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COLLECTIVE CHOICE RULES AND BARGAINING SOLUTIONS*

Takako Funwara

Abstract. The Nash solution to bargaining problems is shown to induce a
collective choice rule generating fully rational choice functions. This property is
not shared by other solutions, including the Kalai-Smorodinsky, Gauthier,
utilitarian, and egalitarian solution. An axiom of bargaining problems, Invariance
under Affine Transformations of Utility, turns out to be crucially important for
constructing a collective choice rule based on a bargaining solution. The Nash
collective choice rule, however, violates the condition of Independence of
Irrelevant Alternatives.

1. INTRODUCTION

Nash (1950) characterized a solution, now called the Nash solution, to
bargaining problems with four axioms: Pareto Optimality, Invariance under
Affine Transformations of Utility, Symmetry, and Independence Axiom. In the
present paper, the last axiom will be referred to as Nash’s Axiom. Some other
solutions have been proposed by different authors: the Kalai-Smorodinsky
solution (Kalai & Smorodinsky (1975)), the Gautheir solution (Gauthier (1985)),
the utilitarian solution, the egalitarian solution, and so forth.

Based on the Nash solution to bargaining problems, Kaneko & Nakamura
(1979) constructed the Nash social welfare function and gave a complete
characterization of it. One may be inclined to conjecture that each of other
solutions to bargaining problems may be employed to construct a social welfare
function, as the Nash solution was employed to construct the Nash social welfare
function. It will be shown that this conjecture is not true.

In view of the fact that, in most cases, social welfare functions can be expressed
in terms of collective choice rules, we shall work exclusively with collective choice
rules instead of social welfare functions. Our main conclusion is that the Nash
solution induces a collective choice rule generating a rational choice function,
while the other four solutions cited above do not. (Theorems 5.2-3.) Meanwhile
we will show that a bargaining solution can be regarded as a choice function on
some special choice space so that the properties of a solution are directly reflected
in the social choice function induced by it. (Theorem 5.1.)

Finally, we clarify why Arrow’s impossibility result does not apply to the Nash
collective choice rule. (Theorem 5.4.)

* The author is grateful to Professor H. Osana for his helpful comments.
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2. COLLECTIVE CHOICE RULES

Throughout this paper, we shall consider a society with » individuals, where # is
a fixed integer not less than two. Put N={1,2,- - - ,n}. A choice space is the ordered
pair (Z,H) of a nonempty set Z representing the set of conceivable states and a
nonempty family H of nonempty subsets of Z, representing the set of conceivable
opportunities or environments. A choice function on a choice space (Z,H) is a
function C of H into P(Z)— {¢} such that C(H)< H for every He H, where P(Z)
stands for the power set of Z.

Two rationality concepts for choice functions will be considered in the present.
paper. A choice function C on (Z,H) is said to satisfy Nash’s Axiom if C(H)=
C(H’) for every H.H € H such that H= H" and C(H’)< H. To define the other
kind of rationality, denote by Q(Z) the set of complete, reflexive, and transitive
binary relations on Z for each choice space (Z,H). A choice function C on (Z,H) is
said to be fully rational if there is an element Q of Q(Z) such that for every He H,
C(Hy={xeH [ny for every ye H}, and then Q is called a rationalization of C.
The following relationship is known between these two rationality concepts.

LEMMA 2.1  Every fully rational single-valued choice function satisfies Nash’s
Axiom.

Proof. See Suzumura (1983, Theorems 2.1, 2.12, and A(3) on p. 26, p. 42, and
p. 48.). Q.E.D.

Social choice theory considers a rule for defining a choice function based on
preference profiles of the members of the society. Given a choice space (Z,H), each
individual’s preference is assumed to be an element of Q(Z). A collective choice
rule on a choice space (Z,H) is a function F whose domain, dom F, is a subset of
(2(Z))" and whose range is included in the set of fully rational choice functions on
(Z,H). We are interested in the following five conditions for a collective choice
rule.

DeriNiTION 2.1. Let (Z,H) be a choice space. A collective choice rule F on

(Z,H) is said to satisfy

Unrestricted Domain if dom F=({(Z))",

Full Rationality if F(R) is fully rational for every Redom F,

Unanimity if ye Cg(H) for every Redom F, every x,ye Z, and every He H such
that xe H and xP(R,)y for every ie N, where Cr=F(R) and P(R;) stands for
the asymmetric part of R,,

Independence of Irrelevant Alternatives if Cp(H)=Cy(H) for every R, Qedom F,
and every H ¢ H such that xRy if and only if xQ,y for every ie N and every
x,ye H, where Cx=F(R) and C,=F(Q).

A choice space (Z,H) is said to admit binary choices if H contains every two-
element subset of Z.
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DEerFINITION 2.2, A collective choice rule F on a choice space (Z,H) admitting
binary choices is said to satisfy Nondictatorship if there is no i€ N such that {x} =
Cr({x, y}) for every Redom F, every x, y € Z such that xP(R,)y, where Cr=FH(R).

Arrow (1963) proved that these five conditions are inconsistent as a whole if
#Z = 3 and the choice space admits binary choices. (cf. Suzumura (1983), Theorem
3.4 on p. 76). '

3. BARGAINING PROBLEMS AND SOLUTIONS

A bargaining problem is the ordered pair (S,d) of a compact convex subset S
(called the set of feasible utility allocations) of R" and a point d (called the
disagreement point) of S such that a>d for some a€ .S, where R denote the set of
all real numbers, and a > d stands for a;> d; for every ie N. The set S is interpreted
as the set of utilities which can be attained by a joint action of the members of N
and the point d as the utility vector the individuals obtain when no agreement is
reached. Denote by B" the set of bargaining problems. A solution is a function f of
a subset of B" into R" such that f(S,d) € S for every (S,d) edom f. Given a subset 4
of B", a solution will be called a solution on 4 if domf= 4.

Since the appearance of the work by Nash (1950), many axioms a solution to
bargaining problems should satisfy have been proposed, among which we shall be
concerned with the following.

DErFINITION 3.1. A solution f'is said to satisfy

Pareto Optimality if for every (S,d)edomj there is no ae S such that a>f(S,d),

Symmetry if f(n(S),n(d)) for every (S,d)edomf and every permutation = on N,
where n(a)=(a,,). . .. Gy for each acR" and n(S)={n(a)|ae S},

Invariance under Affine Transformations of Utility if f(T-S,T-d)=T(f(S,d)) for
every (S,d)edomf and every affine operator T on R",

Nash’s Axiom if f(S,d)=f(S",d") for every (S,d), (S’,d’)edom f such that d=d’,
S<S’, and f(S',d)eS.

A solution f" on B" defined by f™(S,d)=argmax.s [icn(si—d,) for every
(S,d) e B" is called the Nash solution. Nash (1950) characterized it in terms of above
four axioms in the spcial case n=2, and later, Roth (1979) extended the
characterization to general cases. In the present paper, we shall consider four other
solutions to be compared with the Nash solution.

Let (S,d)€ B". Define 5(S) € R" by b(S)=max {a€ R | there is ce R""! such that
(€15 " " Cim15@,Ci 41,7 " *,c,) €S} for every ie N. The i-th component of b(S) is the
maximal feasible utility in S of the i-th individual. The point b(S) is called the
ideal point of the bargaining problem (S,d). For each x,yeR", let L(x,y) de-
note the closed line segment joining x and y. A solution f¥ defined by f%(S,d) =
max[L(d,b(S)) n S] for every (5,d)e B" is called the Kalai-Smorodinsky solution,
where max[L(d,b(S)) N S] denotes the maximal element of L(d,5(S)) S with
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respect to the usual partial ordering on R" (see Kalai (1985) and Kalai and
Smorodinsky (1975).) The Kalai-Smorodinsky solution is the maximal feasible
element on the line segment joining the disagreement point and the ideal
point. This solution is known to satisfy Pareto Optimality, Symmetry, and
Invariance under Affine Transformations of Ultility in the special case n=2, but
not necessarily to satisfy Pareto Optimality when n>3. A solution f¢ on B"
defined by

f(S,d)=argmax, s min;. (s, — d))/(b(S) — ;)

is called the Gauthier solution (see Gauthier (1985)). The Gauthier solution
maximizes the minimum proportion of possible gain to any person. It is an
extension of the Kalai-Smorodinsky solution for the purpose of satisfaction of
Pareto Optimality even if n>2.

Put 4.={(S,d)e B"| S is strictly convex}. For each 2e R",, ., a solution f* on
Ac defined by fUXS,d)=argmax.s) ;.n4s; for every (S,d)e A is called the
utilitarian solution with weight A (see Kalai (1985)). For every A e R", ,, a solution
fE* on B" defined by f*4(S,d)=max{se S| A(s;—d;) = A{s;—d,) for every i,je N} is
called the egalitarian solution with weight A (see Kalai (1985)).

4. A SPECIAL CLASS OF BARGAINING PROBLEMS

To investigate the possibility of constructing a collective choice rule based on a
solution to bargaining problems, it will turn out that we have to confine ourselves
to a certain restricted class of bargaining problems. This section is devoted to
defining the special subset of B" in which we are interested. _

Bargaining problems are expressed in terms of the choice of utilities, more
specifically, von Neumann-Morgenstern utilities, while collective choice rules deal
with the choice of states. We shall begin with filling this gap. Von Neumann-
Morgenstern utility functions represent preferences on the space of lotteries over a
nonempty finite set X of sure states. A lottery is a probability mixture of some sure
states. In fact, a lottery which entitles the holder to x with probability p(x) for
every x € X can be specified by the probability measure p, where p is a function of X
into R, such that Y . yp(x)=1.

Denote by L the set of functions p of X into R, such that Y, _yp(x)=1. Since X
is a finite set, each element p of L can be identified with a vector in the standard
simplex of dimension #X — 1. That is, the set L of lotteries can be regarded as the
(#X — 1)-dimensional standard simplex, which is a nonempty compact convex
subset of #X-dimensional Euclidian space. Each element x of X can be identified
with the unit vector e, defined by e (x)=1 & e,(y) =0 for every ye X— {x}. Thus X
can be regarded as a subset of L. For each nonempty subset Y of X, denote by
L(Y) the set of elements p of L such that Y, yp(x)=1. Then every nonempty
subset Y of X can be regarded as a subset of L(Y'), which can in turn be regarded
as the (#Y — 1)-dimensional standard simplex.
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Given two lotteries p and g, let tpx(1 — t)q stand for the lottery which entitles the
holder to p with probability # and g with probability 1 —t. Clearly, the ordered pair
(L,*) is a mixture set in the sense of Herstein & Milnor (1953). Denote by @ the set
of complete, reflexive, and transitive binary relations Q on L satisfying the
following two axioms:

(I) For every p.q.relL, both {te[0,1]| (tp*(1 —1)q)Qr} and
{te[0,1] l rQ(tp*(1 —1t)q)} are closed in [0,1}].
(I) For every p,q,re L, if pI(Q)q, then (*/,p*'/,r)I(Q)(*/,q*'/,r), where Q) is
the symmetric part of Q.
For every Qe @, the set of von Neumann-Morgenstern utility functions for Q is
defined by

U(Q)={u:L—R|for every p,ge L,pQq if and only if u(p) = u(g)}. Herstein and
Milnor (1953) proved that for every Qe @, (a) U(Q) is not empty, (b) for every
ue U(Q), u(tp=(1 —t)g)=tu(p)+(1 —t)u(q), for every p,qe L, and every te[0,1],
and (c) every element of U(Q) is an affine transformation of every other element of
Q).

For every Re ©", the set of continuous utility profiles for R is defined by

UC(R)={u:L-—+R"}u is continuous and u;e U(R,) for every ie N}. Following
Kaneko & Nakamura (1979), we choose an element x, of X to play the role of the
disagreement point. Put

Y={YeP(X)—{¢}|x,€ Y and #Y =22},
and

E={Re®"|(1) pRie,, for every ie N and every pe L, and

(2) for every YeY, there is ge L(Y) such that gP(R,)e,, for every
ie N}.

For every ueu {UR) | Re®"} and every nonempty subset Y of X, define
S(u,Y)=u(L(Y)). :

REMARK 4.1. (S(u,Y),u(e,)) € B" for every ue{UC(R){ ReZ} and evefy HOR-
empty subset Y of X.

Proof. See Appendix.

Define A= {(S(u,Y), u(exo))} Ye Y and ue US(R) for some Re=E}. This is the
desired subset of B" we shall be concerned with.

5. CONSTRUCTING A COLLECTIVE CHOICE RULE

When bargaining problems are restricted to 4p, the choice in a bargaining set
S(u,Y) can be converted into that in a space L(Y) of lotteries so that one can
construct a choice function on L(Y) based on a bargaining solution. Some care
should be taken, however, in regarding the choice function as specified by a
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collective choice rule. A collective choice rule should, by definition, generate a
choice function depending solely on preference profiles but not on particular
choices of utility profiles.

REMARK 5.1. For every AeR"_ ., neither the utilitarian solution nor the
egalitarian solution with weight A satisfy Invariance under Affine Transformations of
Utility.

Proof. Obvious.

Define H0={L(Y)! YeY}. For every solution f satisfying Invariance under
Affine Transformations of Utility, and every (RH)eZExH, define
C o(H)=u""(f(S(u, L™ *(H)),u(e,,)), where ue U(R). We call (y the choice
function induced by f at R. The following remark guarantees that (Y is un-
ambiguously defined.

REMARK 5.2. For every ReZ,. every solution [ satisfying Invariance under
Affine Transformations of Utility, and every YeY, u '(f(S(u,Y)uley))=
v H(f(S(v,Y),v(e))) for every uve US(R). Moreover, C'y is a choice function
on (L,H,) for every Re=.

Proof. See Appendix.

Given a choice space (L,H), admitting binary choices, such that H,c H and a
collective choice rule F on (L,H), a solution f satisfying Invariance under Affine
Transformations of Ultility is said to partially induce F if, for every Re Z, F(R) is an
extension of the choice function ' induced by f'at R. This is the way we combine
bargaining solutions and collective choice rules.

Put Hy={S \ (S,d) e 4y for some de R"}. Then a solution on 4, can be regarded
as a choice function on the choice space (R",Hs). We can characterize the full
rationality of a bargaining solution f as a choice function on the choice space
(R",Hg) with that of the choice function ( on (L,H,) at ReZ.

THEOREM 5.1.  For every solution satisfying Invariance under Affine
Transformations of Utility, f, regarded as a choice function on (R"Hy), is fully
rational if and only if for every R€ E, the choice function (! on (L,H,) induced by f
at R is fully rational.

Proof. See Appendix.

Note that a solutionf f on 4, satisfies Nash’s Axiom if and only if f, regarded as
a choice function on the choice space (R",Hy) satisfies Nash’s Axiom. Hence, by
Lemma 2.1, no solution on 4z which violates Nash’s Axiom induces a collective
choice rule. (Notice that collective choice rules, by definition, generates fully
rational choice functicns.) The Kalai-Smorodinsky solution and its extension, the
Gauthier solution, belong to this category. For completeness, we prove it formally.

REMARK 5.3.The Kalai-Smorodins_ky solution and the Gauthier solution do not
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satisfy Nash's Axiom on Ag so that they, regarded as choice functions on (R",Hy),
Jail to satisfy Nash’s Axiom of choice functions.

Proof. See Appendix.

THEOREM 5.2. The Kalai-Smorodinsky solution, the Gauthier solution, the
utilitarian solution, and the egalitarian solution do not induce a collective choice rule.

Proof. From Lemma 2.1, Remarks 5.1. and 5.3, and Theorem 5.1. Q.E.D.

We shall now show that the Nash solution does induced a collective choice rule.
The Nash social welfare function QV is defined by

O(R)={(p.q)€ L x L|[T;cnt ) — o)) 2 [ Tic w(tt@) — o))}

for each Re @", where u; € U(R;) for every i€ N. Note that this does not depend on
the particular choice of U. For each choie space (L,H), admitting binary choices,
such that H, < H, the Nash collective choice rule F " on (L, H) is defined by

FYR)=CM4 for every ReZ,
where, CYo(H)={pe H|pQ™(R)q for every ge H} for every He H.

THEOREM 5.3.  For every choice space (L,H), admitting binary choices, such that
H,< H, the Nash solution f~ on Ag partially induces the Nash collective choice rule
F¥ on (LH). That is, CNg(H)=u '(fNSu,L '(H)),u(ey)) for every
(R,H)e E x H,, where ue U(R).

Proof. See Appendix.

Finally, we inquire how the Nash collective choice rule escapes Arrow’s
impossibility. The condition of Unrestricted Domain is obviously violated, and
Independence of Irreievant Alternatives is also violated, as we shall see below. In
general, we shall say that a collective choice ruie F on (L,H) satisfies the Von
Neumann-Morgenstern Domain if dom F=Z. We have the following theorem.

THEOREM 5.4. For every choice space (L,H), admitting binary choices, the Nash
collective choice rule FN on (L,H) satisfies Von Neumann-Morgenstern Domain,

Full Rationality, Unanimity, and Nondictatorship but does not satisfy Independence
of Irrelevant Alternatives.

Proof. See Appendix.

The condition of Independence of Irrelevant Alternatives is appropriate for
ordinal preferences and too weak for cardinal preferences, as can be seen from the
argument by Kalai & Schmeidler (1977), which proved a cardinal impossibility
with a finite set of alternatives. The Nash collective choice rule violates a fortiori
Kalai-Schmeidler’s Cardinal Independence of Irrelevant Alternatives, although it
is still an open question if their impossibility theorem can be extended in the case
of infinite alternatives. Hence their impossibility theorem either does not apply to
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this collective choice rule even if it is extended.

6. CONCLUDING REMARKS

Theorem S5.1. and Lemma 2.1. indicate that Nash’s Axiom of bargaining
solutions is closely related to the full rationality of the choice functions induced by
them. Throughout the present paper, we have used the term ceollective choice rule in
the narrow sense to mean a rule that generates fully rational choice functions. If
we use the term in a broader sense to include a rule that generates a choice function
which is not necessarily fully rational, then we can say that the Kalai-Smorodinsky
slution and the Gauthier solution induce collective choice rules which satisfy
Unanimity (as for the Kalai-Smorodinsky solution, only when n=2) and
Nondicatatorship.

But, for two reasons stated below, we abstain from stating that the Kalai-
Smorodinsky solution or the Gauthier solution induces a collective choice rule.
One is that these solutions cannot be evaluated as good as the Nash solution from
the viewpoint of social choice. In fact, they violate Full Rationality in addition to
Unrestricted domain and Independence of Irrelevant Alternatives.

The second reason is more fundamental and related to the admissibility of
binary choices. In general, social welfare functions and collective choice rules are
related via a rationalization or the base relation only when the choice space admits
binary choices. The proof of Arrow’s impossibility theorem for collective choice
rules is crucially dependent on binary choices. (See Suzumura (1983).) Collective
choice rules partially induced by the Kalai-Smorodinsky or the Gauthier solution,
however, cannot have a choice space which admits binary choices, because the
choice functions induced by them are defined only on some sets of infinite lotteries.
Then the definition of our Nondictatorship and, therefore, the impossibility
theorem itself turn out to be irrelevant to such collective choice rules.

The main concern of the present paper has been the possibility of constructing a
collective choice rule, based on a solution to bargaining problems, to which
Arrow’s impossibility theorem does not apply. So we have not dealt with collective
choice rules induced by irrational solutions.

As was mentioned, the restriction of a choice space into (L,H,) obscures the
relationship between social welfare functions and collective choice rules but,
technically speaking, there remains a question if one really cannot replace the
choice space admitting binary choices by (L,H,) in the impossibility theorem.

Keio University

APPENDIX

Proof of Remark 4.1. Clearly S(u,Y)=R", u(e,,)eS(u,Y), and as noted,
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S(u,Y) is compact. Since ReZ, there is ge L(Y) such that for every ieN,
gP(R)e,,. Hence there is u(q)eS(u,Y) such that u(q)>u(e,). Take any
a,be S(u,Y) and any r€[0,1}. Since a, be S(u,Y), there are p,ge L(Y) such that
u(p)=a and u(q)=>.

Then ta+(1—0)b=tu(p)+ (1 — Hu(q) = u(tpx(1 —1)q). (L(Y),*) is also a mixture
set so that 1p*(1 —1)ge L(Y). Therefore u(tpx(1 —1)q)e S(u,Y). Q.E.D.

Proof of Remark 5.2. Since u,ve U°(R), there is an affine operator T such that
u=T-v. By Invariance under Affine Transformations of Utility,

u” (f(S(u, Y )ulex0))) = (T 0) " H{A(S(T-0,Y), T vle,))]
=(T-0) AT o(L(Y)), T v(e,))]
=0 LT HAT -S0,Y), T v(ey))]
=v™ 1T HT(f(S(, Y),0(e)))]
=01 (f(S(v,Y),0(e0)))-
To assure that (7 is a choice function on (L,H,), take any He H,. Then, since

S(S(u,L™'(H)),u(e)) is not empty, (px(H)#¢. Clearly, (/((H)< H for every
HeH,. Q.ED.

Proof of Theorem 5.1. Suppose f'is fully rational. Fix any Re =, HeH,, and
ue US(R). Then there is a binary relation Q on R" such that
Sf(S(u, L™ (H)),u(e,o))Qa for every ae S(u,L™'(H)). Take any x*e (/i (H). Then
u(x*)Qa for every ae S(u,L ™ '(H)). Define a binary relation Q* on L by

O*={(x»)eLxL|(]) (x,y)eH* and w(x)Qu(y),
(2) xeH and yel-H,

(3) (x.y)elL—HF}.

Since for every ye H, u(y)e S(u,L™'(H)), u(x*)Qu(y) for every ye H. Therefore
x*Q*y for every y € H. Furthermore, if x*Qy for every y € H, then by the definition
of Q*, u(x*)Qa for every aeS(u, L™'(H)) so that u(x*)ef(S(u, L™ '(H)), u(e)).
Hence x* e C/x(H).
Conversely, suppose (Y is fully rational and let Q* be its rationalization. Define
Q by
O={(p.9)elR"*|(1) (p,9)e[S(u,Y)* and there are xeu"'(p) and
yeu~'(qg) such that xQ*y,
(2) peS,Y)and ge R"—S(u,Y),
(3) (p.g9)e[R"—Su,Y)P} .
Then Q is a binary relation on [R"}. Denote p* = f(S(u, Y ),u(e,,)), then u ™' (p*) =

C'R(L(Y)). Take any x*e (Y(L(Y)). Since x*Q*y for every ye L(Y), p*Qq for
every ge S(u,Y). Q.E.D
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Proof of Remark 5.3. Let n=2. Note that then the Kalai-Smorodinsky
solution coincides with the Gauthier solution. Construct (S,d) and (S’,D")€ 4 as
follows. Let Y= {x,,x,,X,,x3,x,;. There are (R,,R,) and (Q,,0,) € =Z such that e,
P(R)) e P(Ry) e,; P(Ry) e,y P(Ry) ey, 5y P(R;) €,y P(R;) €3 P(R;) €,y P(R,) ey,
and R,n[YF=Q,n[Y]* for every ie {1,2}. There is ue U °(R) such that u,(e,,) =
5, uy(ex3) =972, uj(e) =4, uy(ey) =1, us(ex0) =0, uey) =1, uy(e,3) =7/2, uy(ey,) =
4, u,(e,,) =5, and u,(e,,) =0. Define S=S(u,Y), then S is the convex hull of the
points (0,0), (1,5), (4,4), (9/2,7/2), (5,1).

There is ve US(Q) such that v,(e,,) =45/7, v,(e.) =u,(e,,) for every 1€{0,1,2,3},
vy(e) =1/2, v,(e,) =u,(e,) forevery t€{0,1,2,3}. Define S’ = S(v, Y), then S” is the
convex hull of the points (0,0), (1,5), (4,4), (9/2,7/2), (45/7,1/2). Define d=u(e,,)
and d’ =v(e,,). Then (S,d), (S',d")e A, d=d’, S=S’, and fX(S",d")=f%(S",d")=
(9/2,7/2) € S. But fX(S,d)=1%(S.d)=(4,4) #/*(S’,d’). (See Figure 1.) Q.E.D.

Proof of Theorem 5.3. Let ue UYR) and pe C"y(H). Then peH and
I \(uf p) — ufexo)) 2 11; n(uq) — uley)) for every qgeH. Hence
u(p) € N(S(u, L™ (H)),ule,)), i.e. peu™ (fN(S(u, L™ (H)),u(e,))) so that CYp(H)
cu ' (f¥(S(u, L™ (H)),u(ey))). The converse inclusion follows similarly. Q.E.D.

Proof of Theorem 5.4. Von Neumann-Morgenstern Domain, Full Rationality,
Unanimity, and Nondictatorship are obviously satisfied. There are R,QeZ,
p,.geL, je N, ue {U(R)}", and ve {U(Q,)}" such that R;=Q, for every ie N—{,},
Rin{p,gy*=0;0{p.q}* w=v, u(p)=3, ufg)=1, and ufe,)=0 for every
ieN={j}, u{p)=1, u;=3, ufe,n)=0, v(r)=3"ufr) for every re L({q,q}), and
vj(eo)=3"—1.(Note that R; and Q; can be different on L —{p,q} so that u; and v,
can be chosen affinely nontransferable on L.)

Then T, (up)—ufeo)=3""'x121""'x3=11, y(uig)—ufe,) so that
pOY(R)q and pe CV({p.,q}). (Note that n>2 and {p,q} € H.) But

. I1; ;v p) —vhe)) =3""1 <2 x 3"+ 1 =11, \(viq) — vey))
so that we have ¢gP(Q"(R))p and p¢ C"y({p.q}). Therefore F¥ does not satisfy
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Independence of Irrelevant Alternatives. Q.E.D.
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