x x"i + 
ieN 

E µi (cl — xi) + )(E — x(N)) be a Lagrangean function of the above problem 
ieN 

where pi, te N and A are Lagrangean multipliers. The Kuhn-Tucker condition, 

given below, is a necessary condition for the existence of the solution if 0 <E and 
0«c.9 

         i) al W* ------— — A*) = 0 , 
xi 

            x*>0,a`W —µ*—A*<0 for all ieN, 
                 x* 

        il) µ*(c —x*)=0 , 

µ*>>0 , cl—x*>0 for all ieN, 

       iii) )L*(E—x *(N)) = 0 , 

A* >0 , (E—x*(N))>0 . 
 We first deal with the case of x * < cl for all te N. Evidently, [it  = 0. Since x * > 0, 

aiW*/x*—µ*—A*=0, i.e., x*=t*al where t*=W* IA* ER++. Since x*(N)=E, 
t* is a maximizing scaling factor of a over A(E, c) and hence I" A(E, c), 0) = 
t *a = >ll"(A(E, c), 0). Next, suppose that w.l.o.g., x * < cl for all te K= { 1, 2, • • , k} 
and x7 = cJ for all j e N\K where both sets are nonempty. Then, if te K, x * = t *al 
and if j E N\K, x * < t *a;. Also, note that t* is a maximizing scaling factor since 
x *(K) _ E— c(N\K). Hence, the a-asymmetric Nash solution induces the a-CWA 
solution. 
 Next, sufficiency will be shown. Suppose that 11, "(A(E, c), 0)=c A t *a, which is 
strictly positive, is given. t ° If /i" < cl for all ieN, then let tu * =0, ieN and 
A,* = W"l t *. Suppose that i/i" < cl for all te K and /i = c; for all j e N\K.11 Then, 
set µ * =0, te K and A,* = It*. Also, let µ * = a j W"/cl — Writ*, j E N\K. Note that 
all the multipliers defined above are non-negative and the Kuhn—Tucker condition , 
which is sufficient for the maximization problem, is a satisfied. Q.E.D . 

 The first case deals with one in which all awards are not claims-binding and 
both solutions coincide with each other as the proportional solution w.r.t. the 
evaluation vector a . The second case is that awards of some agents are binding. t 2 
In this case the proportionality principle is applied to those agents whose awards 

9 The latter condition is called Slater's condition. Note that the constraints of the problem can be 
reformulated by defining functions, gr (x) = xi, ieN  and g(x) _ E xi, which are trivially convex. a,* 

ieN 

and kit,  i e N are the optimal values of Lagrangean multipliers . 
1° For notational simplicity let V = fr"(A(E , c), 0) and W"= W(ti/"). 1' Note that if i E K

, Ill" = t *al. 
 12 The remaining case, x * = c is trivial from footnote 4.
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are not binding over A(E, c), whereas the remaining agents' awards are fixed to 
their claims. The point is that the Pareto optimal frontier of A(E, c) has an 
equi-length normal vector and so, the solution projected over the Euclidean 
subspace of which the dimension is equal to the number of non-binding agents 
is on the half-line generated by the corresponding projected evaluation vector. 
Also, from this proposition we can say that the asymmetric Nash solution satisfies 
all the properties of the CWA solution mentioned in the preceeding section. The 
diagrams given below illustrate these two cases of the two-agent set-up. 

 The above result can be extended so that the disagreement point d is not confined 
only to zero vector provided that  d«c and d(N) < E, which guarantees d E A(E, c) 
and non-degeneracy. For each bankruptcy problem (E, c) E', consider the 
corresponding bargaining problem (A(E, c), d) and generalize the CWA solution 
as follows: tia(A(E, c), d) = cfi n (t *al + di), i E N where t = t* is a maximum scaling 
factor over {t E R+ c n (ta+d) E A(E, c)}. We call CPa the generalized CWA solution

xz

x*

0

 xi+x2=E

x,

Fig. 1(a).

x2

(1, 1) 
 W*

 Ac(E  c)

ar=(a„az)

 ox*x'                               i 

                      Fig. 1(b). 

Fig. 1. Equivalency between two solution concepts: (a) Claims do not 
   bound solutions, which coincide with the proportional solution w.r.t. the 
   evaluation vector. (b) The claims-bounding case.
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in a sense that the disagreement point is not necessarily equal to zero. A solu-
tion  tp satisfies translation in variance (TI), i.e., for any (S, d) E . and any vector 
IERN, i/i(S+{1},d+1)=/i(S,d)+1 where S+{1}={yeRNIsxeS;y=x+1} . It 
is called to satisfy independence of non-individually rational alternatives (INRA) 
if >/i(A(E, c), d)= 111(A,(E, c), d) where Ad(E, c) = {x E A(E, c) I d <x}.13 (See Peters, 
1986) Note that the asymmetric Nash solution and the generalized CWA solution 
satisfy these properties.14 

PROPOSITION 2. For any bargaining problem (A(E, c), d), any bankruptcy 
problem (E, c) e W satisfying d «c and d(N)<E,  and an evaluation vector a e AN, 
the a-asymmetric Nash solution induces the generalized a-CWA solution and vice 
versa.

 PROOF. Suppose that a bargaining problem (A(E, c), d) is given. By Axiom TI 
we have f"(A(E, c) + { — d}, d — d) = f"(A(E, c) — Id l , (1)—d and so does the CWA 
solution. Note that A(E, c)—{d}=A(E—d(N), c—d), whereas (E— d(N), c—d) 
is a bankruptcy problem. Also, note that tk(A(E, c) — {a} , 0) = ill "(A(E, c) — Id l, 0). 
Hence, by Proposition 1 f"(A(E, c) — Id l, 0) ="(A(E , c) — Id l, 0), from which the 
desired result is obtained.Q .E.D. 

 Some remarks are referred. First, note that the set of utility tuples A(E, c) 
derived from a bankruptcy problem (E, c) is a special case of general ones since 
its Pareto optimal frontier is included in the hyperplane with a unit equi-length 
normal vector and hence it should be analyzed from a perspective of more general 
settings.1 s Secondly, bankruptcy problems implicitly assume that claims of agents 
are finite. But, there is no guarantee that it is true as far as claims are registered 
by agents. If claims are infinite, the CWA solution distributes E proportionate to 
an evaluation vector a.16
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