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COMMERCIAL FISHING WITH PREDATOR-PREY 

            INTERACTION

 Koji OKUGUCHI*

Abstract: The Smith model of commercial fishing of a single species is gen-

eralized, taking into consideration of natural interaction between a prey and a 

predator. The stability of the non-extinct steady state populations of the two 
species is proved, and the effects of changes in parameters upon the steady 

state are examined. Finally, the steady state populations under harvesting and 

no harvesting are compared.

1. INTRODUCTION

 A dynamic model of commercial fishing incorporating economic as well as 
biological aspects of a single species has been formulated and analysed by Smith 

[4], and the stability of the steady state or bionomic equilibrium has been 
investigated in great detail by Leung and Wang [3] and Wang and Cheng [6] under 
the assumptions that the price of the fish is a strictly decreasing function of the 
total harvest and that the total cost excluding the oppotunity cost per boat or 
investment is proportional to the square of the harvest per boat or investment and 
inversely proportional to the stock or population of the fish.  

So low [5], on the other hand, has attempted a comparative dynamical analysis 
of fishing within a framework of an optimal control theoretical model involving 
natural predator-prey interaction a la Volterra. Clark [1] also has studied a similar 
model involving a Gause-type interspecific competition between two species of 
fishes which feed on a common food supply, each species growing according to a 
logistic law in the absence of its competing species. Moreover, he has analysed a 
model with predator-prey interaction a la Lark in. Both So low and Clark have 
assumed the constancy of prices of fishes harvested over time. More recently, May, 
Beddington, Clark, Holt and Laws [4] have analyzed multispecies fisheries 
assuming intertemporal constancy of fishing efforts. In addition to a prey-preditor 

(krill-baleen whale) model, they have considered one prey-two preditor (krill-
whale and seal) model and a three trophic level (krill, cephalopod and sperm 
whale) model. They have made some observations on economic aspects of 
multispecies fisheries, but have not analyzed the optimal determination of fishing 
efforts, from the viewpoint of economic rationality of fishing firms. 

 The purpose of this paper is to extend the Smith model of commercial fishing of 
a single species taking into account natural interaction between a predator and a 

  * Thanks are due to a referee who has suggested a simple proof of our stability result.
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prey. In Section 2 we present a commercial fishing model involving predator-prey 
interaction, and analyze the stability of the steady-state with non-extinct popu-

lations of the two species. In Section 3 a comparative statical analysis of the steady 

state with respect to changes in parameters is given. Further, the populations of 

the two species in the steady are compared for the case of harvesting and that for 

no harvesting. Section 4 concludes.

2. THE MODEL AND A DYNAMIC ANALYSIS

 Let there be two species of fishes in the same territory, one as predator and the 
other as prey, and let  XI and X2 denote the populations of the prey and predator, 
respectively. If uninterrupted by fishing, the two species grow according to 

(1)XI=XI(al—blXl—clX2) 

(2)X2 = — X2(a2 — b2 Xi+ C2 X2 , 

where the parameters are assumed to satisfy: 

al>0, bl>0, cl>0 
(3) 

a2 0, b2>0, c2>0. 

 The meanings of these equations and restrictions are as follows. The prey 
species grows in accordance with a logistic law in the absence of the predator, and 
the number of prey predated by the predator is proportional to the number of the 

predator for given number of the prey and to the number of the prey for given 
number of the predator. The predator, on the other hand, grows according to a 
logistic law also in the absence of the prey if a2 < 0 and c2 > 0 are satisfied 
simultaneously. The additional increase in the predator population in the presence 
of predation is proportional to the number of the prey for given number of the 

predator and to the number of the predator for given number of the prey.  
So low has analysed the Volterra case where a2 > 0, b2 > 0 and c2 = 0. In this case 

the predator decreases exponentially without predation. The case where a2 < 0, 
b2 > 0 and c2 > 0 has been considered by Lark in (see Clark [1, Chap. 9]), and the 
case where a2 > 0, b2 > 0 and c2 > 0 has been treated by Hirsch and Smale [2, Chap. 
12]. May, Beddington, Clark, Holt and Laws [4] have assumed the following 
differential equation for the growth of the predator, instead of (2): 

(2)'X2 = r2X2(1 — X2/aX1) , 

where r2 > 0 is the intrinsic growth rate of the predator and a > 0 is a pro-

portionality constant relating the carrying capacity of the predator to the stock of 
the prey when the predator is not harvested. 

 Let us now introduce selective harvesting of the two species of fishes. In contrast 
to Smith [5], Leung and Wang [3], and Wang and Cheng .[7], we assume a la So low 
[6] and Clark [1] that both species of fishes are sold at constant prices, pl and p2,
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over time. Let  Yr and Y2 be the amounts of harvest of the prey and predator, 

respectively. The selective harvesting cost per boat or investment are given by 

7,Y?/X, and y2 Y2/X2, respectively, for the prey and predator. Profit per boat or 
investment for fishing the i-th species (the prey for i= 1  and the predator for i= 2) 
is given by 

(4) —yr *Xi —n°, i=1,2, 

where it° is the opportunity cost per unit of investment in fishing the i-th species. 
  Maximising 7ri with respect to Y~, we get' 

(5)Yr =pl XI/2yi , i= 1 , 2 

which substituted into (4) yields 

(6)hi=p?Xil4yi—m° , i=1, 2 .2 

  Let KK be the number of boats engaged in fishing the i-th species. In the presence 
of fishing the natural growth equations (1) and (2) have to be modified as: 

(7)dX1 /di = XI(al _ bl XI — cl X2) — Kl Yr 

(8)dX2/di = — X2(a2 — b2Xl + c2X2) — K2 Y2 , 

or in view of (5), as 

(9)dX1/di=XI(al—blXl—clX2—plKl/2yt) 

(10)dX2/di = — X2(a2 — b2Xl + c2X2 +p2K2/2y2) . 

We assume that the number of boats engaged in fishing increases or decreases in 

  1 It might be more faithful to current practice to consider maximization of the integral of discounted 

profit than to consider current profit maximization. Technical difficulties associated with the former 
maximization, however, forces us to be satisfied with the latter maximization as a first approximation. 
Moreover, this approximation is valid if the discount factor is sufficiently large, or if future is very 
uncertain. 

  2 Let the demand function and the harvesting cost per boat be given by pi= f 1( Yr) and Ci = 
Ci(Yr, Xi), respectively, where fY_ <0, CC, > 0 and C. <0, i= 1, 2. The profit per boat for fishing the i-
th species is 

(a)hi=xi.f`(Yr)—C'(Yr, Xi)—n? , i= 1, 2 . 

Maximizing hi with respect to Yr, we get 

(b)Yr=h`(XI), i=1,2, 
where 

(c)dhi/dXi < 0 according as C; X 0 , i= 1,  2 . 
Substituting (b) into (a), 

(d)hi = h`(Xi)f ̀(h`(Xi)) — C ̀ (h`(Xi), Xi) — it? , i = 1, 2 . 

More generally, the demand function should be formulated as 

(e)pi= .f`(Yr, Y,), i 1,2.
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proportion to profit or loss per boat. Hence 

(11) dKi/di=  si(pXi/4Yi—it°)  , i= 1, 2 , 

where Si's are positive constants. 
 Equations (9)—(11) constitute our fundamental system of differential equations , 

the stability of which steady state being our main concern in this section . If dKi/di 
approaches zero independently of (9) and (10), the stability may be proved by 
appealing to the results already obtained by others . However, (9), (10) and (11) are 
interdependent, making our stability analysis rather complex . 

 Let X * and Kt be the steady state values of Xi and Kl, respectively, where we 
assume that X * and Kt are both positive. Expand (9)—(11) in the neighbourhood 
of X * and K* to derive the following system of linear differential equations in four 
variables.

(12)

 dZl  /di 

dZ2/di

dNl /di 

dN2/di

-bX* 

 2X2

 SI  P  i/4Y1 

  0

—al/

a21

a31

0

—clXl 

—'-2X2

0

S2 P 2/4Y2

—a12

— a22

0

a42

—a13 

 0

0

0

-PiX i /2Y1 

  0

0

0

0

— a23

0

0

 Z, 

Z2

NI

N2

0

-P2X i /2Y2

0

0

 Zr 

Z2

NI 

N2

where

(13) 

and

 Zia-X,— , NN=KK—Kr , i=1,2,

(14)all,a12,a13, an, a23,a31,a42>0, a22>0. 

If the steady value of either XI or X2 is zero, then n? or n ° has to be zero because 
of (11). We therefore assume away the possibility of extinction of both species of 
fishes, as the opportunity cost of investment in fishing can, in general, be 
considered to be positive. Note also that in deriving (12), use has been made of the 
following two equations relevant to the steady state. 

(15)al—blXl*—ClX2* -pi Kl*/2Y1=0 , 

(16)a2—b2Xl*-i-c2X2*+P2K2*/2Y2=0. 

The characteristic equation for the coefficient matrix of (12) is shown to be
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(17)  /14+(all  +a22))'3  +(mlla22  +al2a2l  +alsasl  +a24a42))2 

+ (alla24a42 + alsa22asl).1+ alsa24asla42 

A4+a,A3+a2/12+a3A+a4 

=0 . 

In view of the definition of a,, a2, a3 and a4, a simple calculation shows that all of 
the upper left-hand corner principal minors of the matrix

 al 

1 

0 

0

a2 

a2 

al 

1

0 

a4 

a3 

a2

0 

0 

0 

a4

are positive. Hence by the Routh-Hurwitz stability criterion, the real parts of all 
characteristic roots of (17) are negative, establishing the local stability of the 
steady state for the system of differential equations (9)—(11). We should note here 
that we have been able to establish the stability independently of the sign of a2 
which may be of any sign.

                       3. COMPARATIVE STATICS 

 We now conduct a comparative statical analysis of the steady state with respect 
to changes in the values of the parameters. From (11) we have 

(18) X*=4y,it  /p?, i=1,2. 

This coupled with (15) and (16) yields: 

(19)Kl =(al-4y,btiro/pi-4y2cin°/pi)2yi/pi 

(20)1(1=(—a2 + 4y, b2nilpi— 4y2c2nslpD2y2Ip2 

 By simple calculations we get the following Table 1.3

3 If the demand function and the harvesting cost are given as in the footnote 2, the steady state value 
of Xi is determined by 

(oh`(X*)f`(h`(X*))—C`(h`(X*), X*)—n?=0 , i= 1, 2 . 

Totally differentiating (f), and taking into account the first order condition for maximization of (d), we 
have 

(g)dX*/on°=-1/CX;>0, i=1,2. 

However, comparative statics for other variables and parameters are not as straightforward as for the 
table given above.
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TABLE 1. COMPARATIVE STATICS

 K*

 Pt 

P2 
~o t 

~2 2 

cl 

b2

0 

0 

0 

0

0 

0 

0 

0

9 

0

9 

0

Table 1 is not exhaustive, as we are interested only in the effects of changes in the 
values of some parameters. From Table 1 we can read, for examples, aX i /apt < 0, 
aX 2 l apt= 0, aK l l apt < 0, aK i l ap2 > 0, etc. We should note especially the asym-
metrical sign patterns pertaining to changes in Kl and K2. These asymmetries 
reflect the effects of the predator-prey interaction. 

 The populations in the steady state with and without harvesting can be 
compared on the basis of Figs. 1-5 as follows.

x2

Fig. 1. Harvesting of both species.

Fig. 2. Harvesting of both species.
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 X2 

 0 

X2 

0 

X21

 X2=0 for (2) 

X** X
2=0 for (10) 

X,=O for (1) 

X,=0 for (9) 

X, 

Fig. 3. Harvesting of both species. 

X2=0 for (2) 

X** 

     A ,XI=0 for (1) 

X,=0 for (9) 

X, 

 Fig. 4. Only prey is harvested. 

X2=0 for (2)

Fig. 5.

X** 

X2=0 for (10) 

B X,=0 for (1) 

X, 

Only preditor is harvested.
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Consider first the case where two species are both harvested. Let  a2<0,4 and let 
X** = (X;*, X2 *) be the pair of the steady state values of Xi and X2 in the absence 
of harvesting, and X* = (X, X2) be that in the presence of harvesting. Three cases 
are possible (see Figs. 1-3). In these cases, we have unambiguously X2 <X2*. 
However, for the prey we may have X; < X i * (Fig. 1), or X i = Xi * (Fig. 2), or 
X 1 > X i * (Fig. 3). If only the prey is harvested (Fig. 4), the steady state shifts from 
X** to A, and the steady state populations of both species are decreased. If, on the 
other hand, only the preditor is harvested (Fig. 5), the steady shifts from X** to B. 
In this case, the prey population increases and the preditor population decreases.

4. CONCLUSION

 We have formulated a dynamic model of commercial fishing, as distinct from 
recreational fishing, allowing for existence of natural interaction between the 

predator and prey, and assuming that the prices of both species will remain 
constant over time during which fishes are harvested. Our model is different from 
that of May et al. [4] mainly in that economic rationality of fishing firms is taken 
into account. It has been found that the steady state or bionomic equilibrium with 
non-extinct populations of both species is locally stable, regradless of the signs of a 

parameter pertaining to the intrinsic growth rate of the predator. We have also 
given a comparative statical analysis of the steady state with respect to changes in 
exogeneous parameters. The steady state population of the predator in the 

presence of harvesting is smaller than that in the absence of harvesting, while the 
prey population in the presence of harvesting may be of any size compared with 
that in the presence of harvesting. The above comparison holds when both species 
are simultaneously harvested. Figures 4 and 5 are concerned with similar 
comparison when only one species is harvested.

Tokyo Metropolitan University

 The case where a2 > 0 may be similarly analyzed.
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