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NON-COOPERATIVE N-PERSON BARGAINING 

    GAMES AND SYMMETRIC RULES

Tetsuro OKAZAKI*

 Abstract: We extend Rubinstein's (1982) two-person bargaining game with a 
fixed common discount factor to an N-person bargaining game . In this paper, 
game rules are required to be symmetric. Then we can prove that virtually any 
partition can be a subgame perfect equilibrium outcome, under `any' symmetric 
rule, if the discount factor is more than or equal to a critical value given . So in 
any symmetric bargaining game, a subgame perfect equilibrium is infinite . In other 
words, it is impossible to construct a symmetric rule under which a subgame 

perfect equilibrium is unique. On the other hand, if the discount factor is less 
than this critical value, a symmetric rule can be constructed under which a subgame 

perfect equilibrium outcome is unique.

1. INTRODUCTION

 As proved in Rubinstein (1982), a non-cooperative bargaining game with a fixed 
common discount factor has a unique subgame perfect equilibrium outcome in 
the case of two players. In the case of N players (N> 3), this result dose not 

generally hold. Any outcome can be a subgame perfect equilibrium outcome, if 
agreements require the approval of all players. This result is shown in Shaked's 
example (see Sutton (1986)) and in Halter (1986). In their models, one player 
offers a partition of a pie and the other players respond to the offer sequentially 

(in Sutton (1986)) or simultaneously (in Halter (1986)). In the case of sequential 
response, any outcome is a subgame perfect equilibrium outcome if the discount 
factor is large, while in the case of simultaneous response, any outcome is a 
subgame perfect equilibrium irrespective of the rate of the discount factor. 

 In contrast, Chae and Yang (1988) and Yang (1992) argue that, in the case of 
N players, there exists a unique subgame perfect equilibrium outcome using 
different rules. Under their rules, one player offers another player his share and 
this player responds to the offer. This sequence is then repeated between all of 
the players in turn. In their models, preceding players' accepted shares are honored 
by the succeeding players, i.e. once some shares are accepted, then these hold 

good forever. This means that agreements require only one player's approval. 
However it would be more appealing that agreements require unanimous approval. 

 * The author is grateful to H. Osana, S. Nakamura, and A. Okada for their helpful comments.
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 Moreover, under the game rules of Chae and Yang (1988) and Yang (1992), 
the first player starts the original game, but another player can not always start 
a subgame which is identical to the original game. The researcher believes, however, 
that it is more desirable that each player can start an identical subgame after his 
rejection, i.e. each player has the same opportunity as the first player. In 
Rubinstein's bargaining game, "the game form is  ̀ almost' symmetric. The only 
asymmetry arises because of the need to specify who is the first player to make 
an offer" (see Rubinstein (1987) p. 200). In Rubinstein's game, each player has 
the same opportunity as the first player, while there exists strong asymmetry in 
the games of Chae and Yang (1988) and Yang (1992). 

 Because the game rules of Chae and Yang (1988) and Yang (1992) have strong 
asymmetry, the following question arises: can we construct a symmetric rule under 
which a subgame perfect equilibrium is unique? In this paper, we consider a 
bargaining game from this viewpoint. 

 At first, symmetric rules are characterized by representing some conditions which 
symmetric rules should satisfy. Under symmetric rules, agreements require 
unanimous approval and each player has the same opportunity as the first player. 
Therefore, asymmetry appears only in specifying the order in which players make 
offers. 
 Consider the case where the discount factor is more than or equal to the value 

6 satisfying 1= (51  + . • + SN-l. Then, it is proved that, under `any' symmetric 

game rule, a subgame perfect equilibrium outcome is not unique. In addition, if 
the discount factor is sufficiently close to 1, virtually any partition is a possible 
subgame perfect equilibrium outcome. In other words, it is impossible to construct 
a symmetric game rule under which a subgame perfect equilibrium outcome is 
unique. Unanimity and symmetry are natural requirements, but not compatible 
with uniqueness of a subgame perfect equilibrium outcome. 

 Sutton (1986) and Halter (1986) constructed a special game rule under which 
a subgame perfect equilibrium outcome is not unique. In this paper, we shall 
demonstrate that a subgame perfect equilibrium is not unique for a class of 
symmetric game rules. 

  Yang (1992) admits that his "bargaining game in extensive form is not `natural', 
i.e. too restrictive". He states that "it is not certain yet whether there is a less 
restrictive model which has a unique perfect equilibrium" and that "we hope to 
find out such a model soon". The result here suggests that finding such a model 
may be difficult. 

  In addition, an assumption about the discount factor is necessary to this theorem. 
In fact, if the discount factor is less than 6, a symmetric rule can be constructed 
under which a subgame perfect equilibrium is unique.

2. MODEL

There are N players (N> 2). They bargain over partitions of a pie of size 1. A



NON-COOPERATIVE N-PERSON BARGAINING GAMES AND SYMMETRIC RULES 21

partition is denoted by  s  =  (s  1, • • • , sN) where si >0, • • • , sN >— 0 and > i si = 1. The 
set of partitions is denoted by S, i.e. S= {s 1, • , sN 1 s 1 > 0, • , sN > 0 and 
El si =1 }. We consider the case of simple preferences. Each player i has the same 
discount factor b (0 < 8 < 1). If the bargaining ends at time t with the partition 
(si, • • , sN), player i's utility is 6t_ 1Si.

3. SYMMETRIC RULES

 In this section, we present some conditions which symmetric rules should satisfy 
and make what is intended by symmetry clear. 

 We describe the structure of the games as follows: The set of players is denoted 
by I. At each time t, some player makes an offer. The index of the player who 
makes an offer at time t is denoted by et. For simplicity, we assume that, at any 
time t, of is independent of histories until time t— 1 which is denoted by ht_ 1. We 
assume that there is only one player who makes an offer at any time t and that 
each player's action at time t is one of making his offer, responding to an offer, 
or doing nothing. In other words, there is no outside option. Moreover we consider 
the case where of = i for any i e I. In other words, the player who makes an offer 
at time i is called player i. 

 In Sutton (1986) and Halter (1986), player of offers some partition and the other 
players respond to the offer sequentially (in Sutton (1986)) or simultaneously (in 
Halter (1986)). In Chae and Yang (1988) and Yang (1992), player of sequentially 
offers another player's share and this player responds. So there are some variations 
with respect to structures of offers and responses. 

 In order to represent the structure of offers and responses in general form, 
notations are introduced. The set of offers which are available for player of at 
time t, give 14_ 1, is denoted by et(ht_ 1). In general, et(ht_ 1) needs not to be S. 
So an offer at time t may not be some s. The profile of the shares which are 
offered at time t is denoted by 7t, and the set of indices of players whose shares are 
in 7rt by I(7rt). For example, if player of offers player i's, j's, and k's shares, 
7tt = {si, s;, sk} and I(70 = {i, j, k}. The set of indices of the players who respond to 
an offer 7Lt at time t is denoted by Rt(7rt) and the response of player i in Rt(7rt) by 
ti. In brief, at time t, player of offers some ht in et(ht_ 1) and player i in Rt(7tt) 
responds to the offer 7tt. We denote by hr the information of player i at time t. 
That is, 14 is a set of actions at time t which player i knows when he takes his 
action at time t. 

 In Sutton and Halter, Wilt _ ,)= S for any 14_1 and Rt(7tt) = I \ {et} for any ;. 
On the contrary, in Chae and Yang and Yang, et(ht _ 1) directly depends on ht_, 
and Rt(7tt) indirectly depends on 14_1. In Sutton, at time 1, 7t 1 e S, R 1(7r 1) = I\ { 1 }, 
and hi = {7r1, r2, • • , ri- 1}; in Halter, ;Tie S, RI(7r1) =I\ {1}, and hit = {7r1}; in 
Chae and Yang, if there is no rejection at time 1, it 1= {s2, • • • , sly}, R 1(7r 1) = I\ { 1 }, 
and hi, = {s2, r2, • • • , si- 1, ri- 1, si}; in Yang, if there is no rejection at time 1, 
it ={S2 •s } R (7t )=I\{1} and hi ={sN IN •si+1 ti+l si}
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 We present some conditions which the structure of offers and responses should 
satisfy. 

 CONDITION  1. If ;t is accepted by all players in Rt(ref), then, for any 
~t + E et + 1(ht) and any j e I(itt), j belongs to I(irf + 1) and player j's share in rct is 
equal to player j's share in ;t + 1. 

 CONDITION 2. (1) Let ht be accepted by all players in R,(irf). For any 
n,„ 1 E O+ 1(h,), if i is in I(it + 1) \ I(itf) and i is not equal to of + 1, then i belongs to 
Rt(ht+1)• (2) Let TEt be rejected by some player in Rt(itf) or t=0. For any 
ht+ 1 e et+ 1(ht), if i is in I(it+ 1) and i is not equal to et+ 1, then i belongs to RI(;t+ i). 

 CONDITION 3. For any t and any lit E Of(hl _ f), of belongs to Ant). 

 Condition 1 means that if ; is accepted by all players in R,(it ), then this offer 
is not changed until a rejection occurs. Assuming Conditions 1 and 2, if player 
i's share is offered, he can respond to this offer. From Condition 3, if player i 
makes his offer, his share is included in his offer. In other words, assuming 
Condition 1, player i's share is offered by some player until time i. 

 The set of game rules which satisfy Conditions 1— 3 includes many rules. In fact, 
Sutton's, Hailer's, Chae and Yang's and Yang's rules satisfy these conditions. (In 
Chae and Yang's and Yang's rules, ht gives the partition (1—Es`, s2, • •, s"').) 
As an example of the rule satisfying these conditions which is different from their 

rules, see Section 5. 

 We define T= min.{ t I(itf) = I for some history until time t— 1}. Then T is the 
minimum time length for the bargaining to end. From Conditions 1 and 3, we 
have T < N. We assume that if there is no rejection until time T, the bargaining 
always ends at time T. In other words, we assume that there is no waste offer. 

  Next, we consider the following two conditions. 

  CONDITION 4. For any t and ht, if some player te Rt(irf) rejects the offer, the 
subgame which starts at time t + 1 has the same structure as the original game except 
the discounted utilities and the order of players to move. 

  This condition means that any player's share is not determined if there is a player 
who does not agree. In this sense, under the game rules satisfying Condition 4, 
agreements require the indirectly unanimous approval. 

  CONDITION 5. For any i E I, any t such that of = i, any h,_,, and any 
74-1 Eat_1(ht_2), i belongs to Rt_1(it_1)• 

 Assuming Conditions 4 and 5, player i can make the first offer at time t by 
rejecting an offer at time t-l. So, for any player, if the bargaining does not end 
before his opportunity to make his offer comes, he can make the first offer in the 
subgame which is the same as the original game, i.e. he has the same opportunity 
as the first player. Therefore, the game rules satisfying Conditions 4 and 5 are 
symmetric.
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4. MULTIPLICITY OF EQUILIBRIUM OUTCOMES

 In this section, we prove that a subgame perfect equilibrium outcome is not 

unique under any symmetric rule if the discount factor is more than or equal to a 

certain value. Therefore, the result achieved here would indicate that Sutton and 

Halter's multiplicity is a special example of the result here and that the results in 

Chae and Yang and Yang do not hold if the conditions of symmetry are imposed. 

 We define a subset of S, P, as  P=  {s  e  S  I  0  <  s  i  <  6i-l  for every i} .1 It should be 
noted that P includes almost every partition if the discount factor is sufficiently 
close to 1. In the following theorem it is proved that under any symmetric game 
rule, virtually any partition is a possible subgame perfect equilibrium for the 
discount factor close id 1. 

 Denote by 8 the discount factor 8 satisfying 1= 61+  • • . + 6N -1. Then we can 
derive the following result. 

 THEOREM 1. Suppose that 6> O. In any bargaining game, if the rule of this 
bargaining game satisfies Conditions 1 ' 5, f or every partitions e P, there is a subgame 
perfect equilibrium whose outcome is s. 

 Proof For simplicity, we assume that of + kN = i for any i E I and k= 0, 1, 2, • . 
Consider the subgame after a rejection at time t and some offer in this subgame 
icy where y> t. It can be said that the original game is the subgame after a rejection 
at time 0. We define the set A(7r),, t) as follows. 

• A(n
),; t)={oy+1, ..., of+N}\Amy)(1) 

A(try; t) is the set of players who do not make their first offers in this subgame 
and whose shares are not offered at time y. For any i e Ry(try), we define the set 
Bi(ny; t) and the function n(i; t) as follows. 

Bi(ly; t)={kl kc{oy+1, • • •, of+N} nI(ny) and rk hiy} (2) 

                           i — of when i— of> 0     n(i; t)={(3) 
N — (i — et) when i— of < 0 

Bi(7cy; t) is the set of the players who do not make their first offers in this subgame 
and do not make their responses before player i makes his response. n(i; t) means 
that player i is the n(i; t)-th player in this subgame. We define a(try; t) as follows . 

a(ny; t)= 6n(i;t)-1(4) 
ieA(ny;t) 

We denote by S(7ry) the summation of the shares in try. 
  Fix a partition s* _ (s 1, • • • , sN) which is in P. Consider the following strategies . 

 At first, we describe player i's strategy at time t in the case where there is no 
rejection before player i takes his action at time t. We say that 7rf conincides with 

  1 Since 6�
..  S, there are infinite partitions in P.
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s* if sk = s *k for any k E Ant) where sk is player k's share in its. 

states s 

player i, at time t such that i e Rt(ht) (and i= et+ 1) 
 1. if ; coincides with s* he accepts this offer ht (and if ; is accepted by all 

j e Rt(;) he offers ht + 1 which coincides with s*) 
 2. if 7rt does not coincide with s*, s' >— 8' -1 for any j e B`(rit; 0) and 

1— S(ht) >— a(ht; 0), he accepts this offer ht (and if rit is accepted by all 

j e Rt(rit) he offers ht + 1 such that s' = 8' -1 for any j E I(rit + 1) \ Ant) and 
jot) 
 3. if ht does not coincide with s* and s'<8'"1 for some jeB`(rit; 0) or 
1—S(7)<  a(ht; 0), he rejects this offer ; 

(at time 1, player 1 offers rt1 which coincides with s*) 

 Next we describe strategies after a rejection occurs. Suppose that some player 
rejects the offer rty at time y. In this case, each player's strategy in the subgame after 
this rejection is as follows. Denote by C the set {k E {oy+ 1, • • • , oN} I player k rejects 
try} . If C= 0 and some player rejects icy, each player's strategy is one in state e' 
where j = oy + 1. Let CO 0 and j= min C. If player j's rejection violates the above 
rule, i.e. if player j rejects try which he, following the strategy in state s*, would 
accept, each player's strategy is one in state e'+ 1 (if j= N, e'+ 1= e 1). Otherwise, 
each player's strategy is one in state e'. 

state e' (e' is the j-th unit vector) 
player i, at time t such that i E Rt(ht) (and i= of + 1) 

  1. if rit coincides with e' he accepts this offer rit (and if ; is accepted by all 
k e Rt(ht) he offers ;+ 1 which coincides with e') 

  2. if rit does not coincide with e', sk > 8 n(k; y)— 1 for any k e B`(rit; y) and 
1— S(rit) > a(;; y), he accepts this offer ht (and if; is accepted by all k E Rt(ht) 

    he offers ; + 1 such that s k = b n(k; y)— 1 for any k E Ant, ,)\ Ant) and k i ) 
  3. if ; does not coincide with e' and sk < b n(k; y) —1 for some k e B`(rit; y) or 

1— S(;) < a(rit; y), he rejects this offer rit 
(at time y -4-1, player oy+ 1 offers rty+ 1 which coincides with e') 

 In state e' mentioned above, we describe player i's strategy in the case where 
there is no rejection before player i takes his action. If some player rejects the 
offer rt; at time z in state e', the following transition occurs. Denote by C' the 
set {k E {oz+ 1' ' • • , 0y+N}  player k rejects rtZ}. If C` = 0 and some player rejects 7r z, 
each player's strategy is one in state e' where j= o+ 1 • Let C' 0 and j= min C'. If 
player j's rejection violates the above rule, each player's strategy is one in state 
e' + 1. Otherwise, each player's strategy is one in state e'. 

 We can prove that the combination of these strategies is a subgame perfect 
equilibrium (see Appendix A) and s* is a partition in this equilibrium outcome. 
Therefore, for every partition s e P, there is a subgame perfect equilibrium where 
the outcome is s.
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5. EXISTENCE OF A SYMMETRIC GAME RULE WITH A UNIQUE OUTCOME

  In section 4, we proved that it is impossible to construct a symmetric game rule 
under which a subgame perfect equilibrium outcome is unique . An assumption 
about the discount factor is necessary to this theorem . In this section, we consider 
the case where 1 >6'  + • +6N-l.  Then , it is shown that there is a symmetric 
game rule under which a subgame perfect equilibrium outcome is unique. We 
denote by G the game considered in this section and describe the rule of G below . 

  At time 1, player 1 offers his own share si and player 2 accepts or rejects the 
offer si. If player 2 accepts the offer, player l's share si `temporarily' holds good . 
If player 2 rejects, player 1 responds to player N's offer at time N, and his next 
opportunity to offer his share comes at time N+ 1. 

  At time 2, player 2 offers his own share s2 and player 3 accepts or rejects the 
offer s2. If player 3 rejects player 2's offer, both player 1 and player 2 have to 

go behind player N keeping the same order, i.e. player 1 (respectively player 2) 
responds to player N's (respectively player l's) offer at time N (respectively N+ 

1), and his next opportunity to offer his share comes at time N+ 1 (respectively 
N+2). 

 In general, at time i + kN (k=0, 1, 2, • • ), player i offers his own share s' and 

player i+ 1 accepts or rejects this offer s`. If player i+ 1 rejects the offer s`, not 
only s` but also other shares which have been accepted in advance become void , 
and the bargaining starts all over again from player i+ l's offer . Therefore each 
player has the opportunity to make the first offer in the same subgame as the 
original game, that is, each player has the same opportunity as the first player . 
Therefore, this game rule satisfies symmetry. 

 Let all the shares except one share, for example (0 , • • • , sN - 1), be accepted 
sequentially. Since player N knows that his share becomes sN=1—Er 21 s' by 
accepting the offer sN-l, this means that sN =l-EN 21 Si is also accepted by 
player N and there is no rejection with respect to (si, • • • , sN). If all the offers 
(si, • • • , sN) are accepted sequentially in the above sense, the bargaining ends 
with the partition s = (s 1, • • • , s N). Under this rule, agreements require the 
indirectly unanimous approval. So, this game rule satisfies unanimity. 

 It is easy to check that this rule satisfies the conditions mentioned in Section 3. 
(This rule does not satisfy Condition 1, but we can reconstruct the rule so as to 
satisfy Condition 1 without affecting the result.) 

 In the following theorem, we assert that, under this rule, there is a unique 
subgame perfect equilibrium outcome if S <6, i.e. if 1 >6 i + • + 6N' .    There-
fore, there is a symmetric game rule under which a subgame perfect equilibrium 
outcome is unique.
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 THEOREM 2. In the bargaining game G,  if  8 < es, there is a unique subgame perfect 
equilibrium outcome with the partition 

         *1*2*N_ 1—(181  1-6 ... 6N- 1  1--                                         (5)      (~,SS) 1 _6N' 1_6N' ,1_6N). 
                                                  Proof. Denote by st the offer made at time t. If there is no rejection until time 

t, we say that the last rejection occurs at time 0. 
 Consider the following strategies. At time i— 1  + kN (k = 0, 1, 2, • • ), player i 

takes his action as follows: (1) if the last rejection occurs at time i— 1 —  t + kN and 
 Ij I_i=i-l +tkN+kNSJj~j=     >s                  i+,he accepts the offer ssi_+kNat time i— I + kN and      N*j—1p1 

offers 1— = ±tk kN si — t + 2 s *j at time i+ kN; (2) otherwise, he rejects the 
offer at time i— 1  + kN and offers si at time i + kN. 

 The combination of these strategies is a subgame perfect .equilibrium, and the 

partition is (s * 1, • •. • , s *N) in the equilibrum outcome of these strategies. So there is 
at least one subgame perfect equilibrium outcome. 

 Next, we show the uniqueness of a subgame perfect equilibrium. We denote the 
supremum of player i's utilities in the set of subgame perfect equilibrium outcomes 
by Mi and the infimum by m i. Write M= max{M 1, • • • , MN}. 

  Now we can prove that 

6N-2_(61M+... +(N-IM)<ml(6) 

holds (see Claim 1 in Appendix B). 
  Similarly, we can get 

6N-2_(6lml+.... +6N-lml)>M(7) 

(see Claim 2 in Appendix B). 
  From two inequalities (6) and (7) and an inequality 1 > b 1 + • • + 6N-l,  we 

have Al < 6N-  2(1— 8)/(1— 8 N) and ml > b N - 2(1— es)/(1_..(5N)•This implies that 
ml= M 1(= M) = c N - 2 (1— 3)/(1 _ SN).So player l's utility in the subgame perfect 
equilibrium is only 6N-2(1_,5)/(1_  bN).Using this result, we can show that player 
i's utility is ON-W-l(1—  b)/(1— ON) for each i. Since the game ends at time t— 1, 

                                                            player i's share is 6i-l(1 —  h)/(1— 6N). 

  Shaked's example show that, in the case of N= 3, any partition can be a subgame 
perfect equilibrium outcome if 8>_ 1/2. On the contrary, a subgame perfect 
equilibrium outcome is unique even if (%/ 5 — 1)/2 : 0.618 > b > 1/2 under the rule 
in this section. Therefore, the range where a subgame perfect equilibrium outcome 

is unique is enlarged under this rule.

6. CONCLUDING REMARKS

 It should be concluded, from what is shown in this paper, that (5 is a critical 

value. If 6 <6, a symmetric game rule can be constructed under which a subgame
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 perfect equilibrium outcome is unique. On the contrary, if 6> b, such a symmetric 
game rule can not be constructed. 

 The main conclusion is that it is impossible to construct a game rule under 
which a subgame perfect equilibrium is unique where (5 >6. Therefore, to construct 
such a game rule, symmetry must be abandoned like in Chae and Yang (1988) or 
Yang (1992).

APPENDIX: A

  In this appendix, we prove that the combination of strategies which appears in 
the proof of Theorem i is a subgame perfect equilibrium. Fixing player j's strategy 
(j � i ), we check that player i's strategy is his best action. 

  At first, consider the strategy which is in state s*. 

  (Case 1.1) Consider the case where ht coincides with s* and i of + 1. If he 
accepts this offer, his share in equilibrium outcome is s*`. If he rejects this offer, 
his share in equilibrium outcome is 0. Therefore his strategy is his best action. 

  (Case 1.2) Consider the case wherent coincides with s* and i=of + 1. If he 
accepts this offer and offers ht±1 which coincides with s*, his share in equilibrium 
outcome is s*`. If he rejects this offer, his share in equilibrium outcome is 0. If 
he accepts this offer and offers ht + 1 which does not coincide with s* and in which 
s` >s*', this offer ;+1 is rejected and his share in equilibrium outcome is 0. (If 
i= 1,  there is no s such that s>0 and s' > b' -1 for any • j e I\ { 1 } because 
1.<6+...±(sN-l.  If i=2, • •, N there is no ht+1 such that s`> s*`, sk=s*k for 
any k E Ant), and s' > 6j-l for any j E I(n + 0\1(70, because s* E P. From these, 
ht+ 1 is rejected.) Therefore, his strategy is his best action. 

  (Case 2.1) Consider the case where ; does not coincide with s*, s' > 6j' for 
any j e B ̀ (ht; 0) and 1— S(ht) > a(ht; 0), and i of + 1. If he accepts this offer, his 
share in equilibrium outcome is s` in ht or 6`-1. If he rejects this offer, his share 
is 0. Therefore his strategy is his best action. 

  (Case 2.2) Consider the case where ; does not coincide with s*, s'> 8'-l for 
any j E B`(ht; 0), 1— S(;)� a(;; 0), and i = et+ 1. If he accepts this offer, and offers 
ht + 1 such that s' =6j-l  for any j e I(; + ,)\/(;) and j � i, his share in equilibrium 
outcome is 1— S(hf) — a(hf + i) + 61-1. If he rejects this offer, his share in equilibrium 
outcome is 0. If he accepts this offer and offers ht + 1 such that s' < 6' _ 1 for some 

j e I(ht+ 0\1(;), I(hf), this offer is rejected and his share in equilibrium outcome is 0. 
If he accepts this offer and offers ht + 1 such that s' > (si-l for some j E Ant + 1) \ Ant), 
his share in equilibrium outcome cannot be increased. (If some player rejects the 
offer, his share is 0. Even if the offer is accepted, his share is less than 
1 — S(ht) — a(ht + 1) + b ̀ -1.) Therefore his strategy is his best action . 

  (Case 3.1) Consider the case where (1) ht does not coincide with s*, (2) s' < 
h' -1 for some _j E B`(ht; 0) or 1— S(ht) < a(ht; 0), (3) i= et+ 1, and (4) there is 
j E {et+ 1, • • • , oN} n Rt(ht) such that j O i and rj If he rejects this offer and 
offers ;t + 1 which coincides with el, his share in equilibrium outcome is 1. If he
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accepts this offer, this offer is rejected by player j, and his share is 0. Therefore 
his strategy is his best action. 

 (Case 3.2) Consider the case where (1)  it does not coincide with s*, (2) s' < 
b' -1 for some j e B`(irt; 0) or 1— S(ht) < a(irt; 0), (3) i = of+ 1, and (4) there 
is no j e {et + 1, • , oN} n Rt(irt) such that j l i and r' 014.  If there is some j such 
that r' e 1'4,  player j rejects the offer. Since there is no rejection before player 
i takes his action at time t, there is no j such that r' e hi. So there is 
no j e {et+ 1, • • • , oN} n Rt(irt) such that j O i from (4). Moreover, for any 
j e { of + 1, • • , oN} n It _ 1(it _ 1), s' >— b' -1 because it, _ 1 is accepted at time t —1. 
From these, there is no j e B`(ht; 0) such that s' < S' -1 and j # i. Therefore we have 
s<(5' or 1— S(it) < a(it; 0) from (2). If he rejects this offer and offers ;+ 1 
which coincides with e`, his share in equilibrium outcome is 1 and his utility is 
S ̀-IST -1. If he accepts this offer and some player k rejects this offer, his share 
is 1 and his utility is 6'l6'l.  (Note that k {et+ 1, • • • , oN} from (4).) If this 
offer is accepted by all players in Rt(irt), his share in equilibrium outcome is s` 
(<S`-1) or 02 and his utility is 6' -1 s ̀  or 0 where Y is the time length for the 
bargaining to end if there is no rejection. We have Y> T. Therefore his strategy 
is his best action. 

  (Case 3.3) Consider the case where (1) it does not coincide with s*, (2) s' < b' -1 
for some j e B`(7tt; 0) or 1— S(art) < a(ht; 0), (3) i � ot-+ 1, and (4) there is 
je {et+ 1, , oN} n Rt(ht) such that j i and r' hr. If he rejects this offer, his share 
is 1 or 0. If he accepts this offer, his share is 0. Therefore his strategy is his best action. 

  (Case 3.4) Consider the case where (1) it, does not coincide with s*, (2) s' < S' -1 
for some j e B`(irt; 0) or 1— S(att) < a(rct; 0), (3) i� et+ 1, and (4) there is no 
j e to, + 1, • , oN} n Rt(irt) such that j O i and r' 014. In this case, we have s` <6' 

   or 1— S(art) < a(irt; 0). If he rejects this offer, transition to state e ̀  occurs and his 
share is 1. If he accepts this offer and some player k rejects this offer, transition 
to state e' occurs where j = of + 1 and his share is 0. If this offer is accepted by all 

players in Rt(irt), his share in equilibrium outcome is s` or 0. Therefore his startegy 
is his best action. 

  Using similar reasoning, we can prove that the strategy which is in state e' is 
his best actions.

APPENDIX: B

 In this appendix, we complete the proof of Theorem 2. 

  CLAIM 1. 6N-2-olM+ • • • +6N-lM)<ml holds. 

 Proof. Suppose that there exists player l's utility u in some subgame perfect 
equilibrium outcome such that 6N -2-olM  + • • • + S N -1 M) > U. 

 Consider the following player 2's action: player 2 accepts any offer si such that

2 If 1—S(;ti) <a(ht; 0) holds, any offer at time t+ 1 is rejected.
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 1—  s  1  >  (V  1  M  +  •  •  •  +  b  N  -1  M)/b  N  -  2 and makes an offer after which the bargaining 
ends at time N-l. If this action is his best action, player 1 can get the utility 
which is strictly larger than u, and this is a contradiction. Therefore it is sufficient 
to prove that player 2 accepts any offers 1 such that 1—s,  > (81 M + +8N-lM)/ 
6N-2  and makes an offer after which the bargaining ends at time N-l as his best 
action. 
  First, we prove that, for any set of offers (si, • • , sly _ 1), if 1 — (si + • + sN _ 1) > 
8 N - 1 M/8 N - 2 and there is no rejection until time t— 2, player N accepts the offer 
s,_, as his best action. If player N accepts the offer 5, -1, his share is 
1— (si + • • +5.1,1_0,  and his utility is SN - 2(1—(si+ • • • +s_)). If he rejects the 
offer, he makes the first offer in the subgame which starts at time N, and his 
utilities in the set of subgame perfect equilibrium outcomes of this subgame 
are not larger than M. The discounted value of this M is 6N-  1 M and 
a N - 1 M < a N - 2(1 (si + • +s,_,)) 1)) holds. Therefore player N accepts the offer 
sN _ 2 as his best action, if 1—(si+  • • • +s,_,)  > S N - 1 M/b N - 2 and there is no 
rejection until time t -- 2. 

 Using this fact, we can demonstrate that, for any (si, • • • , sN _ 2), if 
1 —(si+  • +sly _ 2) > (tS N - 2M+ 6N - lm-)/(5N  - 2 and there is no rejection until time 
t— 3 player N— 1 accepts the offer 5N _ 2 and makes an offer which is accepted at time 
N-l as his best action. (If he accepts 5,-2 and makes an offer which is rejected, 
he is the N-th player in the subgame which starts at time N and his utility is less 
than 6N-lM.  If he rejects sN2' his utility is less than (5 N - 2 M.) 

 Similarly, we can prove that, for any i (i = 2, • • • , N-2)  and any (si, • • , s_), 
if 1—(si+  + s~ _ 1) > (8 i - 1 M + + 8 N - 1 M)l (N - 2 and there is no rejection in 
advance, player i accepts the offer s_ 1 and makes an offer after which the 
bargaining ends at time N-l as his best action.^ 

  CLAIM 2. aN-2-olml+ +sN-lml)>M holds. 

 Proof Suppose that this does not hold. Since M is the supremum of some 

player j's utility, there exists u such that 6N-2  — (6lml + + 5" -1 m 1) < u < M 
and u is player j's utility in some subgame perfect equilibrium outcome. Notice 
that 1 < (8lml  + • + (5N -1m1 +ol6N-2  holds. Let t be the time when the last 
rejection occurs on this equilibrium path (t = 0 if a rejection does not occur on 
the equilibrium path) ands ` be player i's share in this subgame perfect equilibrium 
outcome. Let k be the index of the player who makes the last rejection at time t 

(if t=0, k=N). We define •r(i) by r(i)=t+i—k if i—k>0 and t(i)=N+t+i—k 
if i<k. 

We can show that there exists i e { 1, • • • , N} \ { j } such that b t + N 2s t < 6r(i) lm i 
In fact, if it is not true, we have 1 <(6t(1)-1m1+ • . • +at(j-l)-1m1+u+ 
bs(j+1)- 1m1 + .. . +(st(N)- lml)/(st+N-2 <si + .   +sj- 1 + (u/6t+N-2)+si+ 1 + 
• • • +s' and this is a contradiction since (s' , . • •, si-l, u/(st+N-2, si+15 ..., sN) is 
a partition in this subgame perfect equilibrium outcome. But this contradicts the 
fact that player i can make the first offer in the subgame which starts at time i(i)
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by rejecting the offer at time  z(i)  —  l . Therefore we have SN 2_(~lml+

Keio University
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