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NOTES ON THE STABILITY OF QUADRATIC GAMES

Ferenc SzZIDAROVSZKY and Koji OKUGUCHI

Abstract: The stability of the equilibrium for quadratic games is examined under
the assumption that each player forms adaptively expectations on other player’s
strategies and/or variables which are linear combinations of other players’
strategies. In this paper a discrete time scale is assumed. As applications, the
multiproduct oligopoly game is investigated under three different kinds of as-
sumptions about the dynamic behaviour of the players.

1. INTRODUCTION

In this paper the stability of the equilibrium for an N-person noncooperative
quadratic game is analysed under the assumption that each player forms
adaptively expectations on other player’s strategies and/or variables which are
linear combinations of other players’ strategies. A discrete time scale is assumed.
Similar investigation assuming a continuous time scale has been performed by
Szidarovszky and Okuguchi (1987). The structure of this paper is as follows. In
Section 2 the general dynamic model is formulated, and stability conditions are
derived. In Section 3 the implications of the stability conditions for a multiproduct
oligopoly model are presented. Section 4 concludes.

2. THE MATHEMATICAL MODEL AND STABILITY CONDITIONS

In this section an N-person game
F'={N;S,, - -.Sn;01, " ", 0}

is examined, where
(A) Forallk, the strategy set S, of player & is a closed, convex, bounded subset
of finite dimensional Euclidean space;

(B) For all k, the payoff function of player k is given as
A g(()) ce Agn),(
(p(xl’ e ,xN)=x(k)T . . x(k)+b(k)Tx(k)+c(k), (1)

A;’:‘)O <o AW

Ny
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where x, €S, (Vk),

Xy
Sk
x@=| ) Si= Z,kafn)xm (I1</<n,1<k<N). (2)
skw
It is also assumed that matrix 439+ A4$7 is negative definite for k=1,2, - - - N.

Note that payoff function (1) is a quadratic form of the strategy of player k and
linear combinations of other players’ strategies.

If a game is given in normal form, then ¢, is a function of all strategies
Xi, X oo+, Xy. In this case we set x®=(xT xT, .- xT_ xT. ., - xD7, and
therefore

B — I, if I<k and I=m, or >k and I+ 1=m
0 otherwise .

Under assumptions (A) and (B) the quadratic game satisfies the conditions for
the Nikaido-Isoda theorem (Nikaido and Isoda, 1955), therefore it has at least
one equilibrium point.

First, we investigate a model in which no adaptive expectations are as-
sumed. At time ¢=0, let x denote the strategy of player k. It is now assumed
that at each time ¢, each player k& maximises his own payoff value
Eu(x®, - x P x,x - ,x ) as a function of x,, and this optimal choice will
be his strategy selection for the next time period 1+ 1. By assuming that the
optimal strategy is an interior point of S, the first order conditions for optimality
imply that for all &,

AR+ ABx+ 3 (A + A0+ BP=0,

=1
that is,

ny

x§‘1+1)= —(A (k) (k)T) 1 Z (A E)kl)_{_A}k)T)s(l) (3)

=1

where a is a constant vector. By using the definition of vectors sy, this relation can
be rewritten as

ny
x}:+1) (A(k)+A(k)T -1 Z (Ag‘,’+A§’(‘)’T) Z B}';,)xf,',)+a

=1 m#k
—_ -—(A (k) (k)T -1 Z (Z (A (k) (k)T)B(k)>x(t)+¢ .
m+k

By introducing the notations
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n
Hi= —(AG+ A Y (A% +ABMBY,

I=1

x® 0 H, - Hpy
x| : H,, 0 o+ Hyy
;w H= . L
Hy, Hy, -+ 0
we have
" V=Hx"+a, | 4

Next, the adjustment mechanisms for players’ strategies and expectations are
introduced. Let s be the kth player’s expectations on s, It is assumed that
expectations are formed adaptively, that is,

sEUD_gBO 4 Ag (50 B0y (5)

It is also assumed that strategy x{*" of player k is obtained from equation (3),
where s is replaced by his expectation sE¢*1. Hence,

ny
0= —(AB+AGD Y (4G + 48 [ ) Mk,mf.:x;:’+(1—Mk,>sff'>]+a,

=1 m#*k

which can now be rewritten in matrix form as

_ . -
x(ll 1) T r x(lt)
+
x% 1 xg])
Sﬁt+l) sE(t)
. Hy, Hy,, --- Hyy . 1
: H,, H;, H,y :
E¢+1 = . . . E(t)
sl,(nl ) . . . Sl,nl +a (6)
Hy, Hy, Hyy
E(t+1) E(t)
SN(I SNI
E(t+1) E(@t)
SNony SNy
where the blocks are as follows:

K, - Ky
H,,= : :
KNI o Kyn
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with
0, if m=k
K, =
T (4B agn Z AR+ AYIMBE ,  if m#k;
Ly, - Ly
H0k= :
Ly, - Lyy
with
0, if m#k
L"" (A(k) (k)T) I(A(k) (k)T)(I Mkl) if m=k;
Mle(lkl) Mlel k-1 0 kaBx k+1 Mle(lk,)N
H,,= . : : ;
M, nkBg& ’ Mk nankk 1 0 M, nankk+1 Mk,nka.’L).N
and
0 if m#k
I-M 0
H, = k1 .
) s if m=k.
0 I_Mknk

If H denotes the matrix of coefficients of the linear difference equation (6), then it
has a special form:

Hoo H01 o Hoy

H,, H, 0
H= .

Hy, 0 Hyy

The system (6) is asymptotically stable if and only if the eigenvalues of matrix
H are inside the unit circle. In the following part of this section sufficient condi-
tions will be derived for the stability.

Consider the eigenvalue problem of H:

N
H00u+ Z H()kvkziu 7
k=1 (M

Hk0u+Hkkvk=;~vk (k= 1,2, c ',N)
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The second equations imply that
(Hy— v, = — Hyou. (®)

Assume that

(C) Eigenvalues of matrix H,, are all inside the unit circle for k=1,2, - - - |N.

Note that this condition is equivalent to the condition that the eigenvalues of
matrices M,, are inside the circle with centre and radius being equal to unity. If in
addition, matrices M,, are positive definite—which is the usual assumption in
adaptive expectations—, then condition (C) is equivalent to the condition that the
eigenvalues of My, are all less than two.

If in (8), 4 is an eigenvalue of H,,, then the stability condition is satisfied for this
eigenvalue. Otherwise

v = —(Hkk—'u)_IHko"’ 9

and by simple substitution into the first equation of (7) we obtain the relation

N
(Hoo_ Z HOk(Hkk“'u)—lHko—U>"=0- (10)
k=1

If u=0, then for all k, v,=0. This is a contradiction, since eigenvectors differ
from zero. Hence u #0, which proves the following

THEOREM. If conditions (A), (B) and (C) are satisfied, then system (6) is
asymptotically stable if and only if all roots of equation

N
Z HOk(Hkk_—)*I)—lHkO_lI]ZO (11)

k=1

det [HOO —
are inside the unit circle.

REMARK 1. In the special case when no adaptive expectations are assumed, we
may select M,,=1, which implies that H,, =0 for all k. H,, equals the matrix of
coefficients of system (4). Hence for H,,=1 (V k,!) the Theorem gives the stability
condition for the dynamic game without adaptive expectations, as well.

REMARK 2. In the general case it is a very difficult task to check the validity of
the condition (11) of the Theorem. In special cases anyhow it might not be so
difficult as the following case shows. Assume that / is real and for all &, H,, =al,
where o does not depend on k. Then (11) can be rewritten as

1

N
det [Hoo_m Z HOkaO ‘_lI:|=0 5
k=1

or

det [S——l— T—M]:O,
a—A
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where

N
S=H00 and T= Z HOkaO'

k=1

This condition is satisfied if there exists a real vector u##0 such that

Su—

_1_ 7 Tu—Au=0.

Premultiplying by #” and multiplying by « — 4 we have that
s(a—A)—t—Ma—A)=0,

where

u'Su u'Tu
s=—— and t=——.
u'u uu

Hence
A —As+a)+(sa—1)=0,
which has roots inside the unit circle if and only if
sa—t—1<0,
S+a—sa+t—1<0
and
—3—a—sa+t— 1<0.

By using the definition of s and r we may conclude that these inequalities hold if
matrices

aS—T-1, (I1=a)S+T+(@—1) and —(1+o)S+T—(a+1)I

are all negative definite.
In the next section the special case of the multiproduct oligopoly game will be
investigated. -

3. APPLICATION TO OLIGOPOLY WITH MULTIPRODUCT FIRMS

Let N and M denote the numbers of players (firms) and products. The kth firm’s

output vector is x, = (x|, - - -, x{™)), where x{™ denotes the output in product m of

firm k. The inverse demand function vector is given by
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N
plxy, o, xN)=A< Y xk)-i—b.
k=1
It is also assumed that the cost function of firm k is as follows:
Ck(xk)=berk+ck‘ (k=12,---,N)
Hence the kth firm’s profit equals

N

Oilxg, 0y xN)zka <A< Z xk>+b>-(blxk+ck)- (12)

k=1

1. First the case without adaptive expectation is examined. In this case we may
select ‘
X
k k
x”:[ ]’ sklzzxka
Sk1 m#k

BYM =1 (m#k).

and so n, =1,

Thus the matrix of coefficients of the system (4) is as follows:

0 H, -+ Hpy
H, 0 o Hyy

H=| . : : (13)
HNI HNz 0

with
H,=—(A4+47)"'4 Yk #1).

In our earlier paper (Okuguchi and Szidarovszky, 1987) we have proved that the
eigenvalues of matrix (13) are inside the unit circle if and only if N=2 provided
that the eigenvalues of matrix 4 ~'47 are real.

2. Consider next the case when adaptive expectations are assumed on in-
dividual firm’s outputs. Let x §, denote the kth firm’s adaptive expectations on the
/th firm’s output vector. Then

"xk —_

k)
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and
A A . o A
0o 0 ---0
oy, - xy)=x®T) D P HB-8970, 02" ¢
o 0o --- 0

“Hence by using the notation for the blocks of system (6),

0, if k=m
Ky, =3 —(A+A7) 1AM, if m<k
—(A+A")'AM,,, ,, if m>k;

Lo 0, if m#k
M)A+ AT Ad-M,), if m=k;

M, 0 7

M, 0
H,= M,., 0 ;
0 Mk,k+1
L 0 My ]
and matrices H,,, are the same as in the original case:
0 if m#k,
I1-M,, 0
. . o if m=k.
0 I-M, \_,

Consider next the special case, when for all k,/, M,,=al, furthermore A=A".
Then H is the Kronecker product of matrix
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and the identity matrix. Hence the eigenvalues of H coincide with the eigenvalues
of matrix (14), the eigenvalue equation of which has the form

o 1—a N1
—5 L= Lt (k=127 N)
=1

m#*k

) 15
o‘“ku)'*”(l — )V = Ay (Vk,1), (15)

where

I+1, if k<l
km:{l, it k>1.

By summing up the second equations of (15) for / we obtain the identity

N—1 N-t
o Z u,+(1—0o) Z vy =4~ Z Uy - (16)
=1 1=1

m#k
By multiplying (16) by 1/2 and adding to the first equation of (15) we have
1 N—1
i(uk“{""’— z vkl>=0.
2.5

If 1=0, then | 1| <1, so this eigenvalue belongs to the interior of the unit circle.
If A#0, then

N-1
Z V= —2u.

=1

By substituting this relation into (16) we get

—% Y upt+(1—dywe=Au,  (k=1,2,"",N),

m#k

which is equivalent to the eigenvalue problem of matrix

r o o
1— - e
+(1—0) > >
o o
_Z l—g) «o» —— —
2 +(' %) 2
—.a x +(
B : (1-2)

(17)
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43
max{|a,], | A,|}
A (N+Da
2
1 minimal solution’
[/ 4
51
1 = ol
ol 2 & 2 «
N+1 N+2
Fig. 1. The Optimal Speed of Adjustment.
The eigenvalues of this matrix are either 2, =1—a/2 or 4, = —a/2-N+1—0/2=
1 —(N+1)a/2. They are inside the unit circle if and only if
O<a< ) 18
N+1 (18)

The optimal value of the adjustment speed « can be determined as follows:

Minimize max{| 4, |,| 4, {}.
In our case

1‘%‘ if a<2

Ml|= o
(N+1)a )
e 1 > if a<N+l
ERELEN

if o> .
, b b eEgy
Function max{| 4, |,|4,|} is shown in Fig. 1. The minimal value of « can be
obtained as the intersection of the lines 1 —a/2 and (N+1)a/2—1, that is,

4
=, 19
aopt N+2 ( )
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3. Consider now the case. when adaptive expectations are assumed on the rest
of the industry outputs. In this case

X,
k k
x():[ :|, skzz_xm,

Sk m*k

A A
Pulxs, s xN)=x(k’[o o}x‘kw«b_bk)i 0)x¥—c,

With the notations of the blocks of the matrix of coefficients in (6) and defining
E=A+A")'4, M, =M,

{0, if m=k
Kkm= .
—EM, if m#k;

HIO 0 Ml Tt Ml

: - IM 0 - M, :

Hyo Co .

MNMN 0 0
—E(I-M,) 0
(Hoy, * - Hon)= ;
0 —E(I-My)

H, - Hy I-M, 0
Hy, -+ Hyy 0 I-My

The eigenvalue problem of matrix H has now the special form:

Y —EMu—EI— Mo, =i, (VK

I#k

Z Mkll,-l-(I—Mk)vk‘—‘-‘/{vk (Vk).

I#k

(20)

By adding the E-multiple of the second equation of (20) to the first equation of
(20) we get
MEv,+u)=0. (21)

We may assume that £5#0. Then 4, = — Ev,, and by substituting this relation into
the second equation of (20), the equations

Z (—MEvy)+(I— Myv, = v, (Vk)

l#k

are obtained, which are equivalent to the eigenvalue problem of matrix
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I_Ml -M]E v '_'MIE
_MzE I—MZ vt —MzE
: . . (22)

‘—MNE —MNE I—MN

In the special case of A=A4" and M, =al (V k) this matrix is the Kronecker
product of matrix (17) and the identity matrix. Hence the stability condition is
again relation (18), and the optimal adjustment speed is given again by (19).

4. CONCLUSIONS

After formulating a general quadratic model with and without adaptive
expectations a general stability condition was derived, which reduced the problem
to the examination of a nonlinear eigenvalue problem (11).

As applications, the multiproduct oligopoly game was investigated. If no
adaptive expectation is assumed, then the equilibrium is stable for only N=2,
which gives the multiproduct generalization of the classical result of Theocharis
(1959). If adaptive expectations are assumed, then in both cases examined stability
can be assured for arbitrary numbers of players provided that the speed of
adjustment is sufficiently small. Concerning this result, two comments are in order.
Observe first, that the case without adaptive expectations is equivalent to the case
of adaptive expectation with a=1. The inequality (18) holds only for N=2. This
observation gives not only a new generalization of the famous theorem of
Theocharis but also gives an explanation why N =2 is the border line for stability
in the classical case. Besides presenting the stability conditions we have shown how
the optimal adjustment speed can be determined, optimal in the sense that the
convergence is fastest.

Karl Marx University of Economics
Tokyo Metropolitan University
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