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NOTES ON THE STABILITY OF QUADRATIC GAMES

Ferenc SZIDAROVSZKY and Koji OKUGUCHI

 Abstract: The stability of the equilibrium for quadratic games is examined under 
the assumption that each player forms adaptively expectations on other player's 
strategies and/or variables which are linear combinations of other players' 
strategies. In this paper a discrete time scale is assumed. As applications, the 
multiproduct oligopoly game is investigated under three different kinds of as-
sumptions about the dynamic behaviour of the players.

1. INTRODUCTION

 In this paper the stability of the equilibrium for an N-person noncooperative 

quadratic game is analysed under the assumption that each player forms 
adaptively expectations on other player's strategies and/or variables which are 
linear combinations of other players' strategies. A discrete time scale is assumed. 
Similar investigation assuming a continuous time scale has been performed by 
Szidarovszky and Okuguchi (1987). The structure of this paper is as follows. In 
Section 2 the general dynamic model is formulated, and stability conditions are 
derived. In Section 3 the implications of the stability conditions for a multiproduct 
oligopoly model are presented. Section 4 concludes.

2. THE MATHEMATICAL MODEL AND STABILITY CONDITIONS

 In this section an N-person game 

={N;SI , ...,SN;(Pi, ...,(PN} 

is examined, where 

 (A) For all k, the strategy set Sk of player k is a closed, convex, bounded subset 
of finite dimensional Euclidean space; 

 (B) For all k, the payoff function of player k is given as

q)(XI , ... ,XN) - X (k)T

 A  (k) • • ' A (k) ooOnk 

A(k) •'' A(k) 

nkonknk

x(k)+bTX(k)+C(k), (1)

33



s4FERENC SZIDAROVSZKY and KOJI OKUGUCHI 

where  xk  E  Sk (V k),

x(k) =

 Xk - 

Ski 

, Ski — E B1m)xm (1 < l < nk,1 < k < N). (2) 
•m#k 

- Sk,nk 

ed that matrix Aoo + AooT is negative definite for k= 1,2,  • - -,N. 
toff function (1) is a quadratic form of the strategy of player k and 
ions of other players' strategies. 
given in normal form, then 9k is a function of all strategies 

N. In this case we set x(k)=(xk,xi, • • -,xkll,xk+1, • • •,4)T, and 

k)  I, if l<k and l=m, or l>k and 1+1=m, 
0 otherwise . 

ptions (A) and (B) the quadratic game satisfies the conditions for 
)da theorem (Nikaido and Isoda, 1955), therefore it has at least 

point. 
vestigate a model in which no adaptive expectations are as-
t = 0, let x (k()) denote the strategy of player k. It is now assumed 
time t, each player k maximises his own payoff value 

1 ,xk,x k + 1 , • • • ,x (k)) as a function of xk, and this optimal choice will 
selection for the next time period t+ 1.  By assuming that the 
is an interior point of Sk, the first order conditions for optimality 

ill k, 
nk 

(Aoo+Aoo )xk+ E (Aoi+AioT)ski+b((j)=0, 
1=1 

nk 

xkt+1)= _(Aoo+AooT)-IE (A gel) +A%T)ski+a,(3) 
1=1 

stant vector. By using the definition of vectors ski, this relation can 

nk 
1=k)(k)k)(k)T(k --(A(00+AToo)— 1(A(01+A10)E B1m)xm(t)+a 

1=lm # k 

nk 

= ___ (Aoo+A(okoT)-IE E (Aoi)+A o)T)Bin) x(m)+a. 
m # kl=1

It is also assumed that matrix  A  00  + AojT is negative definite for k= 1,2,  • ,N. 
 Note that payoff function (1) is a quadratic form of the strategy of player k and 

linear combinations of other players' strategies. 
 If a game is given in normal form, then 9k is a function of all strategies 

xi, • • •,xk, • • •,xN. In this case we set x(k)=(xk,xi, • • ,xk-xk+1, • • •,4)T, and 
therefore 

          B(k)_I, if 1<k and 1=m, or 1>k and 1+1=m,              ine 
otherwise . 

 Under assumptions (A) and (B) the quadratic game satisfies the conditions for 
the Nikaido-Isoda theorem (Nikaido and Isoda, 1955), therefore it has at least 
one equilibrium point. 

 First, we investigate a model in which no adaptive expectations are as-
sumed. At time t = 0, let 4) denote the strategy of player k. It is now assumed 
that at each time t, each player k maximises his own payoff value 

~k(x (it , • • • ,x (k) 1 ,xk,x k + 1 , • ,x (if,)) as a function of xk, and this optimal choice will 
be his strategy selection for the next time period t +1. By assuming that the 
optimal strategy is an interior point of Sk, the first order conditions for optimality 
imply that for all k,

that is,

where a is a constant vector. By using the definition of vectors s 

be rewritten as 

nk 

       X11 ± 1) _ -(ooooA(k)+ A(k)T)-1(ofA (k) + Ack)T/^B(k)mx(r                  1Jm

By introducing the notations
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we have

Hkm

 X(1)=

--(A(k)-}-A(k>T) 
    0000

 x (it) 

XN)

 nk  —1 E (A
OI+AIOT!BIm), 

l=1

H=

 0 H12 

 1121 0 

HN1 HN2

 Next, the adjustment mechanisms for players 
introduced. Let s be the kth player's expecta 
expectations are formed adaptively, that is,

••• H1N 

... H2N

It is also assumed that strategy xi " of player k is obtained from equation (3) 
where s t is replaced by 

                                      nk 

x(kt+1)= —(AN+AooT) 

which can now be rewritten in matrix form as

x(t+1)  N 

 E(t+1)  S
11 

E(t+1) SI
,ht 

 •  

•  

• 

 E(t + 1) S
N1 

 E(t + 1) S
N,nN

x(t+1)=Hx(t)+(x.(4) 

mechanisms for players' strategies and expectations are 
the kth player's expectations on ski. It is assumed that 
adaptively, that is, 

            Mos(kt             kl)—ski(t)).(5) 

strategy 4+ " of player k is obtained from equation (3), 
his expectation s +1) . Hence, 

     nk

 Hoo 

Hie 

 •  

• 

HNO

Hoi ••• 

H11 ••• 

 • 

 • 

HN1 •••

HON 

Hl N 

 • HNN

XN) 
 E(t) S

11 

  • 

  • 

  • 

 E(t)  Slit 

 • 

 E(t) S
N1 

 E(t) S 
N,„N

+a (6)

where the blocks are as follows:

Hoo =

 K11 

KN 1

••• KIN 

   KNN
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with

with

and

    0, if  m=k 

Kkm — (A(k)00001+ A(k)Tl~ , (A- lnkAv`)+ A 
1=1

Hk0 =

ioTl B(k)

       Lil  .. LIN 

Hok = 

— LN1 ... LNN

  _0, if  mOk Lml —(Aoo+AooT)-i(Aoi)+Ai6T                           Al— Mu) 

MkiBll)• , • MklBlkk-l 0 MklBlkl+1 

                                                                                                                                        • — MBB       k,nknklk~l• • • Mk,nknklk),k — 10 Mk,nkB(k)nk,k +1

 Hkm=

0 if  hi  k

I—Mkt

0

0

I — Mknk

if  m$k;

if m=k; 

• • • MklBl"N 

.• • . Mk,nkknk2 N

if m = k.

If H denotes the matrix of coefficients of the linear difference equation (6), 
has a special form:

H=

 HOO Hoi • • • HON 

1110 11110

HNO 0 HNN

then it

 The system (6) is asymptotically stable if and only if the eigenvalues of matrix 
H are inside the unit circle. In the following part of this section  sufficient condi-
tions will be derived for the stability. 

 Consider the eigenvalue problem of H: 

                             N Hoou + E Hokuk = ).0( 
k=1(7) 

Hkou+Hkkvk=/vk (k=1,2, ...,N)
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The second equations imply that 

 (Hkk  —  4)Ilk=  — Hkou.(8) 

Assume that 

 (C) Eigenvalues of matrix Hkk are all inside the unit circle for k= 1,2,  • • • ,N. 
 Note that this condition is equivalent to the condition that the eigenvalues of 

matrices Mkt are inside the circle with centre and radius being equal to unity. If in 
addition, matrices Mkt are positive definite—which is the usual assumption in 
adaptive expectations—, then condition (C) is equivalent to the condition that the 
eigenvalues of Mkt are all less than two. 

 If in (8), A. is an eigenvalue of Hkk, then the stability condition is satisfied for this 
eigenvalue. Otherwise 

Vk= -(Hkk—Al)-lHkou,(9) 

and by simple substitution into the first equation of (7) we obtain the relation 

Hoo — E Hok(Hkk-lHko—A.1)u=0. (10) 
k=1 

If u = 0, then for all k, vk = 0. This is a contradiction, since eigenvectors differ 
from zero. Hence u 00, which proves the following 

 THEOREM. If conditions (A), (B) and (C) are satisfied, then system (6) is 
asymptotically stable if and only if all roots of equation 

def[Hoo  = Hok(Hkk—'il)-lHko—AI =0(11) 
k=1 

are inside the unit circle.

 REMARK 1. In the special case when no adaptive expectations are assumed, we 
may select Mid= I, which implies that Hok = 0 for all k. Hoo equals the matrix of 
coefficients of system (4). Hence for Hki = I (V k,l) the Theorem gives the stability 
condition for the dynamic game without adaptive expectations, as well. 

 REMARK 2. In the general case it is a very difficult task to check the validity of 
the condition (11) of the Theorem. In special cases anyhow it might not be so 
difficult as the following case shows. Assume that is real and for all k, Hkk = al, 
where a does not depend on k. Then (11) can be rewritten as 

1 N 
                def Hoo—---- E HokHko-lll =0, 

                                  a—nk=1

or

detS—
al2T-2.1=0,
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where 

 S= Hoo and T = HokHko • 
k=1 

This condition is satisfied if there exists a real vector u 00 such that 

Sn—
a I Tu—Au=0. 

Premultiplying by UT and multiplying by a —A we have that 

s(a—A)—t-2(a—)L)=0, 

where 

     TT 

                     s—uSuand t=uTu 
           U uuu 

Hence 

%2—A(s+a)+(sa—t)=0, 

which has roots inside the unit circle if and only if 

sa—t-l<0, 

s+a—sa+t-l <0 

and 

—s—a—sa+t-l <0 . 

By using the definition of s and t we may conclude that these inequalities hold if 
matrices 

aS—T—I, (1—a)S+T+(a-l)I and —(1+a)S+T—(a+1)I 

are all negative definite. 
 In the next section the special case of the multiproduct oligopoly game will be 

investigated.

         3. APPLICATION TO OLIGOPOLY WITH MULTIPRODUCT FIRMS 

 Let N and M denote the numbers of players (firms) and products. The kth firm's 
output vector is xk = (xk' ), • • • ,x1m)), where xi denotes the output in product m of 
firm k. The inverse demand function vector is given by
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 N p(xi,  XN)  =  A E  Xk  +  b  . 
 k=1 

 It is also assumed that the cost function of firm k is as follows: 

Ck(xk)=bkxk+ck•(k=1,2, ... ,N) 

Hence the kth firm's profit equals 

N 9k(xi, • • .' XN)=Xk (AE xk +b —(bkxk+ck) • (12)               (kl 
  1. First the case without adaptive expectation is examined. In this case we may 

select 

                          (k)_Xk                 x —,Sk 1 = L xk , 

            

Skim�k 

and so nk =1, 

Blk„=1 (m0k). 

Thus the matrix of coefficients of the system (4) is as follows: 
— 0 11

12 • • . Hi N 
H21 0 ... H2N 

H= :(13) 

                                                                                                                                                                                                         • - HN 1 HN2 ... 0 _ 

with 

Hki= -(A-l- AT)-1(`dk�l). 

In our earlier paper (Okuguchi and Szidarovszky, 1987) we have proved that the 
eigenvalues of matrix (13) are inside the unit circle if and only if N=2 provided 
that the eigenvalues of matrix A -1 A T are real. 

  2. Consider next the case when adaptive expectations are assumed on in-
dividual firm's outputs. Let x E denote the kth firm's adaptive expectations on the 
/th firm's output vector. Then 

-Xk - 

                                      xi 

                                                                                                                                                                   • (k) X- Xk-l , 

Xk + 1 

                                                                                                                                            • - XN -
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and 
 —A A ••• A — 

                    0 0 ••• 0 
(P(x>> ...,xN)=x(k)Tx(k)+((b—bk)T,O, • • •,0)x(k)—Ck. 

                    0 0 ••• 0 

Hence by using the notation for the blocks of system (6),

 Kkm  = 

Lml= 

E Mkt

 {

 0, 

—(A+ AT) lAMkm, 

. —(A+AT)-IAMk ,m-l, 

0, if mOk 
—(A+AT)-IA(I— Mu) , 

             0 
Mk2o 

e same as in the original Q 

0 if m O k, 

(-I— Mb,0 

L 0 •             1 Mk ,N —1

if 

if 

if 

if

 k=m 

 m<k 

m > k; 

m=k;

Hko = 

Mk ,k + 1 

and matrices Hkm are the

Hkm = 1[ 

                                                                                                                        • 

 Consider next the special case, when for 

Then H is the Kronecker product of matrix

 Mk ,N-l

if m = k.

Consider next the special case, when for all k,l, Mk, =  al, furthermore A= AT .



 ̂  ^ / 11    0 ----''' --------O--md''' -------(l--o\''' 
   2 22`'`2-' 

mu ---- O ''' ----               0 ''' O 
22 

          .. 

  ....    .... 

  • •.. 

^ ^ ----O '''0 ''' 
2 2 

------------ 

------------------- 

0 ^ l—^ 
. 

.. 

.. 

. .. 

• 

O 01—m 

----------- ----------------'-- 

^0 

                      • 

• 

m 0

'''0 ''' 0 

 .. 

 .. 

 .. 

0 '''0 

 21 ''----O--oi''' ----O--o\ 
     2`'2`-` 

_- --------------- 

'_-_-------------- 

l—m 

1—^
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and the identity matrix. Hence the eigenvalues of H coincide with the eigenvalues 
of matrix (14), the eigenvalue equation of which has the form 

                   al—aN-l              --L Urn -----E Ukr=).wk  (k=1, 2, ..., N)            2m,k2 1=1 

            u+(laviv(V kl(15) 

                      a 

                    k(l)()kl=kl (~), 

where 

k(1).= 1 , if k <l 1
,if k>l. 

By summing up the second equations of (15) for / we obtain the identity 

N-l N-l 

Q( E um-M-oo E Ukr — A E vkl • (16) 
m#kl=11=1 

By multiplying (16) by 1/2 and adding to the first equation of (15) we have 

                                      1 N-l A(Ilk+---IE Vkl=0. 
 l=1 

If A.=0,  then I A I < 1, so this eigenvalue belongs to the interior of the unit circle. 
If /100, then 

N-l EUkl = - 2uk . 
l=1 

By substituting this relation into (16) we get 

                 a 

             ----E nm+(1—a)wk=Auk (k=1,2, • • •,N), 
2 m # k 

which is equivalent to the eigenvalue problem of matrix 

       aa — 

           +(1—a) 2— 2 

          — 2 +(1 —a)_2= 

                                                                                                                                                                                         • 

             2— 2... +(l-a)—

 a 

2

I 

I

••• 1

 a 
+  1-2 ).I

(17)
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 max  {1111, Ia.2If

1

0

]\(N+ 1)3 

2

(N+1)a 1 
2

minimal solution

1—9-
 a-l 

 2

 2  

N+1 

Fig. 1.

42 
N+2 

The Optimal Speed of Adjustment.

a

The eigenvalues of this matrix are either ) , =1— a/2 or >12  = - a/2 N+ 1—a/2= 
1— (N+ 1)a/2. They are inside the unit circle if and only if 

0<a<N------
+1(18) 

 The optimal value of the adjustment speed a can be determined as follows: 

                  Minimize max{I) 1 

In our case

I,111=

I A21=

Function  max{I:;,  Id it2 If is shown 
obtained as the intersection of the lines

a 
l-2if a<2 

a 

2 —1 if a>2 

_(N+1)a2 1 
    2 ,if a<N+1 

a(N+1)2         1
,if a>_ 2N+1 

town in Fig. 1. The minimal value 
E the lines 1—a/2 and (N+ 1)a/2— 1, 

      4 
   a°p`_ 

N + 2

of can be 

that is,

(19)
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 3. Consider now the  case when adaptive expectations are assumed on the rest 
of the industry outputs. In this case 

(k) — Xk X — , Sk= E Xm , 
Skin#k 

(I)k(X 1, ... , XN) = X (k) 0 OX (k) +((b—bk)T, 04(k)__ck . 

 With the notations of the blocks of the matrix of coefficients in (6) and defining 
E=(A+AT)-IA, Mk=Mkt, 

0, if m=k                  K
km_ —EMk , if m1k;

Hie 

 • 

 HNO

(HMI •••,HON)

 Hl  l 

HN1 

 pro 

E l*k 

E 1#k

 H1N 

HNN

 -  0 M
l 

M2 0 

- MN MN 

-E(l-Ml) 

   0

 I-Ml 

 0

Ml-M2

 ; 

0 

    0 

- E(I - MN)

   0 

 I  —  MN 

the specia 

k (V k) 

(Vk).

 The eigenvalue problem of matrix H has now the special form: 

 E -EMkul-E(I—Mk)vk=Auk (V k) 
l*k 

                                        (20) E M
kul+(I—Mk)vk=Avk (V k) . 

1�k 

By adding the E-multiple of the second equation of (20) to the first equation of 

(20) we get 

)(Evk+wk)=O.(21) 

We may assume that i 00. Then wk = — Evk, and by substituting this relation into 
the second equation of (20), the equations 

(— MkEvk) + (I— Mk)vk = Avk (V k) 
                      l*k 

are obtained, which are equivalent to the eigenvalue problem of matrix
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 I—M, —M,E • • _M,E -

                    -M2E I—M2 • . • -M2E 

                                        (22) 

--MNE —MNE • •, I—MN — 

 In the special case of A=A  T and Mk= al (V k) this matrix is the Kronecker 

product of matrix (17) and the identity matrix. Hence the stability condition is 
again relation (18), and the optimal adjustment speed is given again by (19).

4. CONCLUSIONS

 After formulating a general quadratic model with and without adaptive 
expectations a general stability condition was derived, which reduced the problem 
to the examination of a nonlinear eigenvalue problem (11). 

 As applications, the multiproduct oligopoly game was investigated. If no 
adaptive expectation is assumed, then the equilibrium is stable for only  N=2, 
which gives the multiproduct generalization of the classical result of Theocharis 

(1959). If adaptive expectations are assumed, then in both cases examined stability 
can be assured for arbitrary numbers of players provided that the speed of 
adjustment is sufficiently small. Concerning this result, two comments are in order. 
Observe first, that the case without adaptive expectations is equivalent to the case 
of adaptive expectation with a = 1. The inequality (18) holds only for N= 2. This 
observation gives not only a new generalization of the famous theorem of 
Theocharis but also gives an explanation why N= 2 is the border line for stability 
in the classical case. Besides presenting the stability conditions we have shown how 
the optimal adjustment speed can be determined, optimal in the sense that the 
convergence is fastest.

Karl Marx University of Economics 
Tokyo Metropolitan University
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