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PARETO OPTIMALITY, CORE AND EQUILIBRIA 
    IN A COOPERATIVE SUPER GAME 
       WITHOUT SIDE PAYMENTS

Shuhei SHIOZAWA*

Abstract. In this paper, we define a supergame payoff as the  rim inf of average 
payoffs. We discuss the relationship between a single-period n-person cooperative 
game and the corresponding supergame, for notions of Pareto optimality, Nash-
equilibrium, the a-core and the p-core.

1. INTRODUCTION

 In this paper, we will discuss the relationship between a single-period n-person 
cooperative game and the corresponding supergame, that is, the game each play 
of which consists of an infinite sequence of plays of the single-period game. 

 Aumann [1959] proved that the p-core in a single-period game G coincided with 
the set of payoff vectors to str on equilibria in its supergame G*. We do analogous 
things for Pareto optimality, Nash equilibria, the a-core and the p-core with a 
new definition of a payoff in G*, namely the rim inf of average payoffs. One 
reason for using the rim inf definition is that it can be defined on the set of all 

possible outcomes in G*. And with this definition some results which have been 
already established hold with appropriate modifications. Intuitively a payoff in 
G* is determined so that average of payoffs in single-period games G's is at least 
as much as the payoff in G* as number of periods goes to infinity. 

 The theory of supergames is concerned with the evolution of fundamental 

patterns of interaction between people. And supergames can be applied to resolve 
some problems which are difficult to solve in a single-period game. For example, 
a supergame can be used to solve the "free rider" problem in an economy with 
public goods. In such an economy public goods will tend to be undersupplied, 
and without any special taxation and allocation rule no optimal allocation can 
be achieved as a Nash equilibrium in a single-period situation. But in a super-

game situation, by the use of dynamic feedback strategies, it has been shown that 
an optimal allocation can be achieved as a supergame Nash equilibrium (see 
McMillan [1979]). 

 In a supergame, the payoff is usually some kind of average of the payoff in the 
various stages. And in general, the set of feasible payoff vectors in a single-period

 * I am grateful to Professors M . K. Richter and K. Kawamata for their valuable comments. 

Needless to say, I am solely responsible for any error. 
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game G is different from the set of feasible payoff vectors in its supergame G*. 
In this paper we define in G and G* notions of Pareto optimality, a Nash equili-
brium, a-core, and  f-core. We also study the properties and relations among 
these concepts in G and G*. 

  Nash [1950, 1951] introduced an n-person noncooperative game and established 
an equilibrium concept. On the other hand, the concept of "supergame" was 
first introduced by Luce and Raiffa [1957]. It is known as a "Folk Theorem" 
that with an appropriate definition of a payoff in G*, the set of payoff vectors to 
Nash equilibrium points in G* coincides with the set of feasible and individually 
rational payoff vectors in the same G. The "Folk Theorem" has been known 
for twenty years but its authorship is obscure. The significance of the Folk 
theorem is that it relates cooperative behavior in G to non-cooperative behavior 
in G*. This is one of the fundamental messages of the theory of repeated games 
of complete information; cooperation may be explained by the fact that the games 

people play are not one-time affairs, but are repeated over and over (see Aumann 
[1981]). The interest in the Folk theorem lies partly in its usefulness in solving the 
free rider problem in a noncooperative (Nash equilibrium) way. 

 Branching out from the Folk theorem, there was an attempt to refine somewhat 
the notion of "cooperative outcome" on the cooperative side of the Folk theorem. 
One would like a characterization, in terms of G*, of more specific kinds of coopera-
tive behavior in G. This is achieved by replacing the notion of equilibrium by 
"strong equilibrium" . The concept of "strong equilibrium" was first introduced 
by Aumann [1959]. Strong equilibrium existence theorems are established in 
Ichiishi [1982]. Aumann [1961] also introduced the a-core and the (s-core in a 
cooperative game without side payments, and discussed their properties. Scarf 
[1971] derived a sufficient condition for nonemptiness of the a-core. He also 
constructed a simple example in which the Q-core is empty. From the definitions 
it is straightforward that the set of strong equilibrium payoff vectors is a subset 
of the Q-core and the f-core is a subset of the a-core in an arbitrary cooperative 

game. The main result in Aumann is the theorem that the f-core in G coincides 
with the set of payoff vectors to strong equilibria in G* (see Aumann [1959, 1967, 
1981]). 
 Our main objectives in this paper are the following. 

 1) To prove that Pareto optimal solutions in G coincide with Pareto optimal 
solutions in G*. 

 2) To prove the analogue of the Folk theorem, that is, the set of feasible in-
dividually rational payoffs coincides with the set of Nash equilibrium payoffs in 
G*, with our rim inf definition of a payoff in G* when the sets of feasible payoffs 
are equal. 

 3) To discuss the relation between the a-core in G and the a-core in G*, and to 
characterize the +-core in terms of Pareto optimality. 

 4) To prove that the f-core in G coincides with the f-core in G* when the sets 
of feasible payoffs are equal, and to characterize the fl-core in terms of Pareto
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optimality. 
 In Section 2, the model is described. First we present an n-person single-period 

finite cooperative game G in normal form. Then we introduce G*, the supergame 
of G. There are several ways of defining a payoff in G*. For example Aumann 
[1959] and Owen [1982] defined a payoff in G* as a limit of average payoffs. But 
in general the limit does not exist. Rubinstein [1979] introduced the "overtaking 
criterion". Unfortunately there is no utility function representing the "overtaking 
criterion" (see Rubinstein). In this paper a payoff in G* is defined as the  lirn inf„ 
of the average payoff. Of course our rim inf definition of a payoff in G* ignores 
any finite time intervals. On the other hand it does give a supergame payoff 
function defined on the set of all possible supergame actions of the society. We 
define the set of feasible payoffs in G and in G*. 

 And for our main objective we have the following results. 

 In Section 3.1, existence theorems of Pareto optimal payoff vectors in G and in 
G* are proved. Our main result here is that the set of Pareto optimal payoff 
vectors in G coincides with the set of Pareto optimal payoff vectors in G* even 
though the set of feasible payoff vectors in G is different from that in G*. Hence 
there may exist payoffs in G* which are not feasible in G, but such payoffs are 
not Pareto optimal in G and in G*, and so they are of less interest in a normative 

point of view. Thus a payoff allocation in G* is Pareto optimal in G* if and only 
if it is Pareto optimal in G, so that we can use Pareto optimal criterion in G to 
evaluate any payoff allocation in G*. The above statement is no longer true for 
weak Pareto optimality, that is, there exists a payoff which is weakly Pareto op-
timal in G* and is not feasible in G. Hence when the sets of feasible payoffs do 
not coincide, we can not apply weak Pareto optimality criterion in G to evaluate 
outcomes in G*, but weak Pareto optimality in G is a sufficient condition for weak 
Pareto optimality in G*. And in the framework of G*, weak Pareto optimality 
is still a normative criterion, and it can be used as a target of the planner. 

 In Section 3.2, we define Nash equilibrium in G and in G*. Existence of a Nash 
equilibrium in G* is a straightforward consequence of the well-known existence 
theorem of a Nash equilibrium in G. When the sets of feasible payoffs are equal, 
we prove the analogue of the Folk theorem, that is, the set of feasible individually 
rational payoff vectors in G coincides with set of the set of payoff vectors sup-

ported by Nash equilibria in G*. Since the set of feasible payoffs in G does not 
generally coincide with the set of feasible payoffs in G*, there can exist a payoff 
vector which supported by a Nash equilibrium in G* and is individually rational 
in G but is not feasible in G. Hence the analogue of the Folk theorem does not 
generally hold. But an important assertion of our version of the Folk theorem 
is that any payoff which is feasible and individually rational in G can be achieved 
as a Nash equilibrium in G*. (This is usually all we need for a noncooperative 
G* solution to a free-rider problem.) 

 In Section 3.3, we define the a-core in G and in G*. Our definition is slightly 
different from usual ones. We prove that any coalition is a-effective in G* for a
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payoff if it is a-effective in G for the payoff. For we can construct a supergame 
strategy for the coalition to be a-effective in G*, depending on a single-period 
strategy which makes the coalition a-effective in G. Intuitively if a coalition can 
improve upon a payoff in G with a unique single-period strategy no matter what 
other players do, then the coalition can improve upon the payoff in G* with a 
unique supergame strategy based on the single-period strategy no matter what 
other players do. Thus any threat by players outside the coalition is not valid in 
G*. But the converse of the above statement is an open question. A  difficulty 
lies in specifying a single-period strategy which makes the coalition a-effective 
in G. Hence the a-core in G* is a subset of the a-core in G when the sets of feasible 

payoffs are equal. Therefore we can use the a-effective criterion in G to evaluate 
a payoff in G*, in the sense that if some coalition is a-effective in G for a payoff 
then the same coalition is a-effective in G* for the payoff, hence the payoff can 
not be stable in G*, in the sense that it can not be in the a-core in G*. And any 
payoff vector, which is in the a-core and is Pareto optimal in G*, is in the a-core 
and is Pareto optimal in G. Payoff vectors in the a-core in G are not necessarily 
Pareto optimal in G. 

 In Section 3.4, we define the p-core in G and in G*. We show that any coali-
tion is p-effective in G* for a payoff if and only if the coalition is p-effective in G 
for that payoff. In this case we do not have to specify a single-period strategy 
which makes the coalition /s-effective in G. Intuitively if a payoff is not stable in 
G in the sense that some coalition can improve upon the payoff in G, then the 
payoff can not be stable in G* in the sense that the same coalition can improve 
upon the payoff in G*, and vice versa. Hence the p-core in G is a subset of the 

p-core in G*, and when the sets of feasible payoffs are equal the p-core in G coin-
cides with the p-core in G*. By this theorem we can relate a cooperative concept 
in G to a corresponding cooperative concept in G*, and we can use the /s-effective 
criterion in G to evaluate a payoff allocation is G*, in the sense that if no coalition 
is p-effective in G for a payoff then no coalition is /s-effective in G* for the payoff 
hence it is in the p-core in G*, or in the sense that if some coalition is p-effective 
in G for a payoff then the coalition is /s-effective in G* for the payoff, hence it can 
not be in the /s-core in G*.

2. THE MODEL

2.1. The single period game in normal. form G 
 Let G'=({Xi}IEN,{ui}jEN)be an n-person game in normal form , where N= 

{ 1, • • • , n}; the finite set of players 
Xi : the finite set of pure strategies available to player i 
ui : X —> R; a payoff function of player i, where X -11 IE NXi. For such a 

      game G', we also define the following concepts: 
A: a partition 'of N, that is, a set of nonempty subsets (coalitions) {Al, • • • , 

      Ak} of N such that A; n A1' = 0, j * j', and n 1=IA; =N;
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 sal  : the set of all partitions of N; 
SA,: the set of all mixed (correlated) strategies available to coalition Al C N, 

     that is, the set of all probability distributions defined on the finite set of 

      pure strategies XAI=_IEA;Xi available to coalition A, and if a coalition 

     ~iconsists of a single player i, we write Si;   SA=LlA;ESA;• 
 Given a partition A = {Al, • • • , Ak} and strategies SA J SA J of the coalitions, a 

probability distribution s E S on X is determined, where S is the set of all proba-
bility distributions defined on X. For each se S, expected payoff of each player 
is calculated by the function u4. Hence we can define an expected payoff function, 
and denote by ui({sAj}A jE A) an expected payoff of player i of strategies {sAj}AjeA• 
We write u({s Al} AjEA)=[u1({SAj}AjeA), • • •, un({S Al} AjEAA• 

 Then we define a mixed and cooperative extension G=({SA}AE_y, {ui}IEN) of G'. 

DEFINITION 2.1.1. Strategies {sAj}AJEA for a partition A is said to support a 
payoff vector v=(vi, • • •, v„)ER" ib G if u({sAj}AjeA)=v• 

 DEFINITION 2.1.2. The set of feasible payoff vectors V in G is defined by 

V -{VER": v=u({sAj}AjeA) for some AES4fand some {sAj}AjEA}• 

  DEFINITION 2.1.3. The set of noncooperatively feasible payoff vectors V" in G is 
defined by 

              Vs-{v-Rn: v=u({si}IEN), for some siESi} . 

 Remark 2.1.1. V can be expressed as the convex hull of the finite set V 

{ER': v = u(x) for some pure strategy x E X }. Hence V is compact and convex 
in Rs. By definition V C V, and Vs is not convex in general.

2.2. The supergame G* of G 
 For any game G we will denote by G* the "supergame" of G, that is, the game 

each play of which consists of an infinite sequence of plays of G. Assume that 
all players exist for periods t=1, 2, 3, • • • . 

 Denote by Gt a constituent game G at period t, that is Gt=G, and SAt=SA for 
every t

 Remark 2.2.1. We assume that the supergame is stationary, that is, all the 
constituent games are identical. 

DEFINITION 2.2.1. A supergame action of player i is a sequence si={si(1), 
si(2), • • •) ES: of single-period strategies si(t) where 

Si -Ht=rSi, S*-HjENS:, and denotes(t)-(si(t), • • •, sh (t)) and s-sli • • •, 
sh)E S. 

DEFINITION 2.2.2. A supergame strategy for player i is a sequence 

fi={f} lf where fiESi and fl: Ilk_LSk —> Si for t>2.
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 Thus a supergame strategy yields a choice  si E Si at every period t, where each 
choice is possibly dependent on the outcome of the preceding games, and where 
all players know all choices made by every player in the past. 

 Let FI be the set of supergame strategies of player i, and F be the set of N-tuples 
of supergame strategies; F-fliGNFF. 

 Given a supergame strategy f E F, corresponding single-period strategies s(f: t) 
=[si(f: t), • • •, sh(f: t)] at each period t can be defined recursively by 

s( .f;1)—(fl, • ..,f l) 
    s(f; t)={f f[s(f;1), ..., s(f; t-l)], • • •,fn[s(f;1), • • •, s(f; t—l)]} . 

 Hence we can define a mapping 

            g: F -, 5* by g(f)=--[s(f; 1), s(f; 2), ...] .

  DEFINITION 2.2.3. A supergame payoff function 

pi: F R for player i 

is defined as follows; first define 

                 p(IT;f)=1/T E 1ui[s(t)] , 

where s(t) is given by the mapping g, and then define 

pi( f) =rim infT pi(T; f) • 

 Remark 2.2.2. One reason for not defining payoffs in terms of limit is that the 
limT~~ pi(T; f) may not exist. By defining a payoff in G* as the rim inf of average 

payoffs we have a supergame payoff function defined on the set of all possible 
outcomes in G*. Of course when the rim,co pi(T; f) exists, it coincides with the 
lirn inf pi(T; f). 

 Remark 2.2.3. Intuitively pi(f)=vi implies that the player i's average payoff 
is at least very close to vi as number of periods goes to infinity. 

 DEFINITION 2.2.4. A supergame strategy f E F is said to support a payoff vector 
vERa in G* if p( )=V. 

 DEFINITION 2.2.5. The set of feasible payoff vectors in G* is defined by 

              V*-{vERT: v=p(f) for some f EF} . 

 Remark 2.2.4. By definition the set of feasible payoff vectors in G is a subset 
of the set of feasible payoff vectors in G*. But they are not equal in general. See 
the following example. 

 Example 2.2.1. Let N={1, 2}, X= {xi, xi} x {x2f x2}, and 
u1(xi, x2)=u1(4, x2)—u2(xi, x2)=u2(xi, x2)= 1 ,
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   ui(xi, x2)-14i(xi, x)i=u2(xi, xD=0  . 
Then V=co{(1, 0), (0,  1)}. Now we can choose a sequence of pure strategies 

{xk(t)} as a supergame strategy f such that rim inf p,(T; f)=0, i=1, 2. Hence 
V*=co{(1, 0), (0, 1), (0, 0)}. See Fig. 2.2.1.

U2

(0,1)

(0,0)

 (0,1)

(1,0) u1 (0,0) 

       Fig. 2.2.1

%%///i ; v*

(1,0)

 DEFINITION 2.2.6. Let A be a coalition, that is 0 # A C I. Then a sequence 
of functions IA = { f 1.4, f'A, • • •}, where f iAESA and f tA: 17k=1Sk —* SA for t>2, is 
said to be a cooperative supergame strategy of A. Denote by FA the set of all 
cooperative supergame strategies of A.

               3. PARETO OPTIMALITY, CORE AND EQUILIBRIA 

3.1. Pareto optimality in G and in G* 

  DEFINITION 3.1.1. A payoff v E V (v E V*) is said to be Pareto optimal in G 
(in G*) if it is not true that there exists a payoff vector v' E V (v' E V*) such that 

v' > vi for every i EN and 

v i > vi for at least one i E N. 

  Remark 3.1.1. Some of Pareto optimal payoff vectors may not be achieved by 
noncooperative behavior in G. 

  DEFINITION 3.1.2. A payoff vector v E V (v E V*) is said to be weakly Pareto 
optimal in G (in G*) if it is not true that there exists a payoff vector v' E V (v' E V *) 
such that 

v'> vi for every i EN . 

  DEFINITION 3.1.3. A payoff vector ye V is said to be Pareto superior in G to 
v' E V if vti > vi for every i E N and vi > vi for at least one i E N. 

  LEMMA 3.1.1. Let v* E V*. Then there eixsts a payoff vector v E V with vi> vs 

for every i EN.
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 Proof Since  v* E V*, there exists a supergame actions s=(s(1), s(2), • • • ), 
such that rim inf 1 /T E t 1ui[s(t)] = v * for every i EN. Consider the sequence 
{1/TE tu[s(t)]}7=IC V. Since V is compact, there exists a subsequence 
{1/TfEt'lu[s(t)]}Tn which converges to some point v'E V. Now suppose that 
vi<v* for some i. Then there exist a real number E<0 with E<v*—vi and a posi-
tive integer TE such that IEtnui[s(t)]—vtiI<E for all Tn>TE, which contradicts 
to the fact that v7 =rim infT E t 1ui[s(t)]. Therefore v? > v ' for every i EN. 

                                                                      Q.E.D.

 THEOREM 3.1.1. There exists a Pareto optimal payoff vector in G and in G*, and 
the set of Pareto optimal payoff vectors in G coincides with the set of Pareto optimal 
vectors in G*.

 Proof Let V {v', • • •, vk} c V be the set of payoff vectors supported by pure 
strategies in G. Since V is a finite set, we can choose an element v* E V such that 
vi >_vz for all k=1, • • •, K, and if yr=vi for some k we have vi >_v2 for such k, 
and if v*=vi and v2 =v2 for some k we have v3 >_v3, and so on. 

 Since any payoff vector v E V is a convex combination of payoff vectors of V, 
we have v*>vi. If vi>vi, v can not be Pareto superior to v*. If we have 
vi =vi, v can be written as v= Ea'v' with Ea'=1 and a' <0 and vi =vi for all 
j. Then we have v2 >v2 for all j. If we have v2 >v2 for some j, v can not be 
Pareto superior to v*. If we have 2/-4 for all j, we have v:�4 for all j, and 
we can apply the previous argument, and so on. Therefore 1 can not be Pareto 
superior to v*. Hence v* is Pareto optimal in G. 

 Let v E V be Pareto optimal in G. Suppose that 1 is not Pareto optimal in G*. 
Then there exists a payoff vector v' E V* such that 

v' > vi for every i E V, and 

v2>vi for some i .

 By Lemma 3.1.1, there exists a payoff vector v" E V with vn? vi for every i EN. 
Thus v" > vi for every i EN and vi' <vi for some i, which contradicts to the Pareto 
optimality of 1 in G. 

 On the other hand, let v E V* be Pareto optimal in G*. Suppose that v is not 
Pareto optimal in G. Then there exists a payoff vector v' E V such that 

vi > vi for every i EN, and 

vi>vi for some i . 

 Trivially, v' is an element of V*, which contradicts to the Pareto optimality of 
v in G*.Q.E.D.

 Remark 3.1.2. Theorem 3.1.1 does not hold if we define a payoff in G* as a 
rim sup of average payoffs in stead of a rim inf. See Example 2.2.1. In that 
example, V=co{(1, 0), (0, 1)} and any point in V is Pareto optimal in G. If we
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 (0,1)

(0,0)

 -  ;v

(1,0)

(0,1)

(0,0) (1,0)

     jA~Urrnsupdefinition 
Fig. 3.1.1

define a payoff in G* as a  rim sup of average payoffs, then we have V*=co{(1, 0), 

(0, 1), (1, 1)}. Hence (1, 1) is pare to optimal in G*, and no point in V is Pareto 
optimal in G*. 

 THEOREM 3.1.2. The set of weakly Pareto optimal payoff vectors in G is a subset 
of weakly Pareto optimal payoff vectors in G*. 

 Proof. Let v E V be a weakly Pareto optimal payoff vector in G. Obviously 
^ is an element of V*. Suppose that v is not weakly Pareto optimal in G*. Then 
there exists a payoff vector v' E V* such that v> vi vi for every i EN. By Lemma 
3.1.1, there exists a payoff vector vi' E V with vi' >_ vi for every i EN. Thus we 
have vi' > vi for every i EN, which contradicts to the weak Pareto optimality of 
^ in G.Q.E.D. 

 Remark 3.1.3. In general the set of weakly Pareto optimal payoff vectors in 
G does not coincide with the set of weakly Pareto optimal payoff vectors in G*. 
See the following example. 

 Rxample 3.1.1. Let N={1, 2, 3} and V=co{(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)}. 
Then V*=co{(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1), (0, 0, 0)}. And any 

payoff vector in V is weakly Pareto optimal in G and in G*. But there exist 
payoff vector which are weakly Pareto optimal in G* and do not belong to V, say 
(0, 0, 1). See Fig. 3.1.2. 

3.2. Nash equilibrium in G and in G* 

 DEFINITION 3.2.1. A noncooperative strategy s * _ (s *, • • • , sh ), s * E S *, is 
said to be a Nash equilibrium in G if 

ui(s*)? ui(si i, si) for all s, E Si and for every i E N , 

where s_i=(si, ..., si_1, si+1, • • •, sh).
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 ^,1^1)

(^'^'\)

U3^

(1,0,1)

o^ o

(1,0,0)
U22

(0,1,0)

 ;v      ; the set  of weaklynG*eta optimal payoffs 

       which do not belong to V

Fig. 3.1.2.

 DEFINITION 3.2.2. A noncooperative strategy f* E F  is said to be a Nash equili-
brium in G* if 

        pi(f *)>= p *i,fi) for all flEF, and for every i EN 

 DEFINITION 3.2.3. A payoff v E V is individually rational in G if for each player i 

vi_�min$_i max., ui(s_i, si)-mi . 

 Remark 3.2.1. Since the number of pure strategies is finite there exists the 
min max for each player. 

 Remark 3.2.2. Existence of a Nash equilibrium in G* is a straightforward 
consequence of the well-known existence theorem of a Nash equilibrium in G, 
since any payoff vector supported by a Nash equilibrium in G can be supported by 
a Nash equilibrium in G*. 

 THEOREM 3.2.1. The set of noncooperatively feasible and individually rational 

payoff vectors in G is a subset of the set of payoff vectors supported by Nash equilibria 
in G*. 

 Proof Let v E V'a be individually rational payoff vector in G. Then there is 
a strategy s*=(s*, • • •, sh), s*ESI, which supports v, that is u(s*)=v. Now 
define a supergame strategy f* EF as follows; the players start by s*. If at any 
period player i does not play the prescribed choice sr, then from next period, other 
players play the strategy s' i with 

si) <mi <vi for any si ES, . 

 Hence we have 

rim inf pi(f *i, fi)Smi<vi for any f EFF ,
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for every  i  EN. And we have p(f *)=v. Therefore f* EF is a Nash equilibrium 
in G* and it supports v.Q.E.D. 

 THEOREM 3.2.2. Any payoff vector which is supported by a Nash equilibrium in 
G* is individually rational in G.

 Proof. Let f * EF be a Nash equilibrium in G* with p(f*)=v. Suppose that 
v* is not individually rational in G, that is, there exists a player i with v*<mi. 
Then define a supergame strategy f a E Fi for player i as follows; at t=1, for [!1: 
choose a strategy si(1)ESI with ui[ f 1*, si(1)]>mi>v*, at t=2, for f 2 i[ f 1*, si(1)] 
choose a strategy si(2)ESI with ui{ f? i[ f 1 i si(1)], si(2)}>mi>v*, and so on. 

 Then rim infpi,(f *i, f3)mi>v**, which contradicts to the fact that f* is a 
Nash equilibrium in G*.Q .E.D. 

 Remark 3.2.3. Since V does not coincide with V*, there can exist a payoff 
vector which is supported by a Nash equilibrium in G* and is not feasible in G. 
But by Theorem 3.1.1. such a payoff vector is not Pareto optimal in G*, hence 
it is of less interest in a normative point of view. See the following example.

Example 3.2.1.

Then V=co{(1,

 Now choose a payoff vector which is in V* but is not in V, say (1/3, 1/3, 1). 
Let si=(A', B', Cl) and s2=(A2, B2, C2). 

 Define a supergame strategy f* EF as follows; 
s(f *)={si s2,s2, si si si s2,s2, s2, s2,s2, s2,• • •} and if player i deviates from 

this strategy, then from next period other two players take a strategy s_i with 
ui(s_i, si)=0 for any siESi. Then we have

 Let N={1, 2, 3}, X,={Al, A2}, X2={Bl, B2}, X3={Cl, C2} and 
u(Al, Bl, C2)=u(A2, B2, Cl)=(1, 0, 1) 
u(Al, B', C2)=u(A2, B2, Cl)=(0, 1, 1) 
u(Al, B2, Cl)=u(A2, B', C2)=(l, 0, 0) 
u(Al, B2, C2)=u(A2, B', Cl)=(0, 1, 0) . 

                             And m,=m2=m3=0, since 
u,(si, B2, C2)=0 for any 

   u2
/(A2, s,, Cl)=0 for any s2ES2    u3(Al, B2, 53)=0 for any s, ES, . 

payoff vector which is in V* but is not in V, say (1/3, 1/3, 1).

p(f *)=(1/3, 1/3, 1) 

and f * is a Nash equilibrium in G*. See Fig. 3.2.1. 

3.3. The a-core in G and in G* 
DEFINITION 3.3.1. A coalition AN is said to be a-effective in G (in G*) for 

the payoff vector v if there exist a cooperative strategy sA E SA (f A E FA) for A, and 
a constant number E*>0 such that

U (SA, SN\N)-�vi+E* E*) for every i EA
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 (1/3,1/3,1) 

(1,0,1)
;V

(0,1,1)

(0,1,0)

                                     Fig. 3.2.1. 

for any cooperative strategy S \A E S \A ( f N \A E FN \A) for the coalition N\A. 

 LEMMA 3.3.1. A coalition Ac N is a-effective in G* for the payoff vector v if 
the coalition A is a-effective in G for the payoff vector v. 

 Proof Let A be a-effective in G for v. Then there exist a strategy sA ESA 
and a real number E*>0 such that for any strategy sN\AESN\A, 

ui(sA, sN\A)>Vi+E* for every i EA . 

 Now define a supergame strategy f: for the coalition A by 

                               IA—(SA, SA, ...) 

 Then for any supergame strategy f N\A for N\A and for any positive integer T, 
we have 

pi(T: f A, IN \A)>_ vi-F E* for every i E A . 

 Hence we have 

pi(IA,IN\A)>_vi+E* for every i EA . 

 Threfore the coalition A is a-effective in G* for v. Q.E.D. 

 Remark 3.3.1. The converse of Lemma 3.3.1 is an open question. A difficulty 
lies in specifying a single-period strategy which makes the coalition a-effective in 
G. 

DEFINITION 3.3.2. A payoff vector v E V (v E V*) is in the a-core in G (in G*) 
if no coalition is a-effective in G (in G*) for the payoff vector V. 

 DEFINITION 3.3.3. A payoff vector v E V* is in the a-core in G* if no coalition 
is a-effective in G* or the payoff vector v. 

 Remark 3.3.2. By Lemma 3.3.1 we can say that, if some coalition is a-effective
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in G for a given payoff hence the payoff is not in the a-core in G, then the same 

coaltion is a-effective in G* for the payoff, hence it can not be in the a-core in 

G*. But in general Lemma 3.3.1 does not imply that the a-core in G* is a subset 

of the a-core in G, since V does not coincide with  V*. Hence there can exist a 

payoff vector, which is in the a-core in G* and is not in V hence is not in the a-core 
in G. See Example 3.2.1.

Example 3.2.1.

 Then V=co{(1, 0 
(1, 0, 1), (0, 1, 1), (0; 
no coalition is a-effective 
G*. But it is not in

Let N={1, 2, 3}, X,={Al, A2}, X2={11, B2}, X3={Cl, C2} and 

u(Al, Bl, Cl)=u(A2, B2, C')=(1, 0, 1) 
u(Al, B2, C'2)=u(A2, B2, C2)-(0, 1, 1) 
u(Al, B2, Cl)=u(A2, Bl, C')=(1, 0, 0) 
n(Al, B2, C2)=u(A2, Bl, C2)=(0, 1, 0) . 

                         V*=co{(1, 0, 0), (0, 1, 0), 

                      (1/3, 1/3, 1) is in V*, and 
éctive in G* for that payoff vector, hence it is in the a-core in

 THEOREM 3.3.1. The a-core in G* is a subset of the a-core in G if V coincides 
with V*.

 Proof. Let v E V be in the a-core in G*, that is no coalition is a-effective in 
G* for v. Then by Lemma 3.3.1, no coalition is a-effective in G for v. And by 
hypothesis 1 is an element of V. Hence v is in the a-core in G. Q.E.D. 

 Remark 3.3.3. Payoff vectors in the a-core in G are not necessarily Pareto 
optimal in G, and payoff vectors in the a-core in G* are not necessarily Pareto 
optimal in G*, though they are weakly Pareto optimal. See the following counter-
example.

 Example 3.3.1. Let N={1, 2}, Xi={E, T }, i=1, 2, and the payoff matrix be 

given by the following; 
   Player l's choice 

                   E 1,1 0,1 
                   T 1,0 0,0 

E T 
                                  Player 2's choice 

 Then the payoff vectors (1, 0) and (0, 1) are in the a-core in G since no coalition 
is a-effective in G for these payoff vectors. But they are not Pareto optimal in 
G since there exists the payoff vector (1, 1). Similarly (1, 0) and (0, 1) are in the 
a-core in G* since no coalition is a-effective in G* for them. In this example V 
coincides with V*, and the a-core in G coincides with the a-core in G* and it is 
given by 

                [(1, 0), (1, 1)] U [(1, 1), (0, 1)] . 

 See Fig. 3.3.1.
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 U2 

(0,1)

(0,0)

•

..............

(1,0)  u'

............. ; v=v*

the a-core in G end in G*

Fig. 3.3.1.

3.4. The a-core in G and in G* 

 DEFINITION 3.4.1. A coalition A c N is said to be a-effective in G (in G*) for 
the payoff vector v if for any cooperative strategy SN \ A E SN \N(IN \N E FN \ A) there 
exists a cooperative strategy sA E SA for which 

ui(SA, SN\A)�Vi+E* 

(pi(IA,IN\A).?:_-viiE*) 

for some constant number E* >0, and for every i E A. 

 LEMMA 3.4.1. A coalition A c N is n-effective in G for the payoff vector v if and 
only if the coalition A is (s-effective in G* for the payoff vector v. 

 Proof Let A be l8-effective in G for the payoff vector v. Then for each strategy 
sN \A for N\A, there exists a strategy sA for A for which 

ui(SA, SN\A)?Vi+E* for some constant E*>0, and for every i EA . 

  Then for any supergame strategy IN \A E FN \A, we can define a supergame strategy 

IA for A as follows; at t=1, find a strategy sA(1) for which 

               ui(sA(1), f N \A)>_vi+E* for every i EA . 

and at t=2, find a strategy sA(2) for which 

ui[SA(2),f2N\A(SA (1),f N\A(1)]?vi+E* for every i A . 

  We can continue in this way; no matter IN\A dictates, there exists a strategy 
sA(t) for A that yields at least vi-I-E* at every period. Hence we have 

pi(IA,IN\A)?vi-}- E* for some constant E*>0, and for every i EA . 

  Therefore the coalition A is a-effective in G* for the payoff vector v. 
  On the other hand, let A be a coalition which is a-effective in G* for v, that is, 

for any supergame strategy IN \A E FN \A for N \A, there exists a supergame strategy 

IA E FA for A for which 

pi(IA,IN\A)>vi+E* for some constant E*>0, and for every i EA, that is
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rim infl pi(T;JA,IN\A)zvi+E* • 

  Hence for any E>0, there exists a positive integer TE such that for any positive 
integer T .�_T6 

          Pi(T;IA,IN\A)>vi+E*—E for every i EA 

  Now let S.14 E S5 \A be any arbitrary strategy for N \A. Define a supergame 
strategy f lv \A by f N \A =SN \A. Let E'=1/2 • E*. Then there exist a super game 
strategy f EFA and a positive integer Tel  such that for any positive integer T > T e l 

   pi(T;f A,f N\A)>vi+E*—E' for every i EA, that is 
  1/T• EtNt)            ui[sA(IA,f\A;, sN\A]>vi+1/2.E* , hence 
    ui[l/T•l~r=It=ISA(IA,IN\A, t), SN\A]>vi+1/2•E* • 

 Thus for any strategy sN \A E SN \A there exists a strategy sA =1/T.  E 1sA(f A, 

f \A; t) E SA, for which 

  ui(sA, sN‘A)>_vi+E' for some constant number ('>0 and for every IEA. 

 Therefore the coalition A is a-effective in G for v. Q.E.D. 

  Remark 3.4.1. In any cooperative game, the a-effectiveness implies the p-
effectiveness.

 DEFINITION 3.4.2. A payoff vector v E V (v E V*) is in the a-core in G (in G*) 
if no coalition is a-effective in G (in G) for the payoff vector v. 

 Remark 3.4.2. By Lemma 3.4.1 we can use the p-effective criterion in G to 
evaluate a payoff allocation in G* in the sense that if no coalition is p-effective in 
G for a payoff vector in V* then no coalition is p-effective in G* for the payoff 
vector, hence it is in the Q-core in G*, or in the sensethat if some coalition is js-effective

 in G for a payoff vector then the same coalition is /s-effective in G* for the 

payoff vector, hence it can not be in the Q-core in G*. But Lemma 3.4.1 does 
not imply that the A-core in G coincides with the A-core in G*, because V does not 
coincide with V*. See Example 3.2.1. In that example no coalition is (s-effective 
in G and in G* for (1/3, 1/3, 1). Since (1/3, 1/3, 1) is an element of V*, it is in the 

A-core in G*, but it is not feasible in G, hence it can not be in the A-core in G. 

 Remark 3.4.3. In a 2-person game, the a-core coincides with the A-core. See 
Aumann [1961]. 

 THEOREM 3.4.1. The n-core in G is a subset of the /s-core in G*. 

 Proof. Let v E V be in the A-core in G, that is no coalition is p-effective in G 
for v. Then by Lemma 3.4.1, no coalition is A-effective in G* for v. And trivially 
v is an element of V*. Hence v is in the A-core in G*. Q.E.D. 

 THEOREM 3.4.2. If V coincides with V*, then the jS-core in G coincides with the 
,8-core in G*.
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 Proof. Let v E  V  *  =  V be in the A-core in G*, that is no coalition is /s-effective 
in G* for v. Then by Lemma 3.4.1, no coalition is is-effective in G for v. Hence 
v is in the A-core in G.Q.E.D.

 COROLLARY 3.4.1. Payoff vectors, which are in the A-core in G* and the Pareto 
optimal in G*, are in the (s-core in G.

 Prood. Let v e V* be a payoff vector which is in the A-core in G* and is Pareto 
optimal in G*. Then v is an element of V by Theorem 3.1.1. Since no coalition 
is /s-effective in G* for the payoff vector v, no coalition is js-effective in G by Lemma 
3.4.1. Hence v is in the A-core in G.Q.E.D.

4. CONCLUDING REMARK

 We have discussed fundamental notions in a single-period n-person game G 

and in the corresponding super game G*, with a new definition of a payoff in G*, 

namely the rim inf of average payoffs. If preference relations of players in a 

single-period game can not be represented by real valued functions, we can not 

use such a definition nor any other definitions with numerical representations of 

a single-period outcome. In that case, we have to derive a super game preference 

relation from a single-period preference relation in some reasonable way. This 

question deserves further research.

Keio University
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