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ASYMMETRY OF MARKET RETURNS AND THE MEAN 

           VARIANCE FRONTIER*

Jati K. SENGUPTA and Hyung S. PARK

 Abstract: The hypothesis that the skewness and asymmetry have no significant 

impact on the mean variance frontier is found to be strongly violated by monthly 

U.S. data over the period January 1965 through December 1974. This result raises 

serious doubts whether the common market portifolios such as S&P 500, value 

weighted and equal weighted returns can serve as suitable proxies for mean-

variance efficient portfolios in the CAPM framework. A new test for assessing 

the impact of skewness on the variance frontier is developed here and empirically 

applied. This has important implications for models of market volatility 

characterized by conditional variances of market returns.

1. INTRODUCTIOQN

 Over the past years a variety of tests of the two-parameter capital asset pricing 
model (hereafter CAPM) has been reported in the literature. More recently much 
attention has been focused on the asymmetry and skewness of market return 
distributions and other portfolios such as mutual funds. For one thing this issue 
of asymmetry is important for our understanding of the observed investor behavior. 
For instance Klaus and Litzenberger (1976), Singleton and Wingender (1986) and 
Seats and Trennepohl (1986) have found in their empirical studies that the returns' 
skewness is a major factor in the financial decision models i.e., equilibrium asset 
returns depend not only upon systematic risk but also upon systematic skewness. 
The basic point is that, with fixed systematic risk, investors should be rewarded 
with higher expected returns for any asset portfolio having large systematic 
skewness if the overall market is ex ante negatively skewed. Conversely if the 
market is positively skewed, then systematic skewness may be deemed highly 
desirable. Secondly, there is extensive empirical evidence that asset returns exhibit 
both that fat tailed marginal distributions and volatility clustering (see Melton, 
1980; Engle and Bollerslev, 1986; Sengupta and Park, 1990). Thus the time series 
of monthly returns variances exhibits nonstationarity and in this framework it is 
important to know if the shocks to volatility of major stock returns are permanent. 
One class of models, increasingly emphasized in recent times, which recognizes 
this temporal dependence in the returns variance and also skewness is the

* The authors are sincerely thankful to an anonymous referee for helpful comments and suggestions
.
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autoregressive conditional heteroscedastic (ARCH) model and its various 

generalizations (GARCH) initiated and  developed by Engle (1982), Engle and 
Bollerslev (1986) and many others. Thirdly, the proponents of CAPM have argued 
that even if the actual returns on stocks are quite volatile over the years, in a 
conditional sense the mean returns are independent of time and hence can be 
estimated by standard regression methods. However even this inference fails to 
hold, as Rothschild (1986) has shown since this has the stringent requirement that 
the conditional mean of the market portfolio is the same in every state. As the 

proportion of different assets in the market portfolio, which is determined by 
demand and supply conditions is bound to vary from period to period, the 
composition of the market portfolio will surely change as the state changes. 

 These considerations imply that one has to analyze more closely the asymmetry 
of the distribution of market returns and the heterogeneity of its variance structure. 
Our object here is two-fold: to analyze the intertemporal variation of the second 
moment of the market portfolio and the implications of the skewness parameter. 
Our investigation of the empirical monthly data of the different market portfolios 
over the years January 1965 through December 1974 shows that the restrictions 
imposed by the mean variance efficiency frontier are strongly violated by such 
data. It is not only that systematic skewness has significant impact on variance, 
it also contributes to the volatility of the returns process. This seems to present 
a fundamental puzzle which is not resolved by the existing financial models of 
investors behavior.

2. A NEW TEST OF MARKET VOLATILITY

 The problem of direct measurement, ex ante, of volatility of financial asset 

returns can be looked at in two different ways. One is to compute from the data 

on market returns some statistic such as the variance and from it make inferences 

about the future volatility. This generates ARCH type models where the return 

series {yt} is decomposed into its conditional mean and conditional variance: 

yr= Et- lyt+el;6i= Et_ lei(1) 

where Et_ lyt is the conditional mean and a? is the conditional variance of the 
return in period t and both depend on the information set available from period 

t —1. The shock to the mean is yt — Et _ 1 yt and the shock to the variance is 

Ete2 — Et _14=d  — = vt. Hi a linear system the model for the shock to variance 
presumed by the GARCH formulation is 

= 0(B)vt + wt 

where 0(B) is a lag polynomial in B, the back shift operator with 0(0) = 0 and wt 
is a deterministic series. In the simplest case of first order lag this can be simplified to 

62 wt + aet -1 4_ -1(2)
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If the empirical estimates are such that  tivt is negligible and the sum of the slope 
coefficients adds up to unity in a statistically significant sense, then the shocks to 
volatility are permanent. 

 A second way to analyze the volatility of the return series when its probability 
distribution changes over time is to use a conditional distribution. Thus suppose 
we have a return process 

Yt=/It— FEt 

where µt is the mean and cts and identically distributed random variables but not 
independent of time t. However suppose there is a state variable s = (se), such that 
conditional on s the random variable yr is independent of t. Suppose also that st 
has a stationary distribution, then the time series data on actual returns can be 
used to estimate the unconditional means and variances of returns. Two interesting 
implications of this result readily follow. One is due to Rothschild (1986) who 
suggests that different values of s could represent different information available 
to different traders. Thus if there are a finite number (N) of states and that the 
stationary or ergodic distribution of s is given by its= Pr{st = s}, then the 
unconditional means and covariances 

nN 

11=  E nsµis; '52 = E its(µes — tu)2 
s=is=1 

can be estimated from the observed data on actual returns. 

 A second interpretation of the conditioning set { yt I s = st} is that it introduces 
a partition in the space of distributions of the random return yr. This partitioning 
introduces asymmetry in the sense that for any fixed c the investor's reaction to 
the event { yt >_ c} may be very different from that of {yt > 0. This asymmetry of 
reactions may vary at different levels of c.e.g., the bull market behavior may 
significantly differ from the bear market behavior. Some earlier studies (Sengupta 
and Park, 1990, Dumas and Sengupta, 1989) have found similar contrasting 
behavior in the case of conservative and aggressive mutual funds. 

 The partitioning level c may be given a generalized interpretation in terms of 
the information set underlying conditional mean and conditional variance of 
returns. Let us define the conditional mean (µt) and conditional variance (a) as 

Pt = E[yt Il], a = E[(yt — µt)2 It] 

where It = { yr _;; 1 <j < 00; xi_ j; 0 �j < co} is the information set on past levels of 
returns yt _; and the lagged explanatory variables xi _. One could replace the 

regressor variable xi by a function of the conditional mean, e.g., ar =Alit). This 

yields the variance function model discussed in some detail by Carroll and Ruppert 
(1988). A standard regression model explains conditonal means in terms of 
regressor variables, whereas a variance function model is set up to explain the 
conditional variance in terms of other explanatory variables. In other words, in 
variance function estimation we attempt to understand the structure of variance
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as a function of the predictor variables, just as the examination of the structure 
of the means as a function of predictors. Two useful examples of variance function 
models, applicable in portfolio models are the  so'-called Box-Cox transformation 
and the semi-logarithmic model, e.g., 

                     log a =00+olxt+o2xr 

where xi may be replaced by the sample estimates of µt. In our empirical applications 
the sample estimates of µt used as the regressor variables are denoted by c,_1; 
hence the linear variance function model is specified as 

a? =a+ liar-l+et 
i=1 

where xi is replaced by the estimated return c,_,. Note that this formulation is 

closely related to the ARCH models, where lagged variances o-?_.;  are also 
introduced as explanatory variables. 

  The major implication of this partitioning by the truncation level c is that it 
introduces a decomposition of the variance of return as: 

Var[yt] = Ezc(var[yt 1 z,])+Varzc[E(yt zr)] 
where we define ze =1 if yt < c and zc = 0 if yt > c. The standard mean variance 
efficiency frontier characterizes the variance function var[yt] as a function of c, 
when the return level c is increased i.e., the higher the level of c, the greater the 
variance or risk associated with it. But this characterization may fail to hold for 
the conditional variance var[yt I zc]; also the skewness preference may make higher 
variance more attractive (for a similar characterization see Bayarri and DeGroot 
(1987)). It is necessary therefore to characterize the behavior of the conditional 
variance V(c) = Var[ yt l yt > c] as c increases in the positive domain. Here we can 
utilize an important theory proved by Katlin (1982), which says that if the 
probability density f(y) of yt is log concave (i.e., f(y) = exp(— ¢(y)), 4)(y) being 
convex in y), then the conditional variance V(c) is strictly decreasing as c increases; 
furthermore if f(y) is log convex on (a, co), a > 0 then V(c) is increasing as c 
traverses (a, co). Although the class of log concave densities which includes the 
normal density, all Gamma densities with nonnegative parameters, the double 
exponential and all Polya frequency densities is very wide, it is strictly an empirical 
question how V(c) changes with the truncation level c when the class of densities 
f(y) is not known. 

  The overall market is influenced by two groups of traders: the active traders 
who seek returns (yt > c) higher than the past mean level and the passive traders 
who are more conservative (yt < c) and therefore more slow to change. It is clear 
that in the bullish market the active traders would dominate whereas in bearish 
markets the passive traders would dominate. Hence the hypothesis of Karlin's 
theorem is likely to hold more strongly in the bullish periods when the return 
variance would exhibit a declining behavior with respect to the mean.
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3. DATA SET ON MARKET RETURNS

 For empirical investigation of the pattern of market volatility measured by 
conditional variance of raturns we have used monthly data for five market indexes 
are drawn form Chicago's Center for Research in Security Prices (CRSP) for the 

period of January 1965 through December 1974. The rates of return for these five 
indexes include the dividends paid per share and are transformed by taking the 
natural logarithm of one plus monthly return. Hence, the rate of return,  yit, for 
market index i in month t is a continuously compounded rate of the change in 
the fatal value of the market index over a month per dollar of initial investment. 
The five market indexes used in empirical analysis are as follows: 

 a. Value-weighted market return including all NYSE securities with dividends 
     reinvested. 

 b. Value-weighted market return including all NYSE and AMEX securities 
    with dividends reinvested. 

 c. Equally-weighted market return including all NYSE securities with 
     dividends reinvested. 

 d. Equally-weighted market return including all NYSE and AMEX securities 
    with dividends reinvested. 

 e. Standard & Poor Composite 500 Index return. 

 The monthly data are used instead of the daily series because of two reasons. 
One is to avoid the presence of special day (e.g„ Monday or Friday) effects and 
the other is due to the nonsynchronous trading activities. Recently Engle, Ng and 
Rothschild (1989) have more often used monthly return data in order to avoid 
these seasonality effects. Also we have used 4-month moving average samples in 
our estimates of conditional means and conditional variances. This is because we 
have done previous studies on mutual fund returns, e.g., Sengupta and Park (1990), 
where annual time series data are utilized with dividends declared once a year. 
To retain comparability with these earlier studies based on yearly returns series 
we had to use a 4-month moving average. 

 The time period covered in our study is from January 1965 through December 
1974. Two motivations for selecting this period are as follws: one is that the same 

period was selected for analyzing the risk return relationships for three types of 
mutual funds and secondly, this period includes both a bearish period and a bullish 

period. Hence one could estimate if the estimates of the variance function varies 
over these optimistic and pessimistic periods. 

 To compare our variance frontier estimates in the bullish period, we have also 
considered CRSP data for a more recent bullish period from August 1982 to 
December 1991. The results of these estimates are reported in Table 3, which have 
been analyzed in some detail elsewhere by Sengupta and Sfeir (1993). 

 Since our main objective is to test the impact of the skewness factor on the 
variance. frontier of market returns we use the specification
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1. RESULTS OF KARLIN'S TEST ON VARIANCE MONOTONICITY WITH TRUNCATION LEVEL.

Market Indices Intercept  Ct  - I
2  3

R2 DW

Equal Weighted Return: 

 NYSE only 

 NYSE plus AMEX 

Value Weighted Return: 

 NYSE only 

 NYSE plus AMEX 

S&P 500 Index Return:

 0.002 

(27.32) 
 0.003 

(51.23) 
 0.003 

(87.27) 
 0.002 

(14.62) 
 0.003 

(28.12) 
 0.004 

(48.25) 
 0.004 

(88.06) 
 0.002 

(15.27) 

 0.001 

(11.20) 
 0.002 

(41.62) 
 0.002 
80.07 

0.001 

(14.14) 
 0.001 

(12.13) 
 0.002 

(35.88) 
 0.001 

(82.54) 
 0.001 

(144.06) 

 0.001 

(10.78) 
 0.001 

(36.75) 
 0.002 

{67.60) 
 0.001 

(15.02)

-0 .023 

(-15.53) 
-0 .050 

(-22.28) 
-0 .077 

(-29.78) 

-0 .025 

(-15.41) 
-0 .054 

(-20.39) 
-0 .086 

(-30.28) 

- 0.004 

(-2.06) 
-0 .041 

(-21.64) 
-0 .063 

(-32.84) 

- 0.006 

(-2.86) 
- 0.040 

(-18.25) 
-0 .066 

(-34.88) 

- 0.002 

(-1.05) 
-0 .036 

(-18.01) 
-0 .057 

(-26.53)

 0.248 

(12.82) 
 0.828 

(16.02) 

 0.221 

(11.58) 
 0.797 

(16.85) 

 0.383 

(20.41) 
 0.925 

(21.50) 

 0.357 

(16.47) 
 1.000 

(23.55) 

 0.384 

(17.98) 
0.961 

(18.04)

 -3 .311 

(-11.39) 
 -1 .316 

(-5.95) 

-2 .750 

(-12.37) 
 -1 .008 

(- 5.87) 

-3 .442 

(-12.83) 
  0.229 

 (1.04) 

- 4.056 

(-15.42) 
  0.062 

 (0.28) 

-3 .938 

(-11.03) 
  0.484 

 (2.09)

0.87 

0.98 

0.99 

0.49 

0.87 

0.97 

0.99 

0.48 

0.10 

0.93 

0.99 

0.03 

0.18 

0.90 

0.99 

0.002 

0.03 

0.90 

0.98 

0.11

2.29 

2.03 

2.14 

1.75 

1.69 

2.06 

2.31 

1.59 

1.91 

2.07 

2.69 

1.41 

1.79 

2.01 

2.42 

1.51 

1.95 

2.03 

2.29 

1.24

 Note: 

Durbin-

t-values are in 

Watson statistic.

parenthesis, R2 is the squared multiple correlation coefficient and DW is
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 V(c)=a+lsict_ +ls2cr_ 1 +/sscr_ 

in our estimation for the five market portfolios. Three types of sampling framework 
were considered, e.g., (a) fixed sample size, (b) moving average samples and (c) 
increasing sample sizes. For the fixed sample size case the entire 10 year period 
is divided into 30 four-month subperiods, so that the first subperiod is January 
1965 through April 1965, the second from May 1965 through August 1965 and 
so on. For the moving average samples the first sample runs from January 1965 
through April 1965, the second from February 1965 through May 1965 and so 
forth. Finally, the increasing sample size test is based on the means and standerd 
deviations computed by gradually increasing the sample sizes by 4 months 
beginning with January 1965. This provides a direct test of the mean variance 
relationship when the sample size is gradually increased in terms of the statistical 
criteria such as R2 and t-values of the coefficients, the increasing sample size test 

performed the best. Hence we use this framework in all our estimation results.

TABLE 2. RESULTS OF KARLIN'S TEST ON VARIANCE MONOTONICITY WITH TRUNCATION Level.

Market Indices Intercept ct-i
2 3 C

E_, R2 DW

Equal Weighted Return: 

 NYSE only

Simple Var.

Log Var.

NYSE plus AMEX

Simple Var.

Log Var.

Value Weighted Return: 

 NYSE only

Simple Var.

Log Var.

NYSE plus AMEX

Simple Var.

Log Var.

S&P 500 Index Return:

Simple Var.

Log Var.

   0.003 

  (87.27) 
-5 .727 

(-117.4)

   0.004 

 (88.06) 
-5 .417 

(-201.2)

   0.002 

  (80.07) 
  -6 .158 

(-191.7)

   0.001 

  (82.54) 
-6 .122 

(-164.8)

    0.002 

  (67.60) 
-6 .387 

(-215.78)

- 0.077 

(-29.78) 
-33 .038 

 (9.31)

-0 .086 

(30.28) 
-31 .578 

(-19.2)

-0 .063 

(-32.84) 
-59 .098 

(-22.15)

- 0.066 

(-34.88) 
-60 .653 

(-19.79)

-0 .057 

(-26.53) 
-58 .03 

(-21.15)

 0.828 

(16.02) 
244.888 

(3.47)

 0.797 

(16.85) 
261.192 

(9.54)

 0.925 

(21.50) 
832.92 

(13.88)

 1.000 

(23.55) 
855.78 

(12.49)

 0.961 

(18.04) 
973.90 

(14.30)

  -3 .311 

(-11.39) 
-1590 .5 

 (-4.00)

-2 .750 

(-12.37) 
-1369 .8 

(-10.6)

- 3.442 

(-12.83) 
-2682 .3 

(-7.65)

  -4 .056 

(-15.42) 
-3094 .3 

(-7.29)

-3 .938 

(-11.03) 
-3998 .4 

(-8.76)

0.99

0.99

0.99

0.99

0.99

0.98

0.99

0.97

0.98

0.97

2.14

2.34

2.31

2.42

2.69

2.51

2.42

2.19

2.29

2.06

Note: t-values are in parenthesis.
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Fig. 2. Plot of EWRETNY with Karlin's method.
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The statistical results of this test are reported in Tables  1 and 2 and the Figures 
1 and 2 illustrate the plot of the conditional variance V(c) against the mean level 
c for the equally weighted return index. A number of implications follow from 
these statistical results. First of all, the linear regression of V(c) on c shows a 
negative slope consistently for all the five market indices. 
All  coefficients are significant at 1% level. This result is confirmed when a 
separate linear regression of the form 

u(c)= [V(c)]112 =a+bct- 1 

is estimated on the basis of an increasing sample size test, starting with the initial 
subperiod and then adding on the other sample periods consecutively. As Table 
A shows, the negative impact of the mean on the standard deviation is consistently 
significant for all the five indices. This empirical result is quite contrary to the 

positive risk-return relationship of high returns for high risk that is predicted by 
the standard mean-variance portfolio medel. In other words, additional 
information as more observations are added does not pay in terms of return and 
risk trade-off. 

 One possible reason for the negative relationship between mean and variance 
is that higher order moments such as skewness and kurtosis are ignored here . In 
strudies analyzing the performance of British mutual funds (Unit trust), Saunders, 
Ward, and Woodward (1980) found that the more risky the trust the lower its 
returns. Also, U.K. investors are found to be less risk averase since , despite the 
poor return performance of the high-risk trusts, their trading volume did not fall 
over the period. By employing the stochastic dominance tests, they present evidence 
that trusts as a group have generally out performed the market. 

 A second reason is the phenomenon of skewness preference in a bullish market . 
This phenomenon has been analyzed by Singleton and Wingender (1986) , Beedles 
(1979) and others. It says that if the average investor is optimistic about the future

TABLE A. RESULTS OF INCREASING SAMPLE SIZE TEST.

Market Indices Intercept c, - R2 DW

Equal Weight Return: 

   NYSE only

NYSE plus AMEX

Value Weighted Return: 

   NYSE only

NYSE plus AMEX

S&P 500 Index Return:

 0.059 

(45.25) 
 0.070 

(39.25)

 0.041 
(26.77) 
 0.042 

(26.90) 
 0.037 

(40.12)

  —1.67 

(-10.53) 
 —0.981 

(-9.36)

—1.022 

(-4.33) 
—1.061 

(-4.58) 
—0.827 

(-3.45)

0.80

0.76

0.40

0.43

0.30

1.89

1.94

1.74

1.91

1.94
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TABLE 3. VARIANCE FRONTIER ESTIMATES FOR MARKET RETURN OVER 

           AUGUST 1982 THOROUGH DECEMBER 1991.

Market Index Intercept  cf  -  ,
2 3

R2 DW

Equal Weighted Return: 

 NYSE only

Value Weighted Return: 

 NYSE only

S&P 500 Index Return:

0.0012 

(3.54)

0.0015 

(5.92) 
0.0015 

(6.14)

— 0.0385 
(-2.19)

— 0.0628 

(-4.41) 
— 0.0441 

(-2.74)

3.2361 
(8.35)

3.7647 

(8.51) 
3.1640 

(8.12)

—43.99 

(-4.85)

—59.34 

(-4.72) 
—58.12 

(-4.13)

0.58

0.74

0.61

1.16

1.25

1.18

Note: t-value in parentheses.

in the sense tit+ I >c„ then this "good news" effect depresses the conditional 
variance term Q2. To test if this phenomenon is important, we have performed 
variance frontier estimates in Table 3 for the more recent period: August 1982 
through December 1991, which is considered to be a bullish period by the banking 

professionals in U.S. 
 A third possible reason may be that the return distribution has significant 

departures from a normal distribution and hence the mean variance model based 
on the normality assumption cannot explain this type of risk return relationship. 
Since our model is based on Karlin's theorem, it uses a more general framework 
of distribution of returns than the normal. 

 A second major finding is that the slope coefficient (/33) associated with the 
cubic term (c,3_ I) is consistently negative for all the five market returns and highly 
significant at 1`)/0 level. This pattern is not altered when the logarithm of variance 
is used as a dependent variable. For the more recent period (August 1982 through 
December 1991) which is a bullish market period, this pattern is strongly persistent. 
On replacing the cubic regressor term c,3_, by (c,_,— µT)3 where µT is viewed as 
a target return, the asymmetric effect may be captured by dissimilar reactions of 
the infestor from the events c_1 > µr and c_1 < yr. Thus if cl > i r, i.e., the 
investor is optimistic, then a negative /33 coefficient would tend to depress the 
conditonal variance. A reverse behavior, i.e., inflation of variance is likely in a 

pessimistic market. 
 A third important finding is that the signs of the regression coefficients of the 

variance function estimates alterante, i.e., 11 < 0, #2 > 0, #3 < 0. This is consistent 
with the expected utility maximization model of von Neumann-Morgenstern, 

where the utility function is more nonlinear than the quadratic. Fourthly, our 

estimates of the variance function models for the five market indices show the 

negative impact of the skewness factor more strongly in a statistical sense, when 

the bearish subperiod between January 1973 and Decembef 1974 is removed from 

the data set. The variance frontier estimates for the recent period August 1982
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through December 1991 reported in Table 3 confirm the same point, when 
compared with the earlier period estimates over October 1976 through July 1982, 
which is not a bearish period. This latter aspect has been discussed in some detail 
by Sengupta and Sfeir (1993) elsewhere. 

 Finally, we observe a difference in the variance behavior between the equally 
weighted (EW) market index and the value weighted (VW) index. While the EW 
return shows variance to be consistently declining in relation to the lagged mean, 
the VW return behavior is not that strong or consistent. Two possible reasons 
may be given for this apparent difference in behavior. One is that the VW return 
is observed to be less skewed than the EW return, perhaps due to the effect of 

program trading in high value stocks. Less skewness means the negative impact 
of variance is less. The second reason is that the EW return follows more closely 
a gamma-type distribution which yields a monotonic relationship between the 
mean and variance. The weights of equal proportions tend to preserve this 
asymmetric distribution pattern. 

 In general we may thus conclude that the cubic variance function V(c) is not 
uniformly convex in  ct  _  1, since it depends on the level of c,_, and the value of the 
coefficient !'3. If we consider however up to the quadratic term, then the variance 
function is uniformly convex in ct_ 1, since the coefficient I'2 is uniformly positive. 
The latter follows directly from the standard mean variance (MW) model which 
minimizes the variance a2 = x' Vx of a portfolio (x) subject to a lower bound on 
the expected return, i.e., 

Min a2=x'Vx s.t. lx=c, Ext=1 

where (f, V) are the means and variances. The minimal variance a2* can be easily 
derived to be a strictly convex function of c, since we have 

a2*=kc—k1c+k2c2 

where kc=ab, kl=2136, k2=y6, 6=(a6—)62)-1, cc=p. /3=rV- te, y=e'V-le, 
e is a vector of ones and prime denotes transpose. 

 The above results thus suggest the need for generalizing the concept of risk 
aversion by utilizing nonparametric method such as the stochastic dominance tests 
(see Sengupta and Park, 1990) or, transformations of the utility function (e.g., 
Yaari, 1986). However it is clear from the estimated coefficient of the cubic term 
that the impact of skewness on variance is highly significant and any specification 
of the mean variance efficiency frontier which ignores this significant impact of 
the skewness parameter is likely to be heavily biased. Clearly more empirical 
research is called for (see Hsu (1984), Stambaugh, 1982).

4. TESTS OF PERSISTENCE OF MARKET VOLATILITY

 The modelling process in ARCH and GARCH formulations basically estimates 

how the first two conditional moments of the return distribution depend upon
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the past information set. For instance in a linear system the estimating equation 
(2) may be used to test if the shocks to volatility are persistent or permanent when 
the volatility is measured by the time series  {Q2}. This equation may also be 
understood as a form of variance-function estimation in regression theory, where 
the predictors are e_1 and c _ 1. Regreession analysis is usually understood to be 
the examination of the structure of the means as a function of the predictors. In 
variance-function estimation (see Carroll and Rupert, 1988) we try to understand 
the structure of the variances as a function of predictors. Thus we may apply two 
formulations of the conditional variance model: one as in (2) related to the ARCH 
model and the other as 

62=kc+hle2-h26i-l(3) 

where {if7;2 } is the time series of estimated variances from a given model with additive 
stationary errors {el}. For the given model we may choose a simple variant of the 
Karlin's truncation model V(c) = a +E3=  fsict _ 1 and then estimate the volatility 
series {67} and use the linear regression equation (3). 

 In the first case we apply the linear model (2) to the three market indices: 
VWRET, EWRET with the combined samples and S&P 500 over the sample 
period January 1965 through December 1974 using monthly data. The results are 
reported in Table 4, which may be compared with a similar estimate by Engle and 
Mustafa (1989), who used the daily CRSP return data from July 1962 through 
1985 to estimate market volatility in terms of the S&P 500 index. Their estimates 
were as follows:

TABLE 4. VARIANCE FUNCTION ESTIMATES OF THE ARCH MODEL.

Equal Weighted Return: 

 NYSE plus AMEX

Value Weighted Return: 

 NYSE plus AMEX

S&P 500:

yr=0.0018+et; R2 =0007 
  (1.02) 

  = 0.00006 — 0.0009 e_ 1+ 0.986 67-1
   (0.88) 

R2 =0.95, DW = 2.05

yr= 0.00009 + et; R2 = 0.004 
   (1.08)

(46.65)

6i = 0.00001 + 0.0014 e_ 1 + 0.993 67_1
   (0.62) 

R2 =0.96, DW = 2.51
(55.67)

yr= —0.0018+et; R2=0.0017

(-0.45) 
67 =0.00002+0.0023 

                (0.80) (1.37) 
R2 =0.96, DW =1.84

+0.g86d _1

 Note: t-values in 

squares estimates.
parentheses are based on the estimated asymptotic standard errors of the least
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 yt  = 0.00042 + et; cl-i = 0.073 ê_1 + 0.925 a.1 R2 = 0.95 
         (5.12) (16.13) (105.68) 

Since they used the moving average sampling framework and daily data, their 
estimates are slightly different from ours. However they both agree in terms of 
the highly significant coefficient of °-t2_ 1 and the insignificant coefficient of er 1. 
Several features of our estimates may be commented upon. First of all, the R2 
for the variance equation is quite high and significant, although the mean equation 
for yt has disapointingly a low R2 value. This pattern must also hold for the results 
of Engle and Mustafa (1989) although they did not report R2 values. Secondly, 
if we test the null hypothesis that the sum of the two slope coefficients add up to 
one by a t-statistic (which may only hold asymptotically if at all), it cannot be 
rejected at 11)/0 level. This implies that the shocks to market volatility are persistent 
or permanent. Thirdly, all our estimates find that the slope coefficient of e_1 is 
statistically not different from zero, which implies that in these formulations the 
conditional kurtosis of the return distribution is of negligible importance. Finally, 
Chow, Engle and Kane (1989) have found that nonlinear forms of the mean 
function and time-varying regression coefficients tend to provide a better empirical 
fit. To test the plausibility of this hypothesis for our data set we first estimated 
nonlinear. equation 

yt=a+blyt_ 1 +b2Qr +et(4) 
and then on the basis of estimated residuals {et} and the estimated variance {q} 
we computed the linear regression equation (3). Besides (4) we experimented with 
other nonlinear forms but this specification produced the best results in terms of 
goodness of fit. Futhermore this formulation may be viewed as an approximate 
specificantion of the mean variance trade-off where al is viewed in relation to the 
mean return and its square. The statistical results for the different market indices 
now appear as follows: 

VWRET

yr = 7.087 +158.03 +158.03y_1-5464.48a, R2 =0.084 ; DW = 0.94 

  (36.51) (3.16) (0.67)

Qt = 0.00001— 0.0002 d_ 1 + 0.996_1, R2 = 0.97 ; DW = 1.89 

   (0.45) (— 0.07) (52.06)

EWRET

yt = 1.74 + 13.94 yr _ 1— 561.48 Q? , R2 =0.086 ; DW = 0.89 
  (38.47) (2.33) (0.54)
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 q= 0.0 +0.cooler_1+ 0.995 6r_1, R2=0.95; DW=1.98 
       (0.11) (1.13) (43.59) 

 S&P 500 

yt = 5.77 +125.28_ 1-4854.37 Qr , R2 =0.10 ; DW = 0.87 
      (42.47) (3.44) (0.36) 

     6r = 0.0 + 0.0001 er _ 1 + 0.997 â1, R2 = 0.96 ; DW =1.95 
       (0.33) (0.11) (42.55) 

 The sum of the two slope coefficients for the variance function 62 now adds up 
to unity more closely in a statistical sense than before, thus implying that the 
shocks to volatility have more persistence. 

 If we replace (4) by another nonlinear specification the results appear as follows: 

 VWRET 

yt= -0.0019+2.861 61 ; R2=0.08 ; DW=0.54 
       (-1.49) (3.20) 

     61 = 0.0 +0.093 et_1+ 0.994 61_1 , R2=0.97; DW = 2.01 
       (0.62) (0.63) (56.39) 

 EWRET  

Yt= 0.0019 + 1.930 01 ; R2 =0.05 ; DW =0.89 
(-0.73) (2.46) 

       = 0.0 + 0.0075 el 1 + 0.984 6'1_1 ; R2 = 0.95 ; DW = 1.95 
       (0.91) (0.068) (47.14) 

 S&P 500  

yt= -0.0027+ 3.704 a2 , R2=0.09 ; DW=0.91 
        (-1.99) (3.43) 

6i = 0.0 +0.oo2o'4_1+  0.987 6'1_1  , R2 = 0.96 ; DW =1.98 
       (0.85) (1.43) (48.54) 

It is clear that these models also exhibit the persistence of estimated variance.

                            5. CONCLUSIONS 

 This paper analyses some models to test the hypothesis that the skewness and 

asymmetry have no significant impact on the mean variance trade-off. Two types
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of models are presented and econometrically estimated for the monthly return 

data over January 1965 through December 1974. One model presents a truncation 

model where variance is viewed as a cubic function of the return levels and the 

impact of the skewness term is found to be highly significant at  1% level. The 

second model estimates two variants of the ARCH model and finds that the 

market volatility measured by the conditional variances have a high degree of 

persistence. This suggests the need for further research to find if the conditional 
skewness also has a persistence propetry. If it were true that skewness contributes 

greatly to the variance persistence, then the Arch-type models of market volatility 
have to be significantly modified in order to allow for the asymmetry due to 

skewness.

University of California

REFERENCES

Bayarri, M. J. and DeGroot, M. H., "Information and selection models", Probability and Bayesian 
    Statistics, New York, Plenum Press (1986). 

Beedles, W. L., "On the asymmetry of market returns", Journal of Financial and Quantitative Analysis, 
   Vol. 14 (1979), 653-660. 

Carroll, R. J. and Ruppert, D., Transformation and Weighting in Regression, London, Chapman and 
   Hall (1988). 

Chow, R., Engle, R. F., and Kane, A., "Estimating risk aversion with a time-varying price of volatility", 
    Working Paper No. 89-16, University of California, San Diego, (1989). 

Dumas, E. B. and Sengupta, J. K., "Nonparametric tests of portfolio efficiency under static and 
    dynamic conditions", Working Paper No. 30-89, Department of Economics, University of 

    California, Santa Barbara, (1989). 
Engle, R. F. "Autoregressive conditional heteroskedasticity with estimates of the variances of U.K. 

    inflation", Econometrica, Vol. 50 (1982), 987-1008. 
Engle, R. F. and Bollerslev, T., "Modelling the persistence of conditional variances", Econometric 

    Reviews, Vol. 5 (1986), 1-50. 
Engle, R. F., and Mustafa, C., "Implied Arch models from options prices", Working Paper No. 89-29, 

    University of California, San Diego, (1989). 
Engle, R. F., Ng, V., and Rothschild, M., "A factor Arch model for stock returns", Working Paper 

    No. 89-31, University of California, San Diego, (1989). 
Hsu, D. A., "The behavior of stock returns: is it stationary or evolutionary?", Journal of Financial 

    and Quantitative Analysis, Vol. 19 (1984), 11-28. 
Katlin, S., "Some results on optimal partitioning of variance and monotonicity with truncation level", 

    in Statistics and Probability, Amsterdam, North Holland (1982). 
Klaus, A. and Litzenberger, R. H., "Skewness preference and the valuation of risk assets", Journal 

    of Finance, Vol. 31 (1976), 1085-1100. 
Melton, R. C., "On estimating the expected return on the market: an exploratory investigation", 

    Journal of Financial Economics, Vol. 8 (1980), 323-361. 
Rothschild, M., "Asset pricing theories", in Uncertainty Information and Communication, Cambridge, 

    Cambridge University Press (1986). 
Saunders, A., Ward, C., and Woodward, R., "Stochastic dominance and the performance of UK unit 

    trusts", Journal of Financial and Quantitative Analysis, Vol. 15 (1980), 323-330. 
Seats, R. and Trennepohl, G., "Skewness, sampling risk and the importance of diversification", 

    Journal of Economics and Business, Vol. 38 (1986), 77-91.



36 JATI K. SENGUPTA and HYUNG S. PARK

Sengupta, J. K. and Park, H. S., Portfolio efficiency tests based on stochastic dominance and cointegration, 
    Working Paper in Economics, University of California, Santa Barbara, (1990). 

Sengupta, J. K. and Sfeir, R. E., "Modeling and testing for market volatility", forthcoming in 
    International Journal of Systems Science: Special issue on Keynesianism vs. Monetarism, (1993). 

Singleton, J. C. and Wingender, J. R., "Skewness persistence in common stock returns", Journal of 
    Financial and Quantitative Analysis, Vol. 21 (1986), 335-352. 

Stambaugh, R. F., "On the exclusion of asset from tests of the two-parameter model: a sensitivity 
    analysis", Journal of Financial Economics, Vol. 12 (1982), 237-268. 

Yaari, M. E., "Univariate and multivariate comparisons of risk aversion: a new approach", in 
    Uncertainty Information and Communication, Cambridge, Cambridge University Press (1986).


