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GLOBAL ASYMPTOTICAL STABILITY OF 

NON-STATIONARY DISCRETE SYSTEMS

Ferenc SZIDAROVSZKY and Dan  Lin

Abstract: In this paper we generalize the global asymptotical stability conditions 
of Fujimoto (1987), Wu and Brown (1989) to non-stationary discrete systems .

1. INTRODUCTION 

 Several types of discrete physical and economic systems are characterized by 
difference equations of the form xk + 1= f(xk), where f :1?"-41?"  is a continuous 
mapping. The global asymptotic stability of discrete systems has an important 
role in analysing the long-term behavior of such systems, as well as in systems 
design. Fujimoto (1987), and Wu and Brown (1989) presented recently useful 
criteria for checking the global asymptotic stability of stationary discrete systems. 

 In many applications non-stationary discrete systems are analysed. For example , 
in the case of economic systems price changes, technical developments, inflation , 
etc. result in the changing in time of the iteration function f. In this paper 
conditions will be derived for the global asymptotic stability of non-stationary 
discrete systems, which generalize the earlier results of Fujimoto (1987) , Wu and 
Brown (1989). As we shall see, our conditions are easy to verify in practical 
applications.

                          2. GLOBAL STABILITY 

 Consider the iteration sequence 

xk + 1= fk(xk) , k = 0, 1, 2, ... (1) 

where for all k, fk : R"-+R". Our analysis will be based on the following simple 
observations. 

 LEMMA. Assume that for all k, fk(0)=0 and there is a continuous function 
a: R"\{0}—[0, 1) such that for all k>0 and x00,                   

I lfk(x) II �a(x) • 11111. (2) 

  Then the iteration sequence (1) converges to 0 as k—>co. 

   Proof Note first, that from (2) we know that for all k, 11 xk II << II xo II • That is, 
the iteration sequence is bounded. If it does not converge to zero, then there is a 
subsequence {xjk} with nonzero elements which tends to a nonzero vector x*, and
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the subsequence  {xjk+1} converges to an x**. 
 From (2) we have 

Ilxlk+,il <— Ilxlk+111 < IlxjkII 

and by letting k-^ o, we get the equality 

11x**11= Ilx*II(3) 

 Since x* 00, for sufficiently large value of k, xi, belongs to a closed ball B with 
centre x* which does not contain the origin. Since B is compact, a(x) < x6 < 1 
for all x e B. Therefore, for large values of k, 

                 xLk + 1 I I —IIfk(x~k)II<—aB • 11 xlkll , 

and letting k-> 00 yields to the relation 

Ilx**II <o(B- Ilx*11 < IIx*11 , 

which contradicts our earlier relation (3). Thus the proof is completed. ^ 

 Remark. If (2) is replaced by the weaker assumption that for all k> 0 and x 0,

                  Ilfk(x)II < 1411 , 

the result may not hold, as the following example shows. 

 Example. Select n= 1,  and for k> 0, 

                    fk(x)=(k+2)2  1 .x .                        (k+ 2)z 

If the initial term is choosen as x0=2, then finite induction shows that 

xk=1+1/(k+1)-+100 as k--*00 . 

Furthermore for all k> 0 and x00, 

                     fk(x) I = ((k + 2)2 - 1)/(k + 2)2 . I x I < I x I . 

 Our first result can be formulated as follows. 

 THEOREM 1. Assume that fk : Rn RP' is continuously differentiable, furt^ 

fk(0) = 0(k > 0). Let K denote the Jacobian of .,k,andassumethatforallk 
x 0, 

                    II fk(x) II<_ /3(x) , 

where/3: R"\{0}-+[0, 1) is a continuous function. Then the
-iterationsequ, converges to zero as k+co. 

 Proof.We will verify that the conditions of the lemma are satisfied,w_ 
imply the assertion. 

 Note first that

(4)

            Assumethatfk:RnRniscontinuouslydifferentiable,furthermore 

and assume that for all etfdenotethefacobianof>0 and

          (5) 

iteration sequence (1)

rich will
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               dtfk(tx)=fk(tx)•x  (xeR",0<t<1), 

which implies that for all k> 0 and x00, 

                          fk(x) =f k(tx)xdt 

0 Let (5E (0, 1) be fixed, then 

  lat 

    il(x)11 <— Ill ;At x)II ' II xII di �{1 Ilfk(tx)Ildt+ II fk(tx)ll di IIxII • (6) 
  0oa 

The continuity of fk(tx) implies that IIfkII <-1 for t [0, (5]. Furthermore 

T(x)={txl8<t<1} 

is compact, and for x00,  0 T(x). Therefore 

                   mas /3(z) = fro(x) < 1 , 
z e T(x) 

and from (6) we conclude that 

II fk(x) I I <_ {6 +  (1— (5))30(x)} • 11 x11(7) 

Since for fixed S, f30(x) is continuous in x and 8 +(1 —  (5))60(x) < 1, the selection 

a(x)=8+(1-6)130(x) 

satisfies the conditions of the Lemma.^ 

  COROLLARY. If process (1) is stationary, then fk- f. In this special case it is 
sufficient to assume that for all x 00, 11/(x)II < 1, since the selection 13(x)=Ill(x)11 
is satisfactory. This special result was introduced by Wu and Brown (1989). 

 In our next result we show that if the condition of the Lemma holds in a 
neighborhood of 0, then outside this neighborhood condition (5) can be 
significantly relaxed. 

  THEOREM 2. Assume that fk: R"—>R" is continuously differentiable, furthermore 
fk(0) = 0 (k� 0). Let B be an open neighborhood of 0, and assume that there exists 
a continuous function a: R"\{0}—[0, 1) such that 

   (i) I I fk(x) I I I a(x) • llxll  for all k and 0 0 x E B; 
   (il) If x 0 B and IIfk(x) II = a(x) ' 1411  with some k, then II f k(x)x II < a(x) • II x II . 

  Under these assumptions the iteration sequence (1) converges to zero. 

 Proof We will prove that for all k> 0 and x 00, relation (2) holds, which 
implies the assertion. 
 Assume that for some k, (2) does not hold in the entire set R"\{0}, then
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 r*  =  inf  {  II  x  (I  I x 0 0 and (2) does not hold} 

exists and is positive. If for all vectors satisfying 11.x 11= r*,11.fk(x) II >x(x) • llxll, then 
the continuity of functions fk and a implies that r* can be reduced, which contradicts 
the definition of r*. Therefore for at least one x*, 

11 x* II =r* and II fk(x*)11= a(x*) • ll x* II • (8) 

 Since fk is differentiable, we know that for any E> 0, 

             Ilfk((1— SW) —fk(x*)—Stk(x*)x*II <ESIIX*II 

with se (0, 1) being large enough (see Ortega and Rheinboldt, 1970, p. 61), which 
inequality and (il) imply that      

11.4((1—s)x*)—fk(x*)II <SEIlfk(x*)x*11 +EIIx*II]=sC/l(x*)+e]Ilx*II 

where 

/1(x*)=  Il.fk(x*)x*11  <a(x*)                     Ilxll 

From this and equality (8) we conclude that 

    Ilfk((1—s)x*)II > Ilfk(x*)11—sU3(x*)+E]Ilx*11= II x*11(a(x*)—s/ (x*)—SE) 

> Ilx*IIa(x*)(1—s)=11(1—s)x*110(x*) , 

when E is small enough. Since a is continuous, with sufficiently large value of 
s E (0, 1), 

              Ilfk((1 -s)x*)11 > 11(1—s)x*IIa((1—s)x*) . 

This inequality contradicts again the definition or r*, which completes the 
proof.^ 

  COROLLARY. Consider aginst the special case, when fk - f . Condition (i) and 

(il) can now be subsituted by the assumptions: 
  There exists an E> 0 and a 0 < q < 1 such that 

  (i)' For all x00  and 11.4<e, 

III(x)11<—q'Ilxii; 

 (il)' If llxll  >— E and I I f (x) I I= llxll,  then 

I I f '(x)x I I< llxll • 

                                 Proof Define 

Qk= max{ IIf'(x)x11/IIxII Ill(x)11 = IIxII, kE< 11x II <_(k+ 1)E} 

for k= 1,  2, .... Obviously Qk < 1 for all k. Introduce now the constants
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 Rk=max{qt Qt; Q2; ...; Qk} ; 

and the piece-wise linear function s(t) with vertices (0, q), (E, RI), (2c, R2), 
(3E, R3), .... Then all conditions of the theorem are satisfied with B= {x I 

                                         

llxll <El 
anda(x)=s(IIxll).^ 

 Remark. The mean-value theorem of derivatives imply that if llf'(0)11 <1, then 
there exist e> 0 and 0 <q < 1 which satisfy condition (i)'. Assume further that if 
x 0 and 11f(x)II = llxll, then ll f'(x) • x 11 < II x II • In this case condition (il)' is also 
satisfied. Hence the iteration sequence (1) converges to zero. This special result 
was first introduced by Fujimoto (1987). 

 The conditions of the above theorems can be further relaxed in the following 
ways. 

  1. In the Lemma the continuity of a(x) can be relaxed as follows. For all 
closed balls B such that 0 B there exists a constant GIB such that 

a(x) < aB < 1 for all x E B . 

 2. It is easy to verify that the Lemma remains true in the more general case 
when fk: R"—+2R" is a point-to-set mapping, and condition (2) is replaced by the 
following: 

llyll <a(x)-llxll for all y fk(x) . 

 3. Since all iterates xk remain in the ball Bo ={xIII x II<llxoII}, it is sufficient 
to assume that the conditions of the theorems hold in a certain subset of R" which 
contains Bo. 

 4. Let K> 0 be a fixed integer, and assume that the conditions hold for all 
k> K. Then the assertions remain true. 

  5. Define function 

                            fk m = fk + m ° fk+ m - 1 ° • • • ° fk , 

and assume that sequence lo , m, f„,,, ... , .f m, m, ... satisfies the conditions. Then 
the iteration sequence (1) converges to zero as k—00. The details are left to the 
reader.

University of Arizona
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