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UNCERTAINTY, LIQUIDITY AND THE DEMAND 
            FOR MOMEY*

Anjan MUKHERJI and Amal SANYAL

Abstract. An agent holding liquid assets may believe that by doing so he would 
buy time to ascertain more definitely the parameters relating to investment in 

plant, equipment or real estate i.e., investments which are either irreversible or can 
be reversed only at substantial cost. We show that this consideration is sufficient to 

generate a positive demand for liquid assets, although such assets provide a lower 
(often zero) yield. The individual is assumed to be completely ignorant about the 
furture and accordingly uses the maxim in criterion to choose among various 
alternatives. We also examine the implications for aggregate demand for money , 
bonds and  `real' investment and compare them with the Keynesian formulation 
which models the demand for liquidity (money) as arising out of fear of capital 
loss in the bond portfolio.

I. INTRODUCTION

  In Keynes, liquidity preference is synonymous with the asset demand for money . 
But if by liquidity we mean the property of convertibility into money at short 
notice without significant loss, then this is a property of many assets , including 
bonds, against which Keynes postted the agent's demand for liquidity ! Since 
Keynes (4, Chapters 13 & 17) derived the demand for liquidity by invoking the fear 
of capital loss from bond holding, it is difficult to extend his argument to 
rationalise the demand for other liquid assets, particularly so because they often 
compete with assets which have both a promise of higher yield and carry no 
substantial fear of capital loss. 

 The present paper tries to derive the demand for liquid assets as originating in 
the advantage associated with the property of liquidity itself , i.e. from the contrast 
that these assets make with another group of high yielding assets which are 
inconvertible or illiquid, in the sense that they cannot be sold off without 
significant loss in future. Classification of assets on the basis of this property has 
been done by Marschak (6, pp. 182-183) and has been used in a somewhat 
different context by Hizshleifer (3). Hicks (2, Chapter 2, pages 38-43 in particular) 
suggests that if there is uncertainty relating to the future yield of illiquid assets , 

 * The authors are grateful to a referee for pointing out an error in an earlier draft, and f'or advice 
which have greatly helped in the writing of the present version. Thanks are also due to Satish Iain and 
Abhijit Banerji for helpful comments.
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then the cost of making a wrong choice of these assets may prove large over its life 
time, since it cannot be sold off when the mistake is realised. If the agent feels 
that more certain knowledge about the yield on these assets can be obtained by 
waiting for a while, and the cost of making a mistake is larger than that of carrying 
a low yielding but liquid portfolio, then there is a prima facie reason for 
demanding liquidity. Note that even if the yield on the various illiquid assets under 
different states of nature were all larger than that on a liquid asset, the argument 
applies as long as there is large enough variation among these yield rates, making 
the cost of a mistake large. Below we attempt to develop these arguments more 
formally. 

 A related enquiry also developed in the paper is to examine the implications of 
this argument on the demand for money. We derive a positive demand for money 
at low interest rates. Regarding the slope of the demand for money with respect to 
interest rates, we may note that the usual negative slope in Keynesian theory 
follows from the continuous shift of households from money to bonds as the 
interest rate rises. In our formulation, the demand for money changes through 
substitution not only by bonds but also by other illiquid assets. The present value 
of the cost of making a wrong choice in the illiquid assets declines as the rate of 
interest rises, since it reduces the time rate of discount. Thus a rise in the interest 
rate encourages, other things remaining equal, a substitution of money by illiquid 
assets. The negative slope of the demand for money as the interest rises, thus 
materialises only if the switch from money to bonds by households occurs 
continuously so as to neutralise the substitution by money of illiquid assets within 
the individual portfolios. 

 The model used below considers a choice problem involving money, bonds and 
two illiquid assets. The return on the last two are larger than that on bonds under 
all eventualities. The rates of return on the illiquid assets are given a configuration 
such that neither is dominating under all eventualities. For simplification, it is 
assumed that initially there is complete ignorance about the future state of the 
world; but complete knowledge prevails after one period. Finally for modelling 
choice under complete ignorance, we use the maxmin criterion, the rationale for 
which will be explained below

II. THE MODEL

 The agent is assumed to possess a nominal quantity of money M at the 
beginning of period 1; writing the nominal holdings of money, bonds and assets 
Al (i= 1, 2) as x0, xB, xi respectively, the budget constraint is defined by the set 

B={x=(xo, xB, xi, x2): xo, xB, x,, x2>_0; x0+xB+xi+x2<_M} . (1) 

Money carries no return. Bonds yield r per period per unit of nominal holding. 
They can be converted into money after the first period and the expected rate of 
conversion is 1 nominal unit of bond - c units of money, c�0. 0. Clearly c < 1
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 implies the expectation regarding capital gains or loss on the bonds. Assets A. (i = 
1, 2) are illiquid; if acquired, they last infinitely. Two events can materialise at the 
end of period 1; these events Ej (j= 1, 2) are known today but the agent has no 
assessment of the probability of their occurrence. The uncertainty is expected to 
decline over time and this is captured by the assumption that the agent has no 
assessment about the outcomes at the beginning of period 1, but at the beginning 
of period 2, he would know with certainty which event has occurred . The return 
per unit of nominal holding of the asset Al in the eventuality that EE occurs is 
known to be r. . 

 Since we wish to explore the demand for assets arising from their property of 
liquidity or convertibility, we assume that in terms of yield, bonds are dominated 
by illiquid assets under all eventualities, i.e., 

r < rit all i and j . 

Further, since the net return on bonds (i.e. net of capital gains or losses) is r + c —1 

per unit of nominal holding, we sjhall assume that 

r+c-l <r,i all i and j . 

Without any loss of generality of the future argument, we assume further that

r22 > il 1 > r12 > r21 •(R) 

Additionally, we need to assume that r12 and r21 are small relative to r,1 and r22. In 
otherwords, that by making a wrong decision, one may incur a substantial loss. 
The exact relationship between the ills will be spelt out in sections below and some 
examples would be provided to show that the configuration required for money 
holding or bond holding is plausible. 

 The elements xi, x2 chosen at the beginning of period 1 cannot , by assumption, 
be ever decreased. However, since the state of the world would be completely 
revealed at the beginning of period 2, if x0 > 0 in period 1, it will be converted at 
the beginning of period 2 into the Al for which the return is now known to be 
higher. Similarly, for bonds. As r <r;; for all i, j, bonds cannot be purchased at the 
beginning of period 1 with a view to hold them for ever. Thus if xB > 0 in period 1, 
in period 2 it will be converted into the Al with the higher yield (see Claim 1, 
Appendix). Finally, the nominal earnings in period 1 (from bonds and assets) 
would all be converted into the higher yielding asset in period 2 . After period 2, 
there would be no further change in the portfolio. 

 Given the above description, the income lij in period i if event j occurs , from a 
portfolio x = (xo, xB, xi, x2) may be written as 

'11 =xB(r+c-l)+xlrll +x2r2l , 

121 = {Xe + xB(r+ c) + xlrll + x2r2l}ill + xlrll + x2r2l 

_ {xo+xB(r+c)+xi(1 +ill)+x2r2l}ill +x2r2l ,
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 1m1=121 for all m >_ 2 ; 

112 =xB(r+c— 1)+xlrl2+x2r22 , 

122 = {xo+xB(r+c)+xirl2+x2r22}r22+xlrl2+x2r22 

= {xo+xB(r+c)+xlrl2+x2(1 +r22)}r22 +xlrl2 , 

and 

'm2 =122 for all m>2 . 

Now writing the sum of discounted stream of incomes, taking a discount rate S, we 
have 

                        11=111+6121+62131+.. • 

and 

12=h12+(bl22+S2Is2+ • 

so that 

II =111+/2121 where µ=S,/1—S 

and 

12 = 112 + /2122• 

Thus 

11(x)=µrllxo+ {(r+c) (1 +2rll)-- 1}xB 

+{l+µ(1+ill)} {rllxl+r2lx2} 

and 

12(x) = µr22xo + {(r + 0(1 +111.22)— 1  }xB 

+ { 1 + µ(1 +r22)} {rl2xl + r22x2}. 

In the above formulation of discounted income, we can analyse the individual 
household's behaviour with any subjective rate of discount. However, since we will 
later look at the outcome for the entire market for various assets, it will be more 
appropriate for our purpose to take this rate as 1/(1 + r) for all individuals. 
Admittedly this implies a belief in an equilibrating market process which 
establishes a market rate of discount to which as price takers individual 
households equate their subjective rates through equilibrating adjustments. No 
attempt has been made to analyse such a process in the current paper. When 
necessary, then, we shall use the above rate of discount which in turn would imply 

S 1 
               µ=1----—=r 

  We shall assume that the individual chooses x from B so as to solve
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MaxMin  {11(x), 12(x)}. 
XEB 1.2

(P)

Before proceeding to an analysis of the above optimisation problem, we should 
explain why such a problem may be of interest for our decision maker. Recall that 
in our introduction, we mentioned that the investor is completely ignorant about 
what may occur. In such situations, if x is an act (a choice of a portfolio from B, in 
the present situation) and Ij(x) is the outcome if El occurs, then under a rather 
straightforward characterisation due to Arrow and Hurwicz (1), any decision 
criterion satisfying some appealing axioms, takes into account only the maximum 
and minimum outcome associated with any act. In otherwords, if m(x) =Mini II(x) 
and M(x) = Maxi Il(x), then all x's are ordered according to some ordering of the 
ordered pairs (m(x), M(x)). We choose, in our context, an ordering of (m(x), M(x))' 
which is lexicographic in nature. Amongst all x E B, choose the one with the largest 
m(x). 
 Thus on a formal basis appealing to the Arrow-Hurwicz axioms, we may come 

up with (P) as a possible decision rule: the rnaximin criterion . For a discussion of 
this rule and the contribution of Arrow and Hurwicz, see Luce and Raiffa (5, 
pages 278-306). In particular, however, recall the behaviour of agents we are 
trying to model: these agents wish to buy time and find out more about the events 
and so they want to make a correct decision. In otherwords, our typical investor is 
conservative. For such decision makers, the maxmin criterion makes good sense 

(see, for example, Luce and Raiffa (5, page 279, third para)). 
 It is shown in the appendix, that given (R) if r12 is small enough and if there are 

no substantial capital gains, solving the problem (P) reduces to solving the 
following linear programming problem (see Claims 2 —5 and subsequent dis-
cussion in the Appendix): 

                Max yoxo+YBxB+7, 

              s.t. x0(1 +8B)+xB{1 +(r+c)0B}M, 

                      x0, xB >_ 0, 

where

        1 +µ(1 + ill  Yo=Lurii—1+B){ill(02—eB)+r21(1+BB)},(2) 

                   2 

                1 + /41 +i)                             {
r(r+c)(1+µill)-1—1+8

2{ill(02—(r+c)0B)+r21(1+(r+c)8B)},

(3)

Y=
1 + µ(1 + r..l

1+02
[o2Mrll +r2lM] (4)
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0= Ur22—ill) (5)   B(
ill—ri2)(1 +u)+ u(rll-r22rl2) 

and 

 0=(rzz—r21)(1+µ)+µ(ri2—rllr2l)(6) 2 
(rl~-rl2)(1+u)+1/(rit—r22rl2) • 

The above problem determines 4, 4 and thereafter, 4 and 4 are determined by 

               x*__M—(1+0B)x4—(1+(r+c)0B)xB(~)        21
+02 

and 

xi =0B{xo +(r+c)xB}+02.x2.(8) 

A complete listing of all possibilities is given in Table 1 in the appendix . 
 Regarding yo, it may be shown that under plausible situations there is a r > 

such that 

yo >0 whenever 0 < r <i 

and 

yo <0 whenever r>. 

If no such r exists, then yo <0 for all possible r. 
 For yB, it is shown that 

   whenever r =1— c , YB = Yo; 

                YB _ Yo     for r<r,1 
+ (r + c)8B 1 + OB<0 according asrl—c; 

   but for a single configuration of rils and c, if yB > 0 for some r, it remains 
   positive for larger values of r. For these and other conclusions, the reader is 

   referred to the appendix.

               III. DEMAND FOR MONEY, BONDS AND ASSETS 

 We shall consider the interval (0,r21) for the variation of r, since by assumption 
r < rit for all i,j. For an individual agent, ti; and c are given and we shall study how 
the optimal portfolio changes when r varies. In particular, we shall assume 

                                  2 

                                      ill —r22rl2 

and 

= ill{r22(1 — ill rzz —r12 — r21)—rl2l 

+ r21{r12(1 +ill + r22 + ill r22) — r22} > 0•
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(These are conditions (il) and (viii) in the appendix and it is discussed there how 
these may follow if r12 and  r21 are small relative to r„ and r22). Also, we shall as-
sume that r* (defined in Claim 1)>r2,, to ease the discussion. Adjustments to 
the arguments can be made easily to indicate what happens when these restrictions 
are violated and we shall indicate them. We shall consider three representative 
cases which broadly cover all situations: 

  Case 1. 0<1—c<f<r21• 
 Recall that r r"=yo 0 (refer to the discussion on the nature of 70 in the 

appendix). Thus we shall obtain: in (0, 1 — c), yo >0 and since r< 1— c, xo = M/ 
(1 + 00 and x i = OBM/(1 + 0B) constitute the optimal portfolio; At r= 1— c < r, yo > 
0 and yB > 0; so in the range (1 — c, r21) we have 

             *_*_(r+c)0BM                x
B1+(r+c)oB'xll+( r+c)0B • 

There is a possibility, also, of a range (?1,i 2) in (1 — c,r21) where the optimal 
portfolio is

              *02M*_M                        x
l1+0

2,x2+02, 

refer to the discussion of the nature of yB in the appendix for such a possibility . 

  Case 2. 0<r<1—c<r21. 

As before in (0,1), yo >0 and r< 1 the optimal portfolio is 

             *_*0B                        x
°1+OB'xll+O

B. 

At r=1-(<1—c),  yo =0, and yB < 0=' that at r, the optimal portfolio changes to 

                *_02M*_                         xll-
+'02,x2 1+02 

and this portfolio is maintained beyond r= 1 — c, since yB at r=1 —  c, must be 
negative as yo is negative there. So there is some Fl > 1— c such that the above 

portfolio is held over the range (r",il). From Yr, where yB becomes positive, the 
portfolio changes to

              *_* _(r+c)0BM                 xB1+(r+c)oB'xll+( r+c)0B • 

And there may or may not be a subsequent switch from the (4,4) portfolio to 
the (4 ,4) portfolio as mentioned in Case 1. 

  Case 3. 1 —c<0<r<r21• 
Now notice that in (0,i), although yo >0, since r> 1 —c, yB > 0 too and moreover
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YB  
1+(r+c)0B 1+OB>0 

(see the appendix: The Nature of TB). Thus in the range (0, r21), the portfolio would 
be 

              *lt~l*(r + c)0 BM                 x
B_+(r+c)O

Bxl—1+(r+c)0B • 

There may or may not be a switch to an (4 ,4) portfolio, as remarked in Case 1. 
 We devote the remaining part of this section to conditions (il) and (viii) noted at 

the beginning. What happens, when these are violated ? 
 By referring to the appendix, it may be seen that we require 

                (1 + u)(ill — r12) + u(rit — r27 r12) >0 

(which is so if (il) holds, given (R)). Rewriting it= 1  /r, we require 

                (1 + r)(ill — r12) + (rit — r22 r12) >0, 

so that even if (il) is violated, we have the above 
if

               z 

1+r>r22rl2—ill
ill —r12

or 

                    r>r12(r22+ 1)—ill(1 +ill) 
ill—r12 

so that so long as 

                           ill(1 + ill)  
r12 (1 

+r22) 

we can still proceed as before; notice that 

                       ill(1+r ti) 
>  r12 

                                  1  1 + r22 r22 

so that we may replace (il) by a somewhat larger bound, without altering anything. 
But if 

ill(14- ill)  
r12> 1

+r22 

then one may straightaway see that for any x E B, Min (11(x),12(x)) = 11(x). Thus 
solving (P) reduces to 

                          Max 11(x). 
XEB
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Again returning to the expression for  Il, it may be seen that the coefficient of x, is 
the largest, (see proof of Claim 4), hence the optimal portfolio is xi = M. This 

portfolio does not change when r varies. 
 Finally when (viii) is violated i.e., To < 0 for all r > 0, it may be noted that if c< 

1, there is some r',> 1—c such that in (0,r?,), the optimal portfolio is 

* 02M * xi =1
+02 , x2=1------+02 . 

 Beyond r the optimal portfolio changes to 

             *M*_(r + c)8BM                  XD1+(
r4-c)OB'x,1+(r+c)OB 

and thereafter, as in Case 1. 
 Again, for the sake of convenience, we have assumed that the switch of portfolio 

occurs in (0,r21); this of course, need not be the case . The portfolio in such cases 
consists of the portfolio valid for the first stage of the argument noted above . 

 To sum up, under the restrictions employed, one would expect the following 

general pattern: 
at low levels of the interest rate, the portfolio is made up of money and Al; if c is 
close to 1 (but less), the next stage is of bonds and Al; whereas if c is smaller , the 
next stage is of A, and A2; also notice that at any r, the optimal portfolio is made 
up of only two assets.

IV. MARKET DEMAND

 In general, individual agents differ in their assessment of ills and c; thus the 

switch points, where one portfolio changes to another, are likely to differ. Let [rH] 
denote the assessment of individual H, and define r21 = MaxHr2l . For r = r21, then, 
most individuals have a portfolio of bonds and Al; some may even have a 

portfolio of Al and A2—these are individuals with a very low assessment of c. If we 
consider such `bears' to be in the minority, then most people are holding bonds 

and A,. A fall in r may allow some individuals to attain their switch points where 

they convert their bond holdings into money; there may once again be switches 

into holding Al and A2 but we may consider them to be of minor importance. So 

far as the market demand for money is concerned, we may proceed as follows:—let 

I(r)= {H:xo * > 0}: the set of individuals who hold money. Thus for any r, the 
aggregate demand for money is 

MH 

                         1+9(r)'                          HEl(r)B 

where we use the formula for 4 developed in Section III earlier and
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Demand for 

  money A 

 B

 0  r' 

Fig. 1.

r2 r

(rl2l2— r     O H) 
       Br)—-------2211                B(rH

l—rH2)(r+1)+{(rHl)2—rl2r22} • 
As r changes, the above demand for money may change due to the following two 

factors: 

(a) a change in OB 
and/or 
(b) a change in the set I(r). 
Suppose r' > 0 is such that for r <il, 1(r)  is made up of the whole set of individuals; 
at il, one individual drops money holding and moves into a portfolio not involving 
money. Let the second such individual leave at r2 and so on. Then noting that OB is 
a decreasing function of r and hence 1/(1 +  (4) is an increasing function of r, we 
have the following demand curve for money. 

In 0 < r <r' , all individuals belong to I(r); consequently, the demand for money 
is 

MH 

H 1 + OB(r) 

in (0,il). At il, any H, drops out, so that H, I(il + e) for any e> 0 however small. 
Consequently in (il,r2) the demand for money is 

MH 

                             H*Hit + ego  

Again at r2, say H2 drops out so that H2 k 1(r2 + e) for any e > 0 however small. 
The difference OA — OB (see diagram) is 

MH MH 
           1+ 0H(il)  H # H, 1+ 0B (r2) 

mi------
+ '' MH 0B(r2)-011(il)  l 1

+ 411(il) H$ Al (1 + O 1(r'))(1 + 911(r2))j 

M H' 

              1 + 0g'(il) +(— ye) term ,
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given the property of  OB(r) mentioned above. However the closer is r2 to r', the 
smaller is the absolute value of the — ve term and OA — OB will be positive as 
drawn. Thus when a large number of agents have their switch points uniformly 
distributed over an interval (r',r' +h), the step function nature would be smooth-
ened out into a downward sloping demand curve for money over this interval. 

  In the range r < r' , again, note that the demand for A, must be a decreasing 
function of r. After a switch, A, holding for an individual changes 

                   OB                  MH              froml 
+Ox with money 

(r+cH)OHMH             to either 
1 + (r + c.H)OBif held width bonds 

O M"             oil +©Hit held with A2 . 

It therefore follows that when there are no switches, the demand for A, may either 
increase or decrease with r; although when only Al and money is held, it is 
definitely a decreasing function of r. 

 Imagine an open market operation by the Central Bank aiming to buy bonds 
from the market. As the Bank buys bonds, it reduces the long rate , persuading 
some agents to give up their bonds for money. However at the lower end of the 
market, since the substitution of bonds by money has already taken place , such 
operations would become impossible. We are now, in some sense , in a situation 
similar to the Liquidity Trap of Keynes. But the so-called liquidity trap in our 
model has a rather interesting aspect. Suppose r < r' (see diagram) and no bonds 
are held. Suppose for some reason located outside the asset markets , MH, the 
quantity of money with H, is increased to MH + d MH. In the Keynesian trap 
situation, this additional amount will be absorbed as additional money holding 
without a change in r being required. In our model, this increase in MH would not 
cause any change in r; a part of the surplus will be held as money while the 
remaining will be used to increase the holding of A,. Thus in the trap region , even 
though the rate of interest may not change, we may have an expansion in the 
investment on the real asset with the smaller spread of returns induced by 
monetary policy ! 

 If the economic situation is characterised by overwhelming bullishness (c> 1 for 
most), then money becomes inferior to bonds and as we have noted above , no one 
wants to hold money. A more interesting exceptional case occurs when the market 
is overwhelmingly bearish with c being close to zero. In this situation characterised 
by

1—cH>rH1 

for most H, the demand for money continues to exhibit features mentioned above; 

but in the range (0,r21) individual H refuses to hold bonds. We do not enter into a
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discussion of the implications of this aspect here.

APPENDIX

Consider the problem (P) 

 Max  Min (4(x),12(x)) 
xeB 1,2 

mentioned in Section II of the paper. In particular, it may be recalled that IL(x) are 
written with the presumption that if xB > 0, then the total bond holding is 
converted at the end of period 1 into the higher yielding asset. We first put this 
presumption on firmer ground by means of 

 Claim 1. .There is r* >0 such that for all r < r*, bonds held at the beginning of 
period 1 would be converted at the end of period 1. 

 Proof Consider one nominal unit of bond held in period 1; it promises a 
nominal return, r, per period; moreover, r units of money earned in period 1 can be 
invested into the highest yielding asset at the beginning of period 2. 

 By not converting the bond at the end of period 1, the investor has a stream of 
returns whose present value is at most [11(1 — 8)]r + [8/(1-6)]r-  r22. 

 While by converting the bond at the end of period 1, the investor has a stream of 
returns whose present value is at least (r + c —1) + (r + c) • r„[61(1 —6)1 

 The difference between the latter and the former is (c— 2) + (ill— r22) + c ill /r 
when we recall that 6= 1 /(1 + r); further, let r* =c r„/[lc—     2 I + r22 — rill; for r <r*, 
the above difference is positive, so that conversion is the better alternative. 

 In the text, we have mentioned that r < r21 + 1 — c; we extend this restriction to 

0 <r < Min (r*,r21 + l — c)(i) 

here and shall operate within these limits. We may add, that in the light of the 
other limits to be imposed, (i) may not be more restrictive than the original limits 
imposed on r so long as c is not too small, as the examples at the end of the 
appendix indicate. 

 Returning to the problem (P), it should be noted that B is a non empty and 
compact subset of R4 (the 4-dimensional Euclidean space) and that 
Mini ,2 {11(x);12(x)}is a continuous function on B. Hencethe problem (P) is 
solvable and there is x* e B which solves (P). We provide below some properties of 
x* which help us to characterise the solution. 

 Consider the two related problems 

                   Max 11(x) 

               s.t. 1-1(x)— /2(X) < 0 (P') 
xEB 

and
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                   Max  12(x) 

               s.t. /2(x)— l, (x) < 0.(pi 

xe.8 

We note 

  Claim 2. x* solves (P)=either x* solves (P') or (P") or both. 

  Proof: If x* solves (P), either 11(x*) <_12(x*) or 12(x*) <_11(x*). In the former 
case, x* is feasible for (P') while in the latter case , x* is feasible for (P"). Then in 
the former case, if x* does not solve (P'), there is x' F B, 11(x) = Min (11(x'), 
/2(x))> 11(x*) = Min (11(x*), 12(x*)): a contradiction . Hence x* solves (P'). In the 
latter case, x* solves (P"), exactly as above. Finally, 11(x*) = 12(x*)~x* solves# 
both (P') and (P"). ^ 

Chaim 3. Let x' solve (P') and x" solve (P"); let 11(x)— 0. Then 

0 > 0= x' solves (P) 

<O= x" solves (P) 

= O~both x' and x" solve (P) . 

 Proof Suppose 0 > 0; note that x' is feasible for (P) . If x' does not solve (P), 
then the solution x* to (P) must satisfy 

Min (11(x*),12(x*)) > Min (11(x'),12(x')) =11(x'). 

Hence x* cannot be feasible for (P') i.e ., 12(x*) <11(x*) so that by Claim 2, x* 
solves (P") i.e.,        

• 12(
x*) = Min (11(x*),12(x*)) = /2(x") <11(x): 

a contradiction. Hence x' solves (P). 

   The conclusion in the cases 0 �0 follow as above. ^ 
   Thus, to solve (P), we need to study the solutions of (P') and (P") . We have first 

of all 

 Claim 4. Under (R), if 

                                  z 

         il 1 =' l2'22,(il) 

then x' solves (P) ~11(x') = 12(x') and xo + xB + x l + x2 = M. 

 Proof It would be more convenient to rewrite (P') as the following standard 
linear program: 

   Max µrllxo+{(r+c)(1 +µr„)— 1}xB+(1 +µ(1 +ill))(rllx, +r2lx2) 

   s.t. u(ill —r22){xo+(r+c)xB}+{(1 +.u(1 +ill))ill—(l +p(1 +r22))r12}xi 

+ {(1 + i(1 + ill))r21 —(1 +,u(1 + r22))r22}x2 G 0,
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 x0  +-  xB  +  x  l  +  x2  <<  M, 

xO,xB,xi,x2 >_ 0. 

The dual to the above problem is 

Min y2M 

s.t.µ(il 1 — r22)yr +y2 a Pri 1, 

p(ill —r22)(r+c)yr+y2> {(r+c)(1 +µill)-1}, 

{(1+p(1+ill))r„—(1+p(l+r22))rl2}yr+y2>(1+p(l+r„))r„ , 
        {(1 + p(1 + ill))r21 —(1 +R(1 + r22))r22}yr +y2 ?(1 + 1.1(1 + ill))r21 , 

yr,y2?0. 

Let x' solve the problem (P'); then there is y'=(yr,y2) solving the minimum 

problem. 
 From the constraints of the minimum problem, it follows that y2 �0; since 

otherwise 

yl''p(ill —r22) il >0: 

a contradiction to (R). Hence y2 > 0. 

.•. xo+xB+xi+x=M. 

Next, if possible let 11(x) <12(x) i.e., 

y =0. 

Then one may note from the constraints of the minimum problem that 

(1 +P(1 + rli))ill > pill, (since r„> 0) 

(l +p(1 +ill))ill >(1 +12(1 +ill))r2l by (R) , 

and 

(l +p(1 +r„))r„ >(r+c)(1 +pr„)— 1 , 

              since r + c —1 < r,i all i and j. 

Hence y2= (1 +(1 + prl l ))il l ; thus all but one of the inequalities in the minimum 

problem are strict inequalities so that 

xo= , x8=0, x2=0 

xi =M. 

But now by virtue of (il), 

{(1+p(1+ rli))ill —(1 +141 + r22))ri2} M > 0: 

a contradiction to the constraints of the maximum problem. Consequently, y; > 0 
and 11 (x') =12(x'), and the claim is established. ^
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  Claim 5. Given (R) x" solves  (P")=11(x")=12(x") and xo'+xB +xi'+ 
x"=. 

 Proof: Follows exactly as the proof of Claim 4; except that the counterpart of 

(il) 

2 r22 > ti i r2i 

is true given (R) and hence no further restriction is necessary. ^ 
Combining the above claims, it follows that given (R), (i) and (il), x* solving (P) is 
characterised by the following conditions: 

/1(x*) =12(x*)(iii) 

and 

xo +xB +xi +x2= M.(iv) 

From (iii), it follows that 

xi =0B(xo +(r+c)xZ)+024,(v) 

where 

                         µ(r22 - ill)                     e
B__(ill —r12)(1--41)+µ(ill —r22rl2) 

and 

                  __(r22 —r21)(1  +µ) + µ(ri2— rllr2l)                  02
(ill —r12)(1 +µ)+µ(ti 1 —r22rl2)' 

substituting (vi) in (v), we have 

                *—M—(1+BB)xo—(1+(r+c)BB)xB         x21 + 0
2(vi) 

Using (v) and (vi) in the expression for 11(x*) we obtain 

11(x*)=704, +YBxe+Y ,(vil) 

where 

1 + µ(1 + r1i)  Yo=[firll+1+©2{ill(eB-o2)—r21(1+0B)} , 
YB=(r+c)(1+µill)-1+1+µ(1+il   1+e2lrll((r+c)OB-o2)—r21(1+(r+c)BB)} 

and  

Y-l  +µ(1 +ill)[B2Mrll +r2lM] . 1 + ©
2
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TABLE 1.

yo <0

yo=0

yo>0

 -~yB<0 xa=0 , x6=0; x?=M/(1+02), x*=O2M/(1+02)(I.1) 

-> T8=0.xo =0 , xe may take any value in [0, M/1 +(r+c)OB] according to each
 such value x*, x2* from (vi) and (vil). 

--> yB>O=.xo =0 , xB=M/{1+(r+c)08} , 
x2 =0 , x,*_ {(r+c)OBM}/{ 1 +(r+c)08}

--> y8<0 xe =0; 4 E [0, M/(1+08)]; 4, 4 defined for each value of 4 
 via (vi) and (vil) 

-+ y8=0= , 4 take on any value satisfying 
4(1 +0,3)-F  xB{1+ (r + e)08} = M; 4, xz defined accordingly 

-yB>0=4=0 , .4=M/{1+(r+c)08}, x2=0, 
x*= {(r+c)08M}/{(l +(r+c)08}

-yB<Oxo=M/1+O B, 

-^ YB=0 as above

—• yB>0

 xB=-,  x2=0, x*=9BM/(1+9B)

-Yo/(1 +9B)>YBl{1 +(r+c)913}~4 =M/(1 +9 B) , 
x i = 9BM/(1 + OB) , xB =0 , 4=0 0 

-- Yo/(1+913)=yB/{1+(r+c)9 B}=--xo, xB may take any value 
 subject to 4(1 +9B)+xe{ 1 +(r+c)9B} = M; 

—^ yo/1 +9B <yB/{ 1 +(r+c)9B}=xo =0 , 
xB=M/{1+(r+c)9B}, x2=0,

(1.2)

(1.3)

(2.1)

(2.2)

(2.3)

(3.1) 

(3.2)

(3.3.1)

(3.3.2)

               "+c)Hl

{3.3.3}

Thus, solution to our problem (P) may be replaced by the solution to 

              Max yoxo +YBxB -l-y 

                         s.t. (1 +0B)xo +(1 +(r+c)OB)xB <_M,(Q) 

xo, xa>0, 

The constraint in (Q) guarantees that 4 >__ 0 (see (vi)) and the corresponding value 
for 4 may be computed from (v). 

 Thus solutions to (Q) depend on signs (and magnitudes , if both positive) of yo 
and yB. A complete listing of all possibilities are contained in Table 1. Before 
analysing yo and yB, it should be mentioned that the above conclusions are based 
on (R) (i) and (il). It turns out that (i) (as we mentioned before) is not necessarily 
more restrictive than r<r21; (il) essentially holds whenever r12 is sufficiently small 
when compared to ill and r2,. 

  The Nature of yo. 
 It may be shown that 

Yo=(illµ2+#2µ+fi3)/{(1 +11)(a+b)+P(Illa+r22b)},
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where 

 a=rit —r21 >0, 

             /~ 

                               b=r22 —r12>0, 

            /31 = {(a + ill(r22 — r21)}b — r22(1 + rit)(rllr22 — ri2r2l), 

/32 = ab — (1 + ill + r22)(rilr22 — rl2r2l) <0, 

N3 = - (riir22 — ri2r2l) < 0. 

Thus if /31 <0, then yo <0 for all values of p.>0; the implications for this can be 
seen from Table 1 that xo =0. 

 However if fli >0, then the numerator in the expression for yo 431/12+#2p+  /33 
can be positive for some values of p. In particular, consideration of 

/'1µ2+#2/1+/33 =0 

leads us to two roots Pli and u2 such that 

pl+122=—/32/f3i>0, 

Pi'P2= f33/Ni<0, 

given the signs of /'i, 12, /33. Thus 

#1122+/32/2+/33=(p-pl)(p-p2)'131, 

where µi >0 and µ2 <0; the expression is positive for all p > µi whenever /'i >0. 
 Recall that p= 1 /r. It follows therefore that if /31 >0, yo >0 whenever 1/r>  pi or 

whenever r< 1 /pi = r, say. Thus 

yo >0 whenever 0 < r <i 
<0 whenever r> r" 

if /i>0. 
 To examine /31 >0, we expand the expression in Si to obtain 

/il lr22(1 — riir22 _-ri2 — r21) — ri2} 
+ r21{r12(1 + ill +1-22 + riir22) — r22}. 

The restrictions (R) and (il) however do not imply any definite sign for /31; however 
if both r12 and r21 are negligible (compared to ill and r22), then the above 
expression would have the same sign as 

riir22(1 — rilr22), 

which is positive provided ill r12 < 1. This, naturally is one possible configuration 
of ti; which leads to /3i > 0. We shall use for our analysis, the final restriction 

/31 >0.(viii)
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The Nature  of yB. 
 Examining the expression for yB, one may write 

          r+c+r+c-l{1+1+µ(1+ill)o'll°2+.ixYB=()Yo()'1+o2r2l); (') 
hence when r + c =1, YB = Yo 
Further 

YB Yo _r+c-ll +µ(1+ill)yo   1+(r+c)0B 1+OB1+(r+c)OB1+1+02(rlioo,} • 
Thus if yo > 0, then 

YB Y°  < 0 
according as r + c 1 .(x) 1+(

r+c)0B 1+OB 

 Finally, we need to study whether yB > 0 for some value of r implies yB remains 

positive for all greater values of r. For this purpose, we expand the expression for 
yB to obtain: 

------------------------------------- •_1         YB r{(r+1)(a+b)+Illa+r22b}~alrs+a2r2+a3r+a4], 

where a, b are as before; the substitution u =1 /r has been made, and 

al=(a+b)>0, 
a2=ba+c(a+b)+r22b+Illa>0; 

but a3 and a4 could be of either sign. Now the question is whether it is possible to 
have yB(r) > 0 and yB(r) < 0 for r > F. Note that then air' + a2r2 + a3r + a4 = 0 has 
one positive root il, i> il > r and another positive root r2>1', since 
al r3 + a2r2 + a3r +a4 > 0 for r large enough. Given that at, a2 > 0, there may be two 
positive roots only if a3 < 0 and a4 > 0. Apart from this sign configuration, any 
other sign pattern would lead to at most one positive root and hence to the 
conclusion that once YB > 0, it remains so for higher values of r. 

Examples. 
  Example a. r22=.6, ill=.4, r12=.15, r21=.1. 

 One may note that r22. r12 = .09 < .16= r 1 which is (il) and in the formula for yo, 
(see above) 

/3, = .036 so that (viii) holds; 
/32=—.315, 
N3= —.225, 

so that µ1 = 9.414 and consequently for all values of r< .106, yo >O. 
  Specifying c= .9, r* in the proof of Claim I, may be computed to be
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r*  _  (.9 x .4)/(1 .1 +.2)
  .36 

=-----= .277, 1
.3

so that Min (r21 + 1— c,r*) = r21 + 1— c and (i) does not constitute an additional 
restriction. 
 Example b. Alter r12 to .27 and r21 to .05. 

 It may be noted that (il) is violated but (viii) holds. 
 Example c. Set r12 = .27 and r21= .1. 

 It may be noted that both (il) and (viii) are violated. 
 Exampled d. Set r12 = .2 and r21= .19. 

 It may be noted that both (il) and (viii) are violated . 
 Thus conditions (il) and (viii) are independent restrictions on the ills appearing 

in (R).
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