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 Abstract: Recently nonparametric techniques have been increasingly applied to 

measure efficiency of public sector organizations. These techniques are essentially 

based on the concept of Pareto efficiency. These are generalized here in several 

dynamic dimensions and their policy implications discussed briefly.

1. INTRODUCTION

 Recently the nonparametric techniques known as `data envelopment analysts' 

(DEA) have been increasingly applied in managerial economics to measure the 
efficiency of public sector organizations. Thus Ganley and Cubbin (1992), Fried 
et al. (1993) and Chaines et al. (1994) have discussed these recent developments 
in this field. However the DEA model and its current generalizations which are 
based on the concept of Pareto efficiency have been mostly static, since these are 
based exclusively on current inputs, thus biasing the efficiency comparisons against 
the capital-intensive processes. Capital inputs have their impact on output over 
time and technological innovations frequently change the marginal productivity 
of the inputs between years. Furthermore the production process is likely to be 
dynamic and time varying in the sense that the decision-making units (DMUs) 
may take more than one time period to adjust their decision variables to the 
desired or even optimal levels. 

 Farrell (1957) who first developed these nonparametric techniques later known 
as DEA models mentioned some of these dynamic issues when he developed the 

production frontier model and applied it to the cross-section data of agricultural 
farms in UK and USA. Farrell developed a firm-specific measure of technical 
efficiency by defining the production frontier as the maximum output obtained 
from a given set of inputs. One may mention two basic reasons why the behavior 
underlying the production frontier is likely to be dynamic. First of all, capital 
inputs have a multiperiod dimension, since they generate outputs in future periods. 
Yet the current DEA applications are based exclusively on current inputs , thus 
biasing efficiency comparisons against the capital-intensive processes. Secondly, 
the firms or other public sector DMUs which are compared in terms of relative 
efficiency by the Pareto-efficiency criterion may take more than one time period 
to learn and adapt to changing environments. This intertemporal adaptivity is 
ignored in current DEA models.
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38 JATI K. SENGUPTA

 Our object here is to develop a class of models of dynamic efficiency, which 
provides efficiency comparisons over time. This also provides a link with the 
concepts of static efficiency. Two types of dynamic issues are analyzed here . One 
involves the use of incremental capital inputs leading to incremental outputs and 
the second introduces adjustment costs so as to modify the production function. 
Both these issues raise questions about intertemporal efficiency and how it is 
related to static efficiency.

2. MODELS OF DYNAMIC EFFICIENCY

 Consider a sample of N DMUs each producing a single output  (2) with m 
inputs. The output vector A has the input coefficient matrix A of dimension m by 
N which involves only the current inputs in the static framework . To compare 
the relative efficiency of the reference unit, i .e., the k-th DM with its current input 
vector Xk, we set up the following linear programming (LP) model: 

maxz=e',.

               s.t. A i, Xk; A>0(1) 

where e is a column vector with each element unity and the prime denotes a 
transpose. If the input matrix A and the input vector Xk of the reference DMU 
are available from the observed data, then the LP model (1) can be solved for the 
optimal A*. The dual of this model is: 

min gk=/s'Xk 

                s.t. fs'A>e'; fl>0(2) 

which yields the optimal dual vector f3* where e')* = /3*'Xk. The static efficiency 
model (2) may be presented in several other variations. For instance the constraint 

fl >8 E e where E is a small positive constant may be added so that the positivity of 
the optimal vector l* is ensured. Also, the primal model (1) can be modified as 

min hk = 0 

                      s.t. A),<OXk; e'2=1, A>0(3) 

where 0 is a scalar representing the proportional reduction to all inputs of the 
reference unit DMUk, the unit being evaluated, to improve efficiency. Here the 
reference DMU is efficient if and only if 9* = 1.0 and the slack variables for the 
constraint are zero. 

 In terms of the simpler models (1) and (2) one could easily characterize the 

production frontier as a best practice production function. For the LP model (2) 
the reference DMUk is efficient if it holds 

   mm 

E f *alk = I , or E N *xik = yk (4) 
i=ll=1
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with a zero slack variable. Let  yk = ~i fit xik denote the optimal or potential output. 
The reference unit DMUk is not efficient if its observed output (yk) is less than 
the optimal output (yk ). A similar interpretation can be given of the output 
maximization model (1). The reference unit DMUk is efficient if it holds that 

E al,~* = xik , all i =1, 2, • , m . (5) 
=1 

If x k = E; =1 aidenotes the optimal inputs, then the reference DMUk is inefficient 
if at least for one input i the inequality 4 k < xik holds. 

  Now consider a dynamic generalization of the output maximization model (1). 
Assume that each input can be used either as current inputs or as incremental 

(capital) inputs. Then the dynamic model in one version can be specified as follows: 

T-l 

          max z(T-l) = E e'i (t) 
r=o 

s. t. AA(t) + Bd A(t) < Xk(t) (6) 

A(t)>0; t=0, 1, 2,• • , T-l 

where B is the incremental capital coefficient matrix and .440=  A.(t + 1) — 2(t) 
denotes the incremental outputs. A second version of the model uses two groups 
of inputs with Xk(t) for the current inputs and 4(t) for the incremental capital 
inputs so that the constraints become 

AA(t) < Xk(t); Bd) (t) < 4(t)(7) 

2(t)>0; t=0, 1, 2, • , T-l . 

In a more general set up the observed coefficient matrices A and B could be 
time-varying as A(t), B(t), and the objective function (6) could involve minimizing 
smoothing costs, e.g., 

                                 T-l 

        max z(T-l) = E [e'A(t) — — A(t — 1))' — /,(t —1))] . 
r=o 

 Also the case of multiple outputs can be handled through an output vector As(t) 
for each DMUs as: 

T-l N 

max z(T-l) _ E > p'(t))i,s(t) 
t=0 s=1 

N 

S.t. [As)s(t) + BdAA] <— Xk(t) (8) 
s=1 

As(t)>0; s=1, 2, • , N; t=0, 1, • • , T-l 

where the price vector p(t) is provided either by the observed market prices or the 
subjective weights assumed to be common to all DMUs . In several applied studies
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by (Dyson and Thanassoulis (1988), and Sengupta (1990), the weights for the 
multiple outputs are either  assumed to be equal or determined by the statistical 
criterion of canonical correlation theory. 

 A different type of dynamic generalization of the static model (1) may be 
suggested in terms of the adjustment cost approach. Holt et al. (1960) originally 
assumed that adjustment costs arise from production activities with changes in 
labor force. Treadway (1970), Lucas (1967) and Pindyck (1982) define adjustment 
costs as a function of investment and treat it as a deduction from total output or 
revenue. Following this latter approach one could define gross investment (I Jo)) 
for each DMU; as 

Ij(t)=Kj+b;KK(t) 

or 

Kj=vi.,j(t)—B;I(j(t) 

where k, is the time rate of change of capital stock, b is the fixed rate of depreci-
ation and vi is the investment-output coefficient. Assume a linear adjustment cost 
function C j(.1 j)  = y iv ji. j(t) and a linear capacity constraint for capital stock as 
Kj(t) < K.,. Then one could specify the following intertemporal model of dynamic 
optimization: 

                       T N 

max z(T) = E [A Jo)— CAN] di 
o i=1 

S. t. ail/ll(t) <x,(t)(9) 
j=1 

kl(t)= v jA;(t) — VP) 
K<Kj, j(t)>0, j=1, 2, • •, N . 

This is an optimal control problem with inequality constraints for each t which 
are discrete and a continuous process of change of capital stock. The Hamiltonian 
for this problem is 

            H = E [(1 - y jvkl; (t) + ~; (v;~ j(t) — b jKj (t))] . 
                                  =1 

If an optimal program {40; 0 < t< T} exists, then by the standard results of 
control theory (Lewis, 1986) it must satisfy the dynamic adjoint equations for 
all j=1,2,•••,N:

Kj = v j t j(t) -- b jKj(t); K j(0) given (10
a) 
                   (5jH;(t)+si(t) 

where si(t) is the Lagrange multiplier for the capacity constraint on capital stock. 
Moreover at each moment of time t the control vector ,1(t) must maximize the
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Hamiltonian—subject to the inequality constraints on control. This yields the LP 
model: 

           max  E [(I -yjvj+vfitj(t))),j(t)] 
 j=1 

                 s.t. E al;2;(t)<xik(t); A;(t)>0 . (lob) 
j=1 

The adjoint vector n(t) must be continuous and also satisfy on the optimal 
trajectory a transversality condition

rim n*(t) = 0 
t-^T

and a "jump condition" for continuity of 7r*(t): 

urn Pr* (T+r)-7r*(c—r)] =0 
t-+T 

for any optimal path of n(t) crossing a phase boundary at time t = T.

(loc)

(rod)

  Several features of this dynamic efficiency model must be pointed out. First of 

all, the entire time profile of the efficiency path is characterized by the optimal 

program: {,%*(t), 7c*(t); 0 < t < T}. The two sets of adjoint equations (lea) describe 
the path of adjustment in the different regions of the phase space. Secondly, a 
static model of the form (lob) is embedded in every dynamic optimal program. 
This static model differs from the standard DEA models (1) and (2) in two respects. 
One is that both the dynamic shadow prices denoted by 71(0 and the marginal 
adjustment cost parameters y enter into the objective function of (lob) but since 
it*(t) can be either positive, negative or zero, it may increase, decrease or keep 
unaltered the value of output, although the adjustment costs tend to reduce the 
objective function. Furthermore by the duality principle DMUk will be efficient 
if it satisfies the following condition 

E N *(t) alk + vk(yk —It 71(0= 1; fl(t) � 0 .(11) 
i=1 

This condition will collapse into the static efficiency condition (4) if and only if 
Vk(yk - 4(0= = 0, which implies that either rck (t) = yk or, vk = 0 or both. The most 
interesting case is the first one, i.e., 4(0 = yk which says that the dynamic shadow 

price of investment equals marginal adjustment cost at the optimum. 
 Thirdly, the optimality condition(11) is only a necessary part for total optimality 

and the sufficient condition is that 

                    nk = 601 (0+ + s;* 

along with (loc) and (rod). This is sometimes called the perfect foresight condition , 
which specifies the future evolution of the time path of n*(t). So long as the perfect
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foresight condition is not fulfilled, the investment path is not optimal and hence 
any forecast  lik(t) different from nk(t) when used in the constraint (11) would fail 
the dynamic efficiency test. Also, if the optimal value s,* of the capital constraint 
is zero, it implies another form of inefficiency due to less than full capacity 
utilization of capital stock. 

 Finally, one has to note the transversality condition (loc), which says that the 

policy of adding to capital in the long run has zero worth. If one lets T.-4 co and 
adjoins a discount function exp( — pt) in the integrand of (9), the transversality 
condition becomes

rim e-Pin*(t)=0= rim =e-Ptlr*(t)K*(t) 
t- opt - 00 

i.e., the long run value of optimal capital stock is zero. 
 A second way to introduce adjustment cost is to relate it to past investments. 'The adjustment const has been generally viewed in investment theory in a con-

tinuous form. Thus Treadway (1970) and more recently Pindyck (1982) derived 
the optimal profile of a firm's output vector, when its capital accumulation is 
subject to a continuous investment demand function. In the learning by doing 
model Lucas (1967) discussed technical progress in a continuous form by relating 
it to cumulative past investments. Following this version of the adjustment cost 
approach we may consider an example where the level of current input demand 
is dependent in part on the program of investment followed in the past: 

AA.(t) + G(s),.(s) os < Xk(t) . (12a) 

0 Here G(s) is the matrix of investment coefficients in the past and any input is 
assumed to be used either as a current input or as an investment input. In terms 
of continuous change this specification can be written as 

A),(t) + G(t)),(t) + 4(t) = k(t)(12b) 

where q(t) is a nonnegative slack variable. A suitable objective function for this 
model is: 

T max z(T) = [e'2(t) — C(2(t), ).(t))] d 

0 where C(•) denotes a scalar objective function. Note that one can also incorporate 
the effect of cumulative investment as in (12a) to define a dynamic efficiency model 
as follows: 

T maxz(T)= e'A,(t)di 

0 s. t. (12a) and )L(t) > 0 . (13a)



MODELS OF DYNAMIC EFFICIENCY IN THE PUBLIC SECTOR

This is a continuous LP problem and its dual can be derived as: 

 T 

 min  gk(T)= f3'(t)Xk(t)di 

0 T 

                   s.t. /3'(t)A> e' — /3'(s)G(s)os

43

(13b)

/3(t)>0, 0<t<T. 

Let 0*(t), 0 < t�. Tl define the optimal path. This path will not satisfy the effi-
ciency condition (4) of the static DEA model, unless for each t it holds: 

                               T 

                   /3*'(s)G(s) os = 0 (13c) 

                                      t

i.e., the optimal value of future investments is close to zero. For the optimal 

program one must have 

TT 

e'),*(t)di = /3*'(t)Xk(t)di 

00 and for some t it must hold for the efficient DMUk: 

mT m 

E /3*(t)alk +E 13*(s)gik(s) os =1 (13d) 
i=It i=1 

13*(t)>_0;i=1,2, ,m. 

The second term on the left hand side represents the expected value of future 
investments, whereas the first part is the value of the current inputs. 

 On comparing the two efficiency conditions (11) and (13d) of the two adjustment 
cost models, it is apparent that they are very similar. Whereas condition (11) 
involves the dynamic shadow price variable rck (t) which must be correctly forecast 
for ensuring dynamic efficiency, the condition (13d) involves future prices fl*(t), 

/3*(t + 1), • • , f3*(T) to be estimated.

                     3. AN EMPIRICAL APPLICATION 

 This section describes an empirical application of the incremental capital inputs 
model (6) in its dual form and analyzes the potential usefulness of the two forms 
of dynamic efficiency developed earlier. 

   The empirical application utilizes input-output data in logarithmic units for 
selected public elementary school districts in California for the years 1977-78 , 
1979-80 and soon up to 1987-88, with T= 6. This data set was used in previous 
studies of static DEA models by Sengupta (1989) , Sengupta and Sfeir (1990). 
Statistics of enrollment, average teacher salary , standardized test scores were all 
obtained from the published official statistics. Out of a larger set of 35 school
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districts, 25 were selected in three contiguous counties of Santa Barbara , Ventura 
and San Luis Obispo on the basis of separate homogeneity tests based on the 

 Goldfeld and Quandt (1965) statistic. On the basis of the standardized test scores 
in reading, writing, spelling and mathematics, a composite output is defined as an 
average. As input variables we had a choice of eight variables, of which the 
following four were utilized in the dynamic LP model which is dual to (6): xi(t)= 
average instructional expenditures with teachers having experience of 3 years or 
more, x2(t) = diversity index measured by minority enrollment, x3(t) = average class 
size and x4(t) = average tax base of the district. Of these input variables the first 
is most important in the sense of knowledge-based capital stock and the second 
reflects a growing trend for the state economy due to increasing minority enrol-
lment. The dual model corresponding to (6) solves the following LP model: 

T-l min gk(T -1) = f3'(t + 1)Xk(t) + f3'(0)B/1(0) 
t=o

s. t. 11'(013+ f3'(t + 1)(A - B) > e' 

t3(t)�0,t=0,1,2,•••,T-l. 
The optimal values of the input coefficients /3*(t) are reported in Table 1 along 
with the value of the average optimal output (y*) and the average estimates 
for the whole period 1977-80. As expected the changes in /3*(t) over time are 
most prominent and this is followed by lz(t) and Mt). The estimates f3* for the 
whole period 1977-88 appear to be very near the average value for the r3*(t) = 
(1/6)1 t6=1 f3*(t). This suggests that the steady state approximation of the dynamic 
model would be appropriate in this case. Secondly, the last row of Table 1 shows 
the proportion of the efficient DMUs in each t. Although there is slight variation 
in this proportion with a slightly increasing trend, this appears to be very small. 
Since it is not possible to apply the standard statistical tests to these estimates 

f3*(t) one cannot be definitive on this issue. Thirdly, when we average the input 
output data for a moving average of three years, i.e., 1977-82, 1979-84, 1981-86

TABLE 1. Estimates of the dynamic production frontier

1977-78 79-80 81-82 83-84 85-86 87-88 77-88

*(t) 
Mt) 
ll*(t) 
f3 (t) 
4(0 
Y*(t) 
DMUk(%)

0.232 

0.524 

0.626 

0.180 

1.022 

4.243 

 20

0.245 

0.521 

0.628 

0.178 

1.026 

4.261 

 21

0.249 

0.517 

0.630 

0.171 

1.020 

4.296 

21

0.261 

0.510 

0.635 

0.164 

1.014 

4.383 

 23

0.281 

0.504 

0.637 

0.161 

0.944 

4.411 

 24

0.301 

0.498 

0.639 

0.151 

0.986 

0.413 

 25

0.272 

0.519 

0.631 

0.169 

1.012 

0.430 

 24

1. The estimate for the last column is based on the whole period 1977-88. 

2. The optimal value (y*) of the composite output is the mean of the optimal output level. 
3. The last low denotes the proportion of the sample found to be efficient in the dynamic model.
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and so on, the estimates of the coefficient vector  f3*(z) are observed to change 
more significantly, with the greatest change accounted for by the instructional 
expenditure. This suggests the need for treating dynamic efficiency quite differently 
from the static efficiency. This point is reinforced more strongly for the agricul-
tural data, where changes in weather and risk attitudes of farmers have more 

pronounced impacts on the input-output coefficients. Similarly, for the industries 
where technological change has been more rapid, changes in optimal values /3*(t) 
over 0 < t < T are more likely. Some empirical studies reported elsewhere by 
Sengupta (1992, 1994) provide support for such inference. 

 The dynamic efficiency models (6) and (7) have several potential applications 
in public sector decision-making framework involving both current and incre-
mental inputs. First of all, the changes in the optimal output level 44 (0 of an 
efficient DMUk would help to identify the impact of technological change or 
other structural factors. Thus the relative inefficiency of a static DEA model can 
be accounted for in terms of the increased output requirement planned before. 
Secondly, the effect of increasing T on the optimal trajectory {A*(t); 0 < t <T-ll 

                                                          may be evaluated and utilized for policy purposes. If the trajectory tends to be 
stabilized as 00, then one could use the steady-state approximation of the 
dynamic model. Likewise the dual programs {/3*(t), 4*(t); 0 < t <T— 1 } can be 
tested for their sensitivity. Thirdly, a notion of peer group efficiency can be 
developed by identifying the subset of DMUs which satisfy the dynamic efficiency 
conditions. The peer group can serve as a goal for the other DMUs which are 
relatively inefficient. In a static framework this has been analyzed by Beasley 
(1988) and Sengupta (1991). Finally, the sensitivity of the optimal programs 
{A *(t), /3*(t); 0 < t < T-ll  due to variations in the capital coefficients in matrix B 
would indicate the robustness or otherwise of a dynamic efficiency measure and 

hence any policy based on such measures . Clearly this aspect needs much more 
thorough analysis than so far attempted in the current DEA literature .

4. CONCLUSIONS

 The relative inefficiency of input-output systems analyzed in the linear 

programming formulations of data envelopment analysis is mostly static, since it 
ignores the intertemporal effects of capital inputs and other dynamic factors . By 
way of extension of the static DEA approach two types of programming models 
are developed here for evaluating dynamic efficiency. One approach divides the 
inputs into two groups, the current and the capital inputs and then formulates a 
dynamic model involving incremental capital inputs . The second approach involves 
adjustment costs due to increased investment for future capacity expansion

, or l
agged investments in the past. An empirical application is also considered by way 

of illustration to show the estimation problems of a dynamic production frontier . S
everal areas of policy applications in production and resource planning are briefly 

pointed out.

University of California
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