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ON SOME IMPLICATIONS OF THE SEPARATING 

        HYPERPLANE THEOREM*

Anjan MUKHERJI

Abstract. The paper aims at unifying the various mathematical tools used  in. 
the analysis of linear economic models. Using the theorem of the Separating 
Hyperplane as stated in Gale's `The Theory of Linear Economic Models', 
McGraw-Hill, 1960, a wide class of results are obtained: the Frobenius Theorem, 
the various alternative forms of the productivity conditions for a Leontief Matrix, 
the non-substitution theorem, and properties of the singular jacobian of excess 
demand functions under gross substitution. The concept of a dominant diagonal 
matrix plays an important role in the entire analysis.

INTRODUCTION

 In economic theory, one often encounters non-negative matrices or matrices 
with all off diagonal elements non positive (B-matrices) and usually, one enquires 
into the nature of characteristic roots and associated characteristic vectors or 
whether certain linear equations involving these matrices have non-negative 
solutions. The primary source of results in this connection appears to be the 
Frobenius Theorem; that this result is considered to be of central importance, is 

perhaps best reflected by the fact that almost every text book dealing with 
mathematical economics contains a section or an appendix dealing with the topic, 
e.g. [1], [8], [12], [13]. Besides, there have been several papers, e.g. [3], [10], [11], 
each providing an alternative proof of the Frobenius Theorem. 

 An alternate source of similar results, according to Mckenzie [9] is Hadamard's 
Theorem which states that a matrix with a dominant diagonal must be non 
singular. Then there is the indigenous source—which uses the Frobenius Theorem 
and/or Hadamard's Theorem and/or various tedious properties of determinants 
and cofactors to establish some of these results. There is also the work of Gale [5] 
which begins with the Separating Hyperplane Theorem (SHT) and establishes 
some results in this connection; but the properties of characteristic roots and 
vectors find no place in Gale's analysis. 

 We shall show that the entire analysis of these class of problems may be based 
on the Separating Hyperplane Theorem alone. The importance of this result to 
economic theory cannot be overstressed and with our analysis, it occupies a central 
role in this area as well. Specifically, the route which we traverse may be seen as 

  * Helpful comments from the referee are gratefully acknowledged.
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58 ANJAN MUKHERJI

follows:

SHT

 III 

•Hardamard's Theorem

•Properties of B-matrices

•Properties of the Gross 

   Substitute System VIII 

•Frobenius Theorem IV, V 

  Productivity Conditions 

   in the Leontief Model VI 

  Non Substitution Theorem VII

 To put our analysis in the proper perspective, let us compare the above scheme 
to the analysis in [3], [5] and [9]. In [3], IV is first established; then the relevant 

properties of B-matrices in III are demonstrated. In [5], beginning with SHT, the 
author straightway arrives at VI and goes on to VII for the case when each sector 
has a finite number of activities; but the conditions involving characteristic roots 
find no place in this analysis. In [9], the point of departure is III; these are used to 
demonstrate VI and in conjunction with IV, V, the stability of the Gross substitute 
system is demonstrated. 

 We show that B-matrices with dominant positive diagonal provide the common 
underlying structure and the SHT, the basic mathematical tool. Moreover, in 
obtaining an unified approach, the proofs of the various propositions become 

quite simple and elementary.

II. THE SEPARATING HYPERPLANE THEOREM

 The starting point of this analysis is Gale's [5] Theorem 2.6: 
 Exactly one of the following alternatives hold: 

            Either  xA  =  b has a nonnegative solution 

          or Ay >_ 0 by <0 have a solution . (SH) 

It should be pointed out that the notation (and terms): x > 0 (positive), x> 0 (semi-

positive) and x�0 0 (non-negative) are to be interpreted as in [5]. The following 
corollaries of (SH) would be frequently used; these are Theorems 2.9 and 2.10 [5, 

pages 48-49].

Either

or

Either

or

xA = 0 has a semipositive solution 

Ay > 0 has a solution 

xA < 0 has a semipositive solution 

Ay > 0 has a nonnegative solution

In each of the above cases, exactly one of the stated alternative hold.

(SH.1)

(SH.2)
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               III. MATRICES WITH DOMINANT DIAGONALS 

 A square matrix  A  =  (al  j), i, j= 1,  2, • , n is said to have a column dominant 
diagonal (c.d.d.) if there exist d j > 0, j= 1,  2, • • , n such that 

djlajjl>Edilail, j=1,2,•• ,n.(1) 
                          i*j 

Let BA = (bl j) be defined by 

bij= —I aij I ij 

= I a j j I otherwise . 

Then A has a c.d.d. iff 

dBA > 0 for some d�0 0 .(la) 

A is said to have a row dominant diagonal (r.d.d.) if and only if AT has a c.d.d. i.e., 
there exist c j > 0, j= 1,  2, • • • , n such that 

ciIaiii> E Iaijlc, i=1,2, • • •,n (2) 
j*i 

or alternatively 

BA • C> 0 for some c�00 (2a) 

We show first that 

  Li. A has a c.d.d. iff A has a r.d.d. 

  Proof If A has a c.d.d. then (1) and (la) hold; in particular, 

dBA > 0 for some d* > 0 . 

Suppose to the contrary that BA • c > 0 has a nonnegative solution. Then by (SH.2), 
xBA <_ 0 for some x* >— 0. Thus (d* — tx*)BA > 0 for any scalar t>0.  In particular, 
consider t* = minie4, o d*/x * > 0. For such a choice, (d* — t*x*)BA > 0 cannot 
hold. Hence no such x* exists so that (2a) holds and A has a r.d.d. For the 
converse, apply the above to AT . 

  Hence one need not distinguish between r.d.d. and c.d.d. and we shall refer to 
matrices as having a dominant diagonal (d.d.) if any one of (1), (la), (2) or (2a) 
holds. L 1 establishes that if any one of these holds, then so do the others. The 
fundamental property of such matrices is given by (Hardamard's Theorem): 

  L2. If A has a d.d. then A is non-singular. 

  Proof By (la) and (SH.2), BA • y� 0 has no semipositive solution. Thus, if A is 
singular, Az =0 for some z 0; i.e. 

— ail • zi = E al jzi for all i 
j#i
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or

 laiiI  •  Izii= E auzi G E Iai;IIzjI 

or writting 
yr = I zi I , y = (yr) , y� 0 and BA • y� 0 : a contradiction . 

Hence the claim. 

  Matrices such as BA would play an important role in our analysis. We shall refer 
to matrices such as these viz., with non-positive off diagonal entries, by the term B-
matrices. For a B-matrix, B=(b), the above considerations imply: B has a d.d. 
with bit > 0 (+ ve d.d.) iff 

           Bd>0 for d>_0.(3) 

Moreover for any B-matrix, B = (bl j). 

  L3. Bx = c has an unique nonnegative solution for any c� 0 iffB has a+ ve d.d. 
  Proof If B has a + ve d.d., then (3) implies B' d' > 0 for any Je { 1, 2, • • • , n}, 

B' =00,  i, j E J; d' _ (di), jEJ. Thus by (SH.2), 

y' • B' < 0 has a no semipositive solution . (4) 

Consider y* such that y*B >_ 0. If possible, let J= {j:  y * < 0} # 0 . Then y*' • B' > 0 
and y*' <0 violates (4) and hence J=0 . Thus y*B >_0 = y* >_ 0. Consequently 
yB >_ 0 and ye < 0 can have no solution whenever c >_ 0. Hence by (SH) Bx = c has a 
no negative solution for any c�0 . 0. The solution is unique by virtue of L2. The 
converse is trivial, given (3). 

  L4. For a B-matrix, B- i > 0 iff B has a + ve d.d. 

 The proof is trivial given L3 and hence omitted. 
 L5. For a B-matrix, B has a + ve d.d. iff 

                                   btl .•• blk 
detBk=def>0, k=1,2 , • •,n (HS) 

bki ••• bkk 

 Proof The proof follows by virtue of L3 and the central result in Hawkins and 
Simon [6]. 

 The above results will be shown to be central to not only the theory of linear 
economic models but to the Perron-Frobenius Theorem as well.

       IV. NONNEGATIVE MATRICES AND THE FROBENIUS THEOREM 

Let A > 0 be a square non-negative matrix of order n and F(A)=[7c : rdI — A has a
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 +  ne d.d.]. For any n, hl — A is a B-matrix and hence the results of the last section 
apply. Moreover, for any A >_ 0, F(A) 0 0: since any n larger than the maximum 
column sum of A must be an element of F(A). Aslo n e F(A) n �0. Hence: 

7r1= Inf n 
ne F(A) 

exists. We shall drop the subscript and write n* whenever the context makes it 
clear. First of all, 

 L6. n* O F(A), n* �0; n > n* = n E F(A). Thus F(A) _ (n*, + co). The claim 
follows from (3) and the properties of the infimum. 

  Moreover, 

  L7. n* is a characteristic root (c.r.) of A. l a I <= n* for any other c.r. of A. 

  Proof Let c be a positive column vector (n x 1). Construct an n x (n + 1) matrix 
whose first n columns are the columns of n*1— A and the last column is —c. 
Denote this matrix by 

[n*I—A, —c] . 

Note that y[n*I — A, — c] > 0 can have no solution; for if a solution y exists, then 

y(n*I—A)>0 and 9•c<0 

so that for some a > 0 

y((n* + a)I — A)� 0 and y • c < 0 by SH that ((n* + a)I — A)x = c 

can have no nonnegative solution by L3 that n* +a F(A): contrary to L6. Thus 
no such y exists. Hence by (SH.1) there is [a:] semipositive where x* is n x 1 and a* 
a scalar such that 

                      [n*I—A, —c][a;]=0 

or 

(n*I — A)x* = a*c 
•.• a* 00 re*I—A 

has a + ne d.d. and n* e F(A): contrary to L6, we conclude a* = 0. Hence x* > 0 
and (n*I — A)x* = 0 so that n* is a c.r. of A. 

  For any other c.r. a let z be its associated characteristic vector (c.v.). Then Az = 
az and in particular

«I•Izil= E aj.i zi => a~,lz~l for all i

or
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 (IaI I— A)y < 0 where yr =I zi I, and so y > 0 . 

In case I a I> n*, 'ale  F(A) whence by L4, 

          (I a I I — A) -' >_ 0 so that yo : a contradiction . 

Thus IaI<n*. 
 The following fact, obtained in the above proof, is noted separately: 

  L8. There is x* >0 such that Ax* =ex*. 

 L9. (id— A) -' > 0 iff n > n*. Further Lil(n) �0 for it >= n* where Lil(n) is the 
cofactor of the i, j-th element in (id* — A). 

 Proof Follows from L4 by virtue of L6. Writing L(n) for def(nI— A); the j, i-th 
element of (nI — A)-1 is Lil(n)/L(n). L(n) > 0 whenever n > n* (L5); and so 
Lij(n) >_ 0 for n > n* and hence Lil(n*) > O. 

Lie. If A >_ C >= 0 then n A >__ n c>_ O. Moreover if C is any principal minor of A, 
then nA>_ne. 

 Proof Follows from noting that F(A) c F(C), and from the definition of n*. If 
C is a principal minor of A of order r; fill out the remaining (n — r) rows and 
columns to obtain D, a matrix of order n. Then 

D<A and nD<hl and nD=ne 

 Collecting the above results, we have shown that for any non-negative matrix A 

  (i) there is n* >_0 such that n* is a c.r. of A and for any other c.r. a, 
lat�-n* (L7) 

  (il) (nI — A)-'�0 if n > n* (L9) 
 (iii) there are x* > 0 and p* >0 such that 

                 Ax* =ex* 

p*A = n*p* (L8 and application to AT) . 

 (iv) Ay >— ay, y > 0 = n* >_ a (Proof of L7). 
It may be of some interest to note that some authors e.g. [8, page 247] use (iv) to 
define n*. The above set of results is referred to as the Perron=Frobenius Theorem 
e.g. [13, page 102].

                        V. INDECOMPOSABILITY 

 If in addition to A being nonnegative, one requires that A be indecomposable, 
then the results of the last section are considerably strengthened. Let I= 

[1, 2, • • • , n]. If there is some non-empty proper subset J of I such that 

aLl=0, i0J and jeJ
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then A is defined to be decomposable. If no such J exists, then A is said to be 
indecomposable. 

 Lil. If A� 0 is indecomposable, then 

   (i) n* > O. 
  (il) x* (and p*) > 0. 

  (iii) Any other c.v. corresponding to n* is a scalar multiple of x* (or p*). 
  (iv) No other c.r. has an associated c.v. which is non-negative. 

   (v) If C is such that A >= C >_ 0 then 'ICI  > n if CO A. 
  (vi) If C is a principal minor of A, C A then n A > n c . 

  (vil) (nI — A)x >. 0 for x > 0 (hl — A)  >0, 
and 

 (viii) n* is a simple root of the characteristic equation of A. 

 Proof See Nikaido [13, page 107]. A simpler demonstration of (viii) is as 
follows: a is a c.r. of B = n*I — A iff (n* — a) is a c.r. of A. The characteristic 
equation of B is n" — n" -1 (El bit) + + (-1)" -1(sum of def of all p.r. minors of 
B of order n— 1)  n + (-1)" def B=0.  By virtue of (vi) and (L9), Lji(n*) > 0 for all j; 
so that the last but one term cannot vanish and hence 0 is a simple root of the 
above equation.

VI. A PRODUCTIVE LEONTIEF MODEL

 Assume that there are n-sectors of production; each sector j produces only an 
output j by using as inputs the outputs of other sectors and a single nonproduced 
factor traditionally identified with labour. For each sector, there is an unique 
method of producing its output and suppose (a j, bj) is required to produce one 
unit of j; here, al stands for the vector of produced commodities required as inputs 
and bj, a scalar, represents the amount of labour required. Let A denote the matrix 
whose j-th column is aj. 

 The viability of the above system of production lies in its ability to produce a 
surplus (over and above its input requirements) of each commodity. Thus A is said 
to be productive [5, page 296] if 

(I — A)x > 0 for some x�00(P 1) 

xi >0, is the activity level or equivalently, the gross output for sector j. Ax then 
stands for the intersectoral input requirements to produce x and so x— Ax is the 
surplus. Note that (I— A) is a B-matrix and hence the results of Section III are 
applicable. We use these results to restate (pl) in several equivalent forms. 

 A is productive 

iff (I — A) has a + ve d.d. [from (pl) and (3)] (P2) 

iff for any c >_ 0, (I— A)x = c has an unique nonnegative solution 

                            [follows from (P2) and L3] (P3)
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 iff (I — A) -1 >_ 0 [follows from (P3) and L4] 

iff nA < 1 [follows from (P4) and L9] 

iff the Hawkins-Simon Conditions hold [follows from (P2) and L

iff for some c > 0, (I — A)x = c has an unique nonnegative solution 

iff all principal minors of (I — A) have positive determinants 

Notice that (P3) (P7) (P2) (P3), Also (P8) (P6); 

(P6) (P2) = B' has a + ve d.d. for every J, where B = (I — A), J c [ 1, 
B' = (b;j), i, j E J and hence def B' > 0 by (L5) = (P8). 

 One may also note the following conditions as well: 

(pl) Eau<1 for some j 

and

2,

  (P4) 

  (P5) 

  (P6) 

  (P7) 

  (P8) 

whereas 
n],

E a;; < 1 for every j (pl) 

which is a trivial consequence of (P2).

(P9)

VII. NON-SUBSTITUTION THEOREM

 Consider the production model of the last section; except instead of the unique 
configuration of inputs (a3, bl) required to produce one unit of j, we now assume 
that there is a collection T~ of such processes for each j. We shall insist that 

(I) Ti is a closed subset of Rn 1 and (al, b;) E Ti = b; > 0 . 

When each sector chooses a process, say j chooses (a3, 5) from Ti, the di's form a 
Leontief matrix A whose j-th column is aj. For each configuration of choice, a 
separate Leontief matrix becomes applicable. For the model to be viable, we shall 
also insist that 

(II) There is (al , b *) E T~ such that A* = (al) is productive . 

Let 

p*(I— A*) = b* where b* = (13*)(4) 

 Thus, we have normalised prices by taking the wage rate as unit. In this set up, it 
is meaningful to enquire into the question of choice of processes by each sector. 
Given that labour is the only primary factor it is reasonable to expect each sector 
to minimize its labour costs; and if there is a set of processes one for each sector, 
which minimises these costs, then this set of processes may be chosen regardless of 
what surplus has to be generated. Thus even though substitution possibilities exist,
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no substitution may occur: the non-substitution theorem. 

  Let L denote the quantity of labour available; then given 

 (a;, b) E T; , j= 1,  2, • • • , n , A = (a) , b = (b) , 

         U(A, b)=[y>-0: y<_(I-A)x, bx<_L, x>.0] . 

We shall write (A, b) E T whenever A = (a), b = (b) and (al, b) E Ti for each j. If 
these is (A, b) e T such that for all (A, b)e T, U(A, b) c U(A, fi), then (A, fi) has the 
non-substitution property [7]. What Johansen [7] did not clinch was the existence 
of such an (A, b); see, for example, Dasgupta [2], who presented an argument to 
establish the existence. A more direct demonstration is presented below; in the 
process, the crucial role of the productivity conditions (pl)-(P9) stand revealed. 

 We begin by observing that 

 A. If (asi, bD E T s=1, 2, • • • and bs-o then ask;-* + 00 for some k. 
 Proof For, if not, then (a., bsi) forms a bounded sequence and must have a 

limit pt. (al, 0) and which must be contained in Ti: a contradiction. 
 Let P= [p : 0 Sp <p* and for each p there is some (A, b)e T such that 

p(I-A)=b]. - - 
 In the definition of P, p* is as in (4) above. Hence p* e P. Thus P is nonempty 

and bounded. Let ps, s= 1,  2, • • • be a sequence in P; without any loss of 
generality, assume ps->p° as s-4 00. Since ps e P, for all s, there exist (As, bs) e T 
such that 

p s(I - AS) = bs . 
Thus by virtue of (P2), AS is productive for all s. Moreover, 

 B. a -+ + co for some i, j = p7-*0. This is immediate since 

pl�-P;= E pkak;+b;=b;>0(5) 
k=1 
 C. P is compact. 

 Proof This would be established by showing that p° e P. If possible let J= 
[j : p° = 0] 0 0. Then by virtue of (5), B, and A, 

jeJ~b~--~o a, -+ + co for some k 

~keJ (• .' pk->0) . 

or

jEJ=> a —>+00. 
ieJ 

  For s sufficiently large, A 3_ (4), i, j E J
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cannot be productive (by (P9)): which would contradict the fact that  AS is 
productive for all s. Hence J=0 or p° >O. Thus by B, a3 is bounded for all j; is 
bounded by (5) and hence (a3, bsi) has a limit pt. (a°, b°) E Ti. Since ps(I— AS) = bs, 
p°(I— A°) = b°; moreover 0 <_ ps <p* implies 0 <p° �_p* and so p° E P. Hence the 
claim. 

 By virtue of C, one may now make the following assertion: 

 D. There exists p e P such that p solves min El pi s • t, p E P. Since p E P, there is 
(A, b) E T such that 

p(I—A)=b 
since b > 0, the above implies that A is productive (P2). 

 For this (A, b), we have the following claim: 

  E. U(A, b) has the nonsubstitution property. 

 Proof For if not, there is (A, b)e T and y E U(A, b) such that y U(A, b). 
Hence b(I — A) -1 y >L, as A is productive. Moreover, there is x�0 0 such that 

(I—A)x>y , b•x<L 

                 p(I—A)x>_py=b(I— Ay' y>L>_bx 
so that [AI — A) — b]x > 0 and hence, there exists il such that 

PJ1—pail—bh>0. 

Define next (A, 5)e T such that A = (a,), b = (h,) and 

(a,, b,) = (a,, b,) , 
=(ail, btl) , otherwise .

Note that

pdl+b=pa~+b;=p; 

=paJl +b <p, ,

so that p(I — A) > 5 > 0; hence A is productive (P2). Hence p >—b(I — A) -1= p say. 
 The inequality must remain strict for at least one component since (I— AY' >_ 0 

and (1— A) -1 cannot have a row of zeros. 
 Hence p E P: a contradiction to the definition of p. Thus no such y, (A, b) can 

exist and E is established. 

 We may conclude with two related observations: 

 F. p whose existence is asserted in D, is unique. 

 Proof For suppose, to the contrary, that p, p with to Op both solve the 

problem in D. Then there exist (A, b), (A, 5)e T such that

./0/1 

   otherwise
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Moreover, as

consider  p, (a;,1

Let A =(a;), b= 

II,

p(I—A)=lb 

p(I—A)=b

HencepA+ b<_j 
proof of E since p > p > p, p E P: a contradiction. Hence the claim. 

 Finally, 

 G. If (A, b)e T has the non-substitution property, then b(I — A) -1= p. 

 Proof First of all, since (A, b) has the non-substitution property, A must be 
productive. Now if b(I— A)-1 = p#pthen F El pi >L.ipi,provided p e P. So 
consider c > 0 such that E7_,pici = L > El pici where cl = L/> pi for each i. Hence 
there is c > c where cl = L/>2 pi > cl such that E pici > L = E pici so that c E U(A, b) 
but c U(A, b): a contradiction. So pep i.e., p; >p *for some il . Now define, c;1= 
L/p *, c; = 0, j � il. Clearly p •c=p; 1/p*L> L but p* c = L and so c E U(A *, b*) but 
c U(A, b): again a contraction. Hence p =p.

 Ep;=Ep;,/5�/3`1=1/5�/3`1/5�/3`1=1/:~=={j: p;>p;} 00 

 E T; defined by 

 P; =Pi,jeJ;(a;,b;)=(a.b;), jeJ; 
  =p; ,:ICU; =(a;,b;),:lo-I

_ (b;). Then (A, b) E T and for 

pal+bl= E Piai;+ Epiau+b;<_EPiai+b;=p;=p; 
ieJ iJi 

pal+bl= E, piai;+ E Piai+b<EPiai;+b;=p=p;. 
   ieJ ieJi 

5 so that A is productive and ji > b(I — A)-1 =p say , as noted in the

VIII. SINGULAR B-MATRICES: THE GROSS SUBSTITUTE SYSTEM

 For the theory of linear economic models , we have seen that B-matrices and 
their nonnegative inverses played a major role. The theory of stability of 
competitive equilibrium also entails the investigation of properties of a matrix 
which is often assumed to be a B-matrix; the only difference being that the B-
matrix is known to be singular. This problem has led to the exclusion of one row 
and column of the B-matrix by the device of choosing a numeraire so that once 
again, one has a non-singular B-matrix. Since the original singular B-matrix is 
often not considered, there does not exist, to the best of our knowledge , an
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analysis of the properties of such matrices. We show below that the tools 
developed above may be applied to such a problem. 

 Let  Z.(p,  , • • • , p,,) denote the excess demand function for the i-th good, i= 
1, 2, , n; Zr( ) is assumed to be differentiable in the interior of the nonnegative 
orthant; it is homogeneous of degree zero in the prices i.e., 

Zr(P) = Zr(Ap) , V A > 0(1) 

and satisfies Walras law i.e., 

E pill(p) = 0 for all p> 0 . (2) 
i=1 

Let E= [p > 0 : Zr(p) = 0, V it the set of equilibrium prices. Consider 

               J(P)=aapp),i,j=1,2, • • •, n 
                                   J which is defined for all p> O. Then (1) implies 

J(P)*P =0(3) 

and (2) implies 

P.J(P)= —Z(P)(4) 

 We begin by observing that 

L12. J(p) is symmetric p E E. 

This is immediate from (3) and (4). 
 Since J(p) is singular, we can at best seek to determine the properties of the 

adjoint. Let Ali(p) denote the cofactor of the i, j-th element in J(p) and let A(p)= 
(Ali(p)): the adjoint. Then 

A(P)•J(P)=J(P)•A(P)=0(5) 

where 0 denotes the n x n null matrix. We have then 

L 13. Either Aji(p) = 0 for all i, j or Ali(p) = ),ipi for some scalar Al 0 0. 

  Proof Suppose Ars(p) 0 0 for some r and s. Then rank J(p)=n— 1. 
Consequently, X= [x : J(p) • x=0]  is a subspace of rank unity; by virtue of (3), 
p e X; by virtue of (5), Al(p) (the i-th column of A(p)) e X for all i Al(p)=4 and 
the claim follows. 

  While investigating the stability of competitive equilibrium, a standard assum-

ption has been to require that J(p) satisfy 

aZi(P)
>0, i�j, p >0.(GS) a

p, 

Uder GS, J(p) becomes the negative of a B-matrix; but under (3), —J(p) is a
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singular B-matrix. The usual practice in such situations has been to drop say, the 
first row and column from J(p) and then note that 

 Ill(P)'P^-1  <0  , (6) 

from (3) where 

               Jii(P)= aai(P)igjol 
                              P, 

and 

P -1 = (Pz, •• ' 9 ph) 

so that Jr l (p) has a dominant diagonal which is negative; in other words —Ill(p) 
is a B-matrix with a dominant positive diagonal and so earlier results are 
immediately applicable. Moreover, it has been standard practice to consider J„ (p) 
for p e E; with the result that properties of Ill(p), p E are not usually discussed. 
We shall, in the results below consider J(p) and show that J(p) for p e E is different 
from J(p) for p E in an important manner. First of all, 

L14. Under GS, there is y> 0 such that yJ(p) = 0 and y =),p for /1.0  0, if and 
only if p E E. 

 Proof Suppose to the contrary yJ(p) = 0 has no positive solution. Then under 
a corollary to (SH), 

J(p)x>0 has a solution x* , 

.'. J(P)(— x*) <_ 0 . 

By virtue of (3), J(p) • (x* + pp) � . 0 for any scalar µ and hence J(p) • z* <0 for z* > 0 
i.e.,z* _ — x* + pp, p chosen appropriately. But this implies that J(p)-z< 0 has a 
nonnegative solution; for if no such solution exists, w • J(p)>= 0 has a semipositive 
solution, by (SH.2). Consequently if /= [i: w; > 0] � 0, writing II(p) _ (aZ1(p)/apt), 
i, j E I, wI = (wt), i E I, zI = (z *), j E I, we have: 

wt•II(p)�.0, II(p)'z1<0, wt,>0, z1>0: 
which is a contradiction. Thus J(p) • z <0 has a nonnegative solution z* z* >0 
and hence J(p) has a negative dominant diagonal and hence non-singular: which 
too, is a contradiction. Thus, the first part of the claim follows. For the remaining 
part, note 

y=ppp•J(p)=0pZ(p)=0 from (4) 
ppeE. 

Lis. Under GS, all elements of A(p) are non zero and have the same sign; 
A(p) > 0 if n is odd; A(p) < 0 fn is even. 

 Proof As noted above, Jr 1(p) has a dominant diagonal which is negative and
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hence  non-singular..'. All(p) 0 0. By L13, Ali(p) = A`pi. By L14, and the method of 

proof of L13, 
A,1(P) = A,Yr 

il and A; 

have the same sign for all A,` and Al, i, j =1, 2, • • • , n. Also All(p) = a'1 yr= Alpl. BY 

(HS) conditions def(— Ill(p)) > 0 All(p) has the sign of (-1)" -1 = All(p) > 0 
iff n odd, All(p) < 0 if n even. Thus .11, Al >0 if n odd, )Ll, Al <0 if n even; and since 
Al, ~ have the same signs, the claim follows. , 

 L16. Under GS, zero is not a repeated characteristic root of J(p); all other 
characteristic roots of J(p) have negative real parts. 

 Proof By GS, there is y > 0 such that J(p) + yI is a positive matrix. By the 
Frobenius Theorem, there is a* > 0 such that (J(p) + yI)y* = a*y* where y* >0. 
Moreover a* is the only characteristic root of J(p) + yI which has an associated 
nonnegative characteristic vector. But by (3), 

(J(P) + yI )P = yP 

p>0 y=a* . 

Also, a* is not a repeated characteristic root of J(p) + yr and a* �I,6 /3 I for any other 
characteristic root /3 of J(p) + yr; further /3 is a characteristic root of J(p) + 

yr = 13—y is a characteristic root of J(p). Thus /3— a* is a root of J(p) whenever /3 
is root of J(p) + yI implies the claim, given the above properties of a*. 

 L17. J(p) is quasi-negative semi-definite if and only if pEE; (i.e., xJ(p)x<0 for 
all x iff p E E). 

 Proof Note that 

               xJ(p)x = 2x(J(p) + J T(p))x 

First note that 

xJ(p)x<<0, V x x(J(p)+IT(p))x 0, V x 

so that J(p) + IT (p) is negative semi-definite. Moreover from (3) and (4) 

P(AP) + IT (P))P =0 

This must imply that p(J(p) + IT (p))--= 0. For suppose p(J(p) + IT (p)) = y 0. Then 
consider p + ty where t is a scalar: 

  0 >_(p + ty) '(J(p) + IT (p))(p + ty), since J(p) + IT (p) is negative semi-definite 

= 2t[yy + t • yJ(p)y] > 0 for t > 0 and small . 

.•. y=0.
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Consequently,  p(J(p)  + IT (p)) = 0 i.e. Z(p) = 0 since pJT (p) = 0 by (3) and (4) holds. 
Thus peE. 

 For the converse, p e E = p(J(p) + IT (p)=0 by virtue of (3) and (4) and 
definition of E. Thus J(p) + IT (p) satisfy the conditions used in the proof of L16; 
hence all characteristic roots, apart from zero, of J(p) + IT (p) must be negative. 
Since J(p) + IT (p) is symmetric, this means that J(p) + IT (p) is negative semi-
definite, and hence 

xJ(p)x<_0 , V x�0 . 

We conclude by making the following 

 Remark. Note that the first part of the proof does not utilize the GS property. 
Thus one may state: Under (1) and (2) 

               J(p) is quasi negative semi def. . p e E .

Jawaharlal Nehru University
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