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COLLECTIVE  CHOICE RULES AND BARGAINING SOLUTIONS*

Takako FUJIWARA

Abstract. The Nash solution to bargaining problems is shown to induce a 

collective choice rule generating fully rational choice functions . This property is 
not shared by other solutions, including the Kalai-Smorodinsky , Gauthier, 
utilitarian, and egalitarian solution. An axiom of bargaining problems , Invariance 
under Affine Transformations of Utility, turns out to be crucially important for 

constructing a collective choice rule based on a bargaining solution . The Nash 
collective choice rule, however, violates the condition of Independence of 

Irrelevant Alternatives.

1. INTRODUCTION

  Nash (1950) characterized a solution, now called the Nash solution , to 
bargaining problems with four axioms: Pareto Optimality , Invariance under 
Affine Transformations of Utility, Symmetry , and Independence Axiom. In the 
present paper, the last axiom will be referred to as Nash's Axiom. Some other 
solutions have been proposed by different authors: the Kalai-Smorodinsky 
solution (Kalai & Smorodinsky (1975)), the Gautheir solution (Gauthier (1985)) , 
the utilitarian solution, the egalitarian solution, and so forth . 

 Based on the Nash solution to bargaining problems, Kaneko & Nakamura 

(1979) constructed the Nash social welfare function and gave a complete 
characterization of it. One may be inclined to conjecture that each of other 
solutions to bargaining problems may be employed to construct a social welfare 
function, as the Nash solution was employed to construct the Nash social welfare 
function. It will be shown that this conjecture is not true . 

 In view of the fact that, in most cases, social welfare functions can be expressed 
in terms of collective choice rules, we shall work exclusively with collective choice 
rules instead of social welfare functions. Our main conclusion is that the Nash 
solution induces a collective choice rule generating a rational choice function , 
while the other four solutions cited above do not. (Theorems 5.2-3.) Meanwhile 
we will show that a bargaining solution can be regarded as a choice function on 
some special choice space so that the properties of a solution are directly reflected 
in the social choice function induced by it. (Theorem 5.1.) 

 Finally, we clarify why Arrow's impossibility result does not apply to the Nash 
collective choice rule. (Theorem 5.4.) 

 * The author is grateful to Professor H
. Osana for his helpful comments.
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2. COLLECTIVE CHOICE RULES

  Throughout this paper, we shall consider a society with n individuals, where n is 
a fixed integer not less than two. Put N= { 1,2, - • • ,n}. A choice space is the ordered 
pair (Z,H) of a nonempty set Z representing the set of conceivable states and a 
nonempty family H of nonempty subsets of Z, representing the set of conceivable 
opportunities or environments. A choice function on a choice space (Z,H) is a 
function C of H into P(Z) — {0} such that C(H) H for every He H, where P(Z) 
stands for the power set of Z. 

  Two rationality concepts for choice functions will be considered in the present. 

paper. A choice function C on (Z,H) is said to satisfy Nash's Axiom if C(H) = 
C(H') for every H,H' €H such that Hg_ H' and C(H') .g H. To define the other 
kind of rationality, denote by S2(Z) the set of complete, reflexive, and transitive 
binary relations on Z for each choice space (Z,H). A choice function C on (Z,H) is 
said to be fully rational if there is an element Q of Q(Z) such that for every He H, 
C(H) = {x e H xQy for every y e H}, and then Q is called a rationalization of C. 
The following relationship is known between these two rationality concepts. 

  LEMMA 2.1 Every fidly rational single-valued choice function satisfies Nash's 
Axiom.

 Proof See Suzumura (1983, Theorems 2.1, 2.12, and A(3) on p. 26, p. 42, and 

p. 48.).Q.E.D. 

 Social choice theory considers a rule for defining a choice function based on 

preference profiles of the members of the society. Given a choice space (Z,H), each 
individual's preference is assumed to be an element of S2(Z). A collective choice 
rule on a choice space (Z,H) is a function F whose domain, dom F, is a subset of 

(S2(Z))" and whose range is included in the set of fully rational choice functions on 
(Z,H). We are interested in the following five conditions for a collective choice 
rule. 

 DEFINITION 2.1. Let (Z,H) be a choice space. A collective choice rule F on 

(Z,H) is said to satisfy 
Unrestricted Domain if dom F=42(Z))", 
Full Rationality if F(R) is fully rational for every R e dom F, 
Unanimity if y e CR(H) for every R e dom F, every x,y e Z, and every He H such 

   that x E H and xP(Rt)y for every i e N, where CR = F(R) and P(R,) stands for 
   the asymmetric part of RI, 

Independence of Irrelevant Alternatives if CR(H) = CQ(H) for every R, Q E dom F, 
   and every H.* H such that xR y if and only if xQy for every i E N and every 

x,yeH, where CR=F(R) and CQ=F(Q). 

 A choice space (Z,H) is said to admit binary choices if H contains every two-
element subset of Z.
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 DEFINITION 2.2. A collective choice rule F on a choice space (Z,H) admitting 
binary choices is said to satisfy Nondictatorship if there is no  i  e N such that {x} = 
CR({x, y}) for every R E dom F, every x, y e Z such that xP(Rt)y , where CR = F(R). 

 Arrow (1963) proved that these five conditions are inconsistent as a whole if 
#Z>= 3 and the choice space admits binary choices . (cf. Suzumura (1983), Theorem 
3.4 on p. 76).

3. BARGAINING PROBLEMS AND SOLUTIONS

  A bargaining problem is the ordered pair (S,d) of a compact convex subset S 
(called the set of feasible utility allocations) of R" and a point d (called the 
disagreement point) of S such that a> d for some a E S, where R denote the set of 
all real numbers, and a >4 stands for al > di for every i e N. The set S is interpreted 
as the set of utilities which can be attained by a joint action of the members of N 
and the point d as the utility vector the individuals obtain when no agreement is 
reached. Denote by B" the set of bargaining problems. A solution is a function f of 
a subset of B" into R" such that f (S,d) E S for every (S,d) e domf Given a subset d 
of B", a solution will be called a solution on d if dom f= d. 

  Since the appearance of the work by Nash (1950), many axioms a solution to 
bargaining problems should satisfy have been proposed, among which we shall be 
concerned with the following. 

  DEFINITION 3.1. A solution f is said to satisfy 
Pareto Optimality if for every (S,d) e domf there is no a e S such that a > f (S,d ), 
Symmetry if f(n(S),n(d )) for every (S,d) e dom f and every permutation n on N, 

   where n(a) = (a7,0). . ,a,0„)) for each a E R" and n(S) = { n(a) I a E S }, 
Invariance under Affine Transformations  of Utility if f (T • S, T • d) = T(f(S,d)) for 

   every (S,d) E domf and every affine operator T on R", 
Nash's Axiom if f(S,d) = f(S',d) for every (S,d), (S',d') E dom f • such that d= d', 

   S S', and f(S',d') E S. 

 A solution f N on B" defined by f N(S,d) = argmaxses ilie N(si -- di) for every 
(S,d) e B" is called the Nash solution. Nash (1950) characterized it in terms of above 
four axioms in the spcial case n = 2, and later, Roth (1979) extended the 
characterization to general cases. In the present paper, we shall consider four other 
solutions to be compared with the Nash solution. 
 Let (S,d) E B. Define b(S) e R" by bl(S) = max {a E R I there is c e R" --1 such that 

(cl, • • •cl  a, cl   • . , c) E S } for every i e N. The i-th component of b(S) is the 
maximal feasible utility in S of the i-th individual . The point b(S) is called the 
ideal point of the bargaining problem (S ,d). For each x,y e R", let L(x,y) de-
note the closed line segment joining x and y . A solution f' defined by f K(S,d) = 
max[L(d,b(S)) n S] for every (S,d) E B" is called the Kalai-Smorodinsky solution , 
where max[L(d,b(S)) n S] denotes the maximal element of L(d ,b(S)) n S with
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respect to the usual partial ordering on R" (see Kalai (1985) and Kalai and 
Smorodinsky (1975).) The Kalai-Smorodinsky solution is the maximal feasible 
element on the line segment joining the disagreement point and the ideal 

point. This solution is known to satisfy Pareto Optimality, Symmetry, and 
Invariance under Affine Transformations of Utility in the special case n=2,  but 
not necessarily to satisfy Pareto Optimality when n > 3. A solution , f G on B" 
defined by 

            f G(S,d) = argmaxsEsminlEN(s;— d.)/(bl(S) — d.) 

is called the Gauthier solution (see Gauthier (1985)). The Gauthier solution 
maximizes the minimum proportion of possible gain to any person. It is an 
extension of the Kalai-Smorodinsky solution for the purpose of satisfaction of 
Pareto Optimality even if n> 2. 
 Put do = {(S,d) E B" I S is strictly convex}. For each ) E R"± +, a solution J.' on 

de defined by f "(S, d) = argmaxs Es L E N!tisi for every (S, d) E de is called the 
utilitarian solution with weight A. (see Kalai (1985)). For every /. E R", .+, a solution 
f' on B" defined by f 9S,d) = max{s E S I Al(si — d;) _ Al(si — di) for every ij E N} is 
called the egalitarian solution with weight A. (see Kalai (1985)).

4. A SPECIAL CLASS OF BARGAINING PROBLEMS

 To investigate the possibility of constructing a collective choice rule based on a 
solution to bargaining problems, it will turn out that we have to confine ourselves 
to a certain restricted class of bargaining problems. This section is devoted to 
defining the special subset of B" in which we are interested. 

 Bargaining problems are expressed in terms of the choice of utilities, more 
specifically, von Neumann-Morgenstern utilities, while collective choice rules deal 
with the choice of states. We shall begin with filling this gap. Von Neumann-
Morgenstern utility functions represent preferences on the space of lotteries over a 
nonempty finite set X of sure states. A lottery is a probability mixture of some sure 
states. In fact, a lottery which entitles the holder to x with probability p(x) for 
every x e X can be specified by the probability measure p, where p is a function of X 
into R+ such that ExExp(x) =1. 

 Denote by L the set of functions p of X into R+ such that LExp(x)=1. Since X 
is a finite set, each element p of L can be identified with a vector in the standard 
simplex of dimension #X —1. That is, the set L of lotteries can be regarded as the 

(#X-l)-dimensional standard simplex, which is a nonempty compact convex 
subset of #X-dimensional Euclidian space. Each element x of X can be identified 
with the unit vector ex defined by ex(x) =1 & ex(y) = 0 for every y E X— {x}. Thus X 
can be regarded as a subset of L. For each nonempty subset Y of X, denote by 
L(Y) the set of elements p of L such that yp(x) =1. Then every nonempty 
subset Y of X can be regarded as a subset of L( Y), which can in turn be regarded 
as the (# Y— 1)-dimensional standard simplex.
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 Given two lotteries p and q, let  tp*(1— t)q stand for the lottery which entitles the 
holder to p with probability t and q with probability 1— t. Clearly, the ordered pair 

(L,*) is a mixture set in the sense of Herstein & Milnor (1953). Denote by O the set 
of complete, reflexive, and transitive binary relations Q on L satisfying the 
following two axioms: 
(I) For every p,q,reL, both It E [0,1)1 (tp*(1 — t)q)Qr} and 

{t E [0,1]1 IQ(tp*(1 — t)q)} are closed in [0,1]. 
(II) For every p,q,reL, if pl(Q)q, then (1/2p*1/2r)1(Q)(1/2q*1/2r), where I(Q) is 

    the symmetric part of Q. 
For every Q E O, the set of von Neumann-Morgenstern utility functions for Q is 
defined by 

U(Q) = {u : L-+R I for every p,q E L,pQq if and only if u(p) >= u(q)}. Herstein and 
Milnor (1953) proved that for every Q E O, (a) U(Q) is not empty, (b) for every 
ne U(Q), u(tp*(1 — t)q) = tu(p) + (1 — t)u(q), for every p,q E L, and every t E [0,1 ], 
and (c) every element of U(Q) is an affine transformation of every other element of 
U(Q). 
 For every Re O", the set of continuous utility profiles for R is defined by 
Uc(R) = {u :L.--Jr I u is continuous and ui E U(Rt) for every i E N} Following 

Kaneko & Nakamura (1979), we choose an element x0 of X to play the role of the 
disagreement point. Put 

Y= { Ye P(X)— {0} Ixoe Yand #Y>_2}, 

and 

  {Re O" I (1) pRiexo for every i e N and every p E L, and 
         (2) for every Ye Y, there is q E L(Y) such that gP(Rt)exc for every 

i e N}. 

For every ne v { U c(R) I R E O"} and every nonempty subset Y of X, define 
S(u, Y) = u(L( Y)). 

 REMARK 4.1. (S(u, Y),u(exc,)) E B" for every u E { Uc(R) I R E E } and every non-
empty subset Y of X. 

 Proof: See Appendix. 

 Define dB= {(S(u, Y), u(e,)) I Ye Y and ne Uc(R) for some Re Z.-71. This is the 
desired subset of B" we shall be concerned with.

              5. CONSTRUCTING A COLLECTIVE CHOICE RULE 

 When bargaining problems are restricted to 4B, the choice in a bargaining set 
S(u, Y) can be converted into that in a space L(Y) of lotteries so that one can 
construct a choice function on L(Y) based on a bargaining solution. Some care 
should be taken, however, in regarding the choice function as specified by a
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collective choice rule. A collective choice rule should, by definition, generate a 
choice function depending solely on preference profiles but not on particular 
choices of utility profiles. 

  REMARK 5.1. For every 2 e R". +, neither the utilitarian solution nor the 
egalitarian solution with weight 2 satisfy Invariance under Affine Transformations of 
Utility. 

Proof: Obvious. 

 Define H,= {L( I Ye Y}. For every solution f satisfying Invariance under 
Affine Transformations of Utility, and every (R,H) e S x H, define 
CIR(H)=u-'(f(S(u,L-'(H)),u(e )), where ne Uc(R). We call CIR the choice 
function induced by f at R. The following remark guarantees that CIR is un-
ambiguously defined. 

  REMARK 5.2. For every Re S, . every solution f satisfying Invariance under 
Affine Transformations of Utility, and every Ye Y, u-'(f (S(u, Y),u(ex,))) = 
v'(f(S(v, Y),v(ex„))) for every u,v e UC(R). Moreover, CIR is a choice function 
on (L,Ho) for every R E 

 Proof See Appendix. 

 Given a choice space (L,H), admitting binary choices, such that Hog H and a 
collective choice rule F on (L,H), a solution f satisfying Invariance under Affine 
Transformations of Utility is said to partially induce F if, for every R e E, F(R) is an 
extension of the choice function CIR induced by f at R. This is the way we combine 
bargaining solutions and collective choice rules. 

 Put Hs = {S (S,d) E dB for some de R"}. Then a solution on dB can be regarded 
as a choice function on the choice space (R", Hs). We can characterize the full 
rationality of a bargaining solution f as a choice function on the choice space 
(R",Hs) with that of the choice function CIR on (L,Ho) at R e 

 THEOREM 5.1. For every solution satisfying Invariance under Affine 
Transformations of Utility, f; regarded as a choice function on (R",Hs), is fully 
rational if and only if ;for every Re E, the choice function CIR on (Lk) induced by f 
at R is fully rational. 

 Proof See Appendix. 

 Note that a solutionff on dR satisfies Nash's Axiom if and only if f, regarded as 
a choice function on the choice space (R",Hs) satisfies Nash's Axiom. Hence, by 
Lemma 2.1, no solution on dR which violates Nash's Axiom induces a collective 
choice rule. (Notice that collective choice rules, by definition, generates fully 
rational choice functions.) The Kalai-Smorodinsky solution and its extension, the 
Gauthier solution, belong to this category. For completeness, we prove it formally. 

 REMARK 5.3. The Kalai-Smorodinsky solution and the Gauthier solution do not
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satisfy Nash's Axiom on  4B so that they, regarded as choice functions on (R",HS), 
fail to satisfy Nash's Axiom of choice functions. 

Proof: See Appendix. 

  THEOREM 5.2. The Kalai-SmorOdinsky solution, the Gauthier solution, the 
utilitarian solution, and the egalitarian solution do not induce a collective choice rule. 

  Proof From Lemma 2.1, Remarks 5.1. and 5.3, and Theorem 5.1. Q.E.D. 

  We shall now show that the Nash solution does induced a collective choice rule. 
The Nash social welfare function Q" is defined by 

Q"(R) _ {(p,q) E L x Ll ~IE "(ui(p) —ui(exc))il E "(ui(q)- ui(exc))} 
for each R e O", where u_i e U(Rt) for every i e N. Note that this does not depend on 
the particular choice of U. For each chore space (L,H), admitting binary choices, 
such that Ho c H, the Nash collective choice rule F N on (L, H) is defined by 

F"(R) = C"R for every R e 

where, C"R(H) = {p e H I pQ"(R)q for every q E H} for every He H. 
  THEOREM 5.3. For every choice space (L,H), admitting binary choices, such that 
Hoc H, the Nash solution f '" on dB partially induces the Nash collective choice rule 
EN on (L,H). That is, C"R(H)=u-i(f"(S(u,L-i(H)) ,u(exc))) for every 
(R,H)EE x Ho, where ne Uc(R). 

Proof: See Appendix. 

  Finally, we inquire how the Nash collective choice rule escapes Arrow's 
impossibility. The condition of Unrestricted Domain is obviously violated , and 
Independence of Irrelevant Alternatives is also violated, as we shall see below. In 

general, we shall say that a collective choice rule F on (L,H) satisfies the Von 
Neumann-Morgenstern Domain if dom F We have the following theorem . 

  THEOREM 5.4. For every choice space (L,H), admitting binary choices, the Nash 
collective choice rule EN on (L,H) satisfies Von Neumann-Morgenstern Domain , 
Full Rationality, Unanimity, and Nondictatorship but does not satisfy Independence 
of Irrelevant Alternatives. 

Proof See Appendix. 

 The condition of Independence of Irrelevant Alternatives is appropriate for 
ordinal preferences and too weak for cardinal preferences, as can be seen from the 
argument by Kalai & Schmeidler (1977), which proved a cardinal impossibility 
with a finite set of alternatives. The Nash collective choice rule violates a fortiori 
Kalai-Schmeidler's Cardinal Independence of Irrelevant Alternatives, although it 
is still an open question if their impossibility theorem can be extended in the case 
of infinite alternatives. Hence their impossibility theorem either does not apply to
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this collective choice rule even if it is extended.

6. CONCLUDING REMARKS

 Theorem 5.1. and Lemma 2.1. indicate that Nash's Axiom of bargaining 
solutions is closely related to the full rationality of the choice functions induced by 
them. Throughout the present paper, we have used the term collective choice rule in 
the narrow sense to mean a rule that generates fully rational choice functions. If 
we use the term in a broader sense to include a rule that generates a choice function 
which is not necessarily fully rational, then we can say that the Kalai-Smorodinsky 
slution and the Gauthier solution induce collective choice rules which satisfy 
Unanimity (as for the Kalai-Smorodinsky solution, only when  n=2)  and 
Nondicatatorship. 

 But, for two reasons stated below, we abstain from stating that the Kalai-
Smorodinsky solution or the Gauthier solution induces a collective choice rule. 
One is that these solutions cannot be evaluated as good as the Nash solution from 
the viewpoint of social choice. In fact, they violate Full Rationality in addition to 
Unrestricted domain and Independence of Irrelevant Alternatives. 

 The second reason is more fundamental and related to the admissibility of 
binary choices. In general, social welfare functions and collective choice rules are 
related via a rationalization or the base relation only when the choice space admits 
binary choices. The proof of Arrow's impossibility theorem for collective choice 
rules is crucially dependent on binary choices. (See Suzumura (1983).) Collective 
choice rules partially induced by the Kalai-Smorodinsky or the Gauthier solution, 
however, cannot have a choice space which admits binary choices, because the 
choice functions induced by them are defined only on some sets of infinite lotteries. 
Then the definition of our Nondictatorship and, therefore, the impossibility 
theorem itself turn out to be irrelevant to such collective choice rules. 

 The main concern of the present paper has been the possibility of constructing a 

collective choice rule, based on a solution to bargaining problems, to which 
Arrow's impossibility theorem does not apply. So we have not dealt with collective 
choice rules induced by irrational solutions. 

 As was mentioned, the restriction of a choice space into (L,Ho) obscures the 
relationship between social welfare functions and collective choice rules but, 
technically speaking, there remains a question if one really cannot replace the 
choice space admitting binary choices by (L,Ho) in the impossibility theorem.

Keio University

APPENDIX

Proof' of Remark 4.1. Clearly S(u, Y) _ R", u(e,,) E S(u, Y), and as noted,
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 S(u,  Y) is compact. Since Re E, there is q E L(Y) such that for every te N, 

gP(RI)exc. Hence there is u(q) E S(u, Y) such that u(q) > u(exc). Take any 
a, b E S(u, Y) and any t E [0,1 ]. Since a, b E S(u, Y), there are p, q E L(Y) such that 
u(p) = a and u(q) = b. 

 Then to + (1 — t)b = tu(p) + (1 — t)u(q) = u(tp*(1 — t)q). (L(Y),*)  is also a mixture 
set so that tp*( 1 — t)q e L( Y). Therefore u(tp*( 1 — t)q) E S(u, Y). Q.E.D. 

  Proof of Remark 5.2. Since u,vE c(R), there is an affine operator T such that 
u= T • v. By Invariance under Affine Transformations of Utility, 

u- (f(S(u, Y),u(e)o))) = (T • v)-1 [.f(S(T• v, Y), T • v(exc))] 
=(T•v)-1[f(T•v(L(Y)),T-v(exc))] 

=v-l • T -1[ .f(T•S(v,Y),T•v(exc))] 
=v-' • T -1[T( .f(S(v, Y),v(exc)))] 

                     = v-l( .f(S(v, Y),v(exc)))• 

To assure that CIR is a choice function on (L,Ho), take any H E Ho. Then, since 

f(S(u,L -1(H)),u(exc)) is not empty, CIR(H) � 4. Clearly, CIR(H) . H for every 
HE Ho.Q.E.D. 

  Proof of Theorem 5.1. Suppose f is fully rational. Fix any Rel.-7,  H EHo, and 
LIE Uc(R). Then there is a binary relation Q on R" such that 

f(S(u, L -1(H)), u(exc))Qa for every a E S(u, L -1(H)). Take any x* E CIR(H). Then 
u(x*)Qa for every a E S(u, L -1(H)). Define a binary relation Q* on L by 

Q* _ {(x,y) E L x Ll(1) (x, y) E H2 and u(x)Qu(y) , 

                       (2) xEH and yeL—H, 

                    (3) (x,y)E[L—H]2}. 

Since for every y E H, u(y) E S(u,L ' (H)), u(x*)Qu(y) for every y E H. Therefore 
x*Q*y for every ye H. Furthermore, if x*Qy for every ye H, then by the definition 
of Q*, u(x*)Qa for every a e S(u, L-l(H)) so that u(x*) E f(S(u,L-' (H)), u(exc)). 
Hence x* e CIR(H). 

 Conversely, suppose CIR is fully rational and let Q* be its rationalization. Define 

Q by 

Q= {(p,q) E [R "]2 I (1) (p,q) e [S(u, Y)12 and there are x e u' (p) and 
y E u-l(g) such that xQ*y, 

              (2) pES(u,Y) and geR"—S(u,Y), 

              (3) (p,q)e[R"—S(u,Y)]2} . 

Then Q is a binary relation on [R"]2. Denote p* = f (S(u, Y),u(exc)), then u' (p*) _ 
CIR(L(Y)). Take any x* E CIR(L( Y)). Since x*Q*y for every y E L(Y), p*Qq for 
every q E S(u, Y).Q.E .D
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Fig. 1.

  Proof of Remark 5.3. Let n=2.  Note that then the Kalai-Smorodinsky 
solution coincides with the Gauthier solution. Construct (S,d) and (S',D') e dB as 
follows. Let Y= {x0,xi,x2,x3,x4}. There are (R,,R2) and (Q,,Q2) e SE such that ex4 
P(R,) ex3 P(RI) ex2 P(RI) ex, P(R,) exc, ex, P(R2) ex2 P(R2) ex3 P(R2) ex4 P(R2) exc, 
and Rt n [ Y}2 = Qt n [ YJ2 for every i e { 1,2 }. There is ne Uc(R) such that u1(ex4) = 
5, u,(ex3) = 9/2, u,(ex2) = 4, u1(ext) = 1, u1(exc) = 0, u2(ex4) = 1, u2(ex3) = 7/2, u2(ex2) = 
4, u2(ex,) = 5, and u2(exc) = O. Define S = S(u, Y), then S is the convex hull of the 

points (0,0), (1,5), (4,4), (9/2,7/2), (5,1). 
 There is v E U c(Q) such that v 1(ex4) = 45/7 ,  vi(e) = u1(exr) for every t 0,1, 2, 3 }, 

v2(ex4) =1 /2, v2 (ext) = u2(ext) for every t e {0,1, 2, 3 } . Define S' = S(v, Y), then S' is the 
convex hull of the points (0, 0), (1, 5), (4, 4), (9/2,7/2), (45/7,1/2). Define d=u(exc) 

                                                              and d'=v(e,0). Then (S,d), (S',d')EAB, d=d', ScS', and f'{(S',d')=fG(S',d')= 

(9/2,7/2) e S. But f"(S,d) =f G(S,d) = (4,4) f"(S',d'). (See Figure 1.) Q.E.D. 

 Proof of Theorem 5.3. Let u e Uc(R) and p e C"R(H). Then p e H and 
II i e N(ui(p) - ui(exc)) >= Hi E N(ui(q) - ui(exc)) for every q E H. Hence 
u(P)el"(S(u L-l(H)),u(exc)), i.e. pell-l( .IN(S(u,L-'(H)),u(exc))) so that C"R(H) 
gw-l(f"(S(u,L-l(H)),u(exc))). The converse inclusion follows similarly. Q.E.D. 

  Proof of Theorem 5.4. Von Neumann-Morgenstern Domain, Full Rationality, 
Unanimity, and Nondictatorship are obviously satisfied. There are R,Q E 

p,geL, jEN, LIE{U(Rt)}", and ve{U(Q)}" such that Rt=Qt for every iEN-{j}, 
Rj n { p, q}2 = Qj n { p,q}2, ui = vi, ui(p) = 3, ui(q) =1, and ui(exc) = 0 for every 
i E N- {j} ,  uj(p) =1, uj = 3, uj(exc) = 0, vi(r) = 3"uj(r) for every r E L({ q,q}), and 
vi(exc) = 3" -1. (Note that Rj and Qt can be different on L- { p,q} so that uj and vi 
can be chosen affinely nontransferable on L.) 

  Then II i  N(ui(P) - ui(exc)) = sn-l  x 1� in-l  x 3= II i E N(ui(q) - ui(exc)) so that 
pQN(R)q and p e CNR({ p,q}). (Note that n >_ 2 and { p,q} E H.) But 

hi e N(vi(P) - vi(exc)) = 3"-1 <2 x 3" + 1= hi e N(ti'i(q) - vi(eA)) 

so that we have qP(Q"(R))p and p C"Q({ p,q}). Therefore F" does not satisfy
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Independence of Irrelevant Alternatives. Q.E.D.
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