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A BALANCED OUTCOME FUNCTION YIELDING PARETO
OPTIMAL ALLOCATIONS AT NASH EQUILIBRIUM
POINTS IN THE PRESENCE OF EXTERNALITIES:

A CASE OF LINEAR PRODUCTION FUNCTION*

Shinsuke NAKAMURA

Abstract: The purpose of this paper is to construct a balanced outcome function
which attains Pareto optimal allocations in such a way that nobody has any
incentives to deceive the government even if there are externalities. With this
outcome function, we will show (1) there exists a Nash equilibrium, (2) every Nash
equilibrium is Pareto optimal, (3) every Pareto optimal allocation can be attained
as a Nash equilibrium if the initial endowments are suitably redistributed, and (4)
every Nash equilibrium is individually rational.

1. INTRODUCTION

In the presence of externalities, a Walras equilibrium is not necessarily Pareto
optimal and a Pareto optimal allocation is not necessarily sustained by a Walras
equilibrium. The purpose of this paper is to construct an outcome function which
attains Pareto optimal allocation in such a way that nobody has any incentives to
deceive the government even if there are externalities.

In an economy with externalities, Aoki [1] discusses the relation between
competitive equilibria and Pareto optimal allocations. But he restricts himself to
an economy of very special type in which there is only a single consumer and
externalities exist only within each industry. In a more general framework, Osana
[7] shows that every Pareto optimal allocation is a competitive equilibrium if some
suitable tax-subsidy system is adopted. But these arguments do not consider
implementability of the competitive equilibrium.

On the other hand, Hurwicz and Schmeidler [4] construct some mechanisms
guaranteeing the existence of Nash equilibrium and the Pareto optimality of the
equilibrium for every admissible profile of preferences, when the set of alternatives
is finite. In a more practical case when the set of alternatives is a convex and
compact subset of some Euclidean space, Rob [8] obtains necessary and sufficient
conditions ensuring that every Nash equilibrium is Pareto optimal and derives
_sufficient conditions for the existence of a Nash equilibrium. However they treat a
very abstract model and the relation between markets and mechanisms is not clear.

* The author is grateful to Professors Masao Fukuoka, Michihiro Ohyama, Kunio Kawamata,
Hiroaki Osana, and Toru Maruyama for helpful comments.
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28 SHINSUKE NAKAMURA

Furthermore they do not consider individual rationality and the implementability
of Pareto optimal allocations as a Nash equilibrium. But typically, our economy is
a special case of Rob’s. Hence it may appear that our mechanism must satisfy
Rob’s conditions because these are both necessary and sufficient. But in fact our
mechanism does not satisfy Rob’s conditions. This is because Rob treats only
feasible mechanisms whose ranges are included by the attainable set and our
mechanism is not necessarily feasible so that outcomes which are not in equilibria
may not be in the attainable set.

Our approach is divided into two parts. First, we will define a price system with
some tax-subsidy system which can attain a Pareto optimal allocation but in which
economic agents may have incentives to lie. We shall show that the price system
has the following four properties: Under standard assumptions,

(1) Existence: There exists an equilibrium.

(2) Non-wastefulness: Every equilibrium is Pareto optimal.

(3) Unbiasedness: Every Pareto optimal allocation can be attained as an
equilibrium provided that the initial endowments are suitably redistributed.

(4) Individual Rationality: For all consumers, every equilibrium is at least as
good as the initial endowment.

Secondly we define a mechanism or a government which attains the above price
equilibria through Nash strategies. A government is typically the ordered set of
message spaces and an outcome function into a commodity allocation space.
Namely we regard a government as a system which aggregates the messages of
economic agents and determines an allocation. Consumers know the outcome
function and report their optimal messages given the messages of others. If the
allocation attained by the Nash equilibrium coincides with the allocation attained
by the price system, then no consumer has any incentives to alter his message and
the price system is incentive compatible. Construction of these governments is the
main purpose of this paper.

In our context, we assume that there is one firm and externalities occur only
among consumer’s preferences. But in the field of welfare economics, externalities
among firms and between firms and consumers are important. Hence generali-
zation to this direction is desirable. Furthermore this model does not cover the
pure exchange economy. For this issue see Nakamura [6].

2. EXTERNALITIES AMONG CONSUMERS’ PREFERENCES

In the presence of externalities, the basic theorems of welfare economics do not
hold. It is thought that some tax-subsidy system can remedy such failures. But it is
not clear what tax-subsidy system is optimal. In this section we consider an
optimal tax-subsidy system which solves the problem and discuss the implementa-
bility of the system. For simplicity we assume externalities exist only among
consumers’ preferences. For more general cases, see Osana [7].
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2.1. Economy

We consider an economy with # consumers, one firm, and /+ 1 commodities. A
commodity bundle is denoted by (x, y), where xe R, (numeraire) and ye R,
(others). Our attention is chiefly directed to consumers and we assume, for
simplicity, that the production function is linear, and may be expressed as

x+ay=0, where aeRY\{0}. (1)

The i-th consumer’s preference relation is denoted by >, which is assumed to be
a complete monotone preordering on R, x R, x R""~Y where monotonicity
means

o Yo y-D>=i(x{, v, y-1) if (g, y)=(x/, ). (2)

His initial endowment is given by (w7, w?)e R, x R'.. Note that we assume
implicitly that the consumption set is R, x R, x Ri"~ 1),
The attainable set for this economy is

A={(x,y)€R"+><R’£

Z(x,-—wi‘)+aZ(y,-~w,¥)=0}- (3)

Pareto optimality and individual rationality are defined as follows.

Definition 1. (x*, y*)e A is Pareto optimal if there is no (x, y)e 4 such that
(@) for all i, (x;, y)Z;(x¥, y*) and
(i) for some i, (x;, ¥y)>;(x¥, y*).

Definition 2. (x, y)e A is individually rational if for all i,
(xi9 y)z;(wf9 wi’a T wz) .
2.2. Price Equilibrium
In this section we define a price equilibrium. First we define a transfer system.

Fix two distinct consumers i and j (i#)). Let ¢; be a transfer rate from i to /.
Then if consumer j consumes y; unit of commodity y, then consumer i pays

tij(y j_wf)
for j°s consumption.
Similarly, consumer j pays
Li(yi—w?)
for /’s consumption of commodity y of y; unit. Thus #’s net transfer to j is
tij(yj_wjf)_tji(yi_wzy) .
Hence the sum of transfers paid by i is equal to

Z (tij(yj_w;’)_tji(yi_wly))= Z ti;()’j—w}’)"‘(— Z tji)(yi_wzy) .

j#i J#i j*i
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Thus if we write —Y;,;1; as t;, then the total transfer from i can be written as
Ztij(yj_w};) )
j

which is very simple.

Formally, the transfer system is defined as follows.

Definition 3. teR™ is called a transfer system if for every j,

2 ti= ;.

i#j
If i#j, 1;;1s a transfer rate from i to j, and #;; can be interpreted as a tax rate fori.
Hence the condition means that j’s subsidy rate (= —t;;) is equal to the sum of
transfer rates to j.

The following remark is obvious.

Remark 1. teR™ is a transfer system if and only if
Y2y~ w)=0
P

for every ye R".

t;{y;—w?}) is an amount of transfer from consumer i to consumer j. Hence this
remark means that total transfer is always equal to zero so that the budget
constraint of the government is always satisfied.

Given a price pe R, \{0} and a transfer system te R, the i-th consumer’s
budget set is defined by

B{(p, t)={(x,-, Y)ER, xRY xi+pyi§wi‘+pwiy—2ti,(y,-—w,y-)}- 4)
J

The budget set has a straightforward interpretation. We can now define a price
equilibrium.
Definition 4. (p*,t*,x*, y*)e R, x R"™ x R", x R" is called a price equilib-
rium if
(i) p*eR;\{0}, and r* is a transfer system,
(1) for every i,
(x}, y¥)eB(p*,t*)  and
(xx*a y*)zi(xi’ y) for every (xia .V) € Bi(p*7 t*)a
(iii) for all (x, y) with x+ay=0,

Y (xF—o)+p* )Y (yF—o))Zx+p*y,
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@iv) (x*, y*eA.
The corresponding allocation (x*, y*) is said to be a price allocation.

Conditions (i), (iii), and (iv) are obvious. (ii) means that consumers maximize
their utilities given prices and transfers. For y, condition (ii) means that for each i,
y* is optimal for all consumers under the transfer system z*.

It should be noted that price equilibrium is different from the equilibrium
introduced by Osana [7] in which y ¥ is optimal given not only prices and transfers
but also others’ consumption (y¥, -+, y* , y* 1, -+, y¥). In fact our definition
of price equilibrium is stronger than that of the equilibrium in ‘Osana [7], so that
we can assure non-wastefulness (Theorem 2) and individual rationality (Theorem
4).

2.3. Mechanism and Nash Equilibrium
We define a mechanism as follows.

Definition 5 (message space). For every i, let

Mi=R" and M=[[M'.

Definition 6 (outcome function). For all m=(m;,, - -, m;,);e M, let
y ,(m) = Z m;
xX{m)= o7 +aw! —aym)— 3 t;,{m)(y{m)— w3,
J

where t;(m)=m; ., ;—m;,; ;.

Thus m;; can be interpreted as an additional demand of j reported i. The
following remark is obvious. ”

Remark 2. This game is balanced, or

Z(xi(m)—wadZ(yi(m)—w,-y)=0
for every me M. | |
A Nash equilibrium is defined as follows.
Definition 7. m*e M is called a Nash equilibrium if for each i,
Ceim™®), N Z; (em ¥, - m¥_ mum* - m ¥,
ymg, - mi mym¥, - mY)

for every m;e M.

The corresponding allocation is said to be a Nash allocation.
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2.4. Theorems and an Example

THEOREM 1 (existence). Assume 2>, is convex and continuous, and

i

(w7, w?)eR, . xR',, for every i. If «>0, then there exists a price equilibrium.
THEOREM 2 (non-wastefulness). Every price allocation is Pareto optimal.

THEOREM 3 (unbiasedness). Suppose =; is convex and continuous for every i.
Then every Pareto optimal allocation (x*, y¥)e R", , x R", can be attained as a
price allocation, provided that the initial endowments are suitably redistributed.

It should not be confused with unbiasedness and full implementability in the
sense of Dasgupta, Hammond and Maskin [2] which, in the context of this model,
implies that the set of price allocations coincides with the set of Pareto optimal
allocations, which is not true in this case.

THEOREM 4 (individual rationality). Every price allocation is individually
rational.

The above theorems show the price equilibrium has the desired properties. But
the implementability of the price equilibrium is not considered. Hence there
remains a kind of “Free Rider Problem” or a problem of incentive compatibility.
The following theorems show the implementability of price equilibria through
Nash strategies.

From now on we assume that there are three or more consumers so that n>3.
The case n=2 is left as an open problem.

THEOREM 5. Every Nash allocation is a price allocation.

THEOREM 6. Every price allocation is a Nash allocation.
COROLLARY. In Theorems 1, 2, 3, and 4, one can replace price equilibrium
(allocation) by Nash equilibrium (allocation).

Before presenting a formal proof, we first consider a simple economy with two
commodities and three persons. We assume >, is represented by a twice
continuously differentiable and quasi-concave utility function «* which is increas-
ing with regard to his consumption (x;, y;). Furthermore we assume interior
maximum.

Pareto Optimality
Maximize u'(x,, y;, ¥, ¥3)
subject to
WXz, Vi» V2o ¥3) =12,
w(x3, Vi, Yoo Y3) =1,

and
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Xg+ X+ x3— 0"+ oy +y, +y; —0*)=0,

where
w*=wi+ w3 +wi
and
@’ =0+ wi+w}.
Let
L=u'(x,, y,, Y25 ¥3)
+ 42 (x;, ¥4, ¥2, ¥3) — 1) + A3 (X3, Y1, Y3, y3) — i)
—Hx X+ X3 — 0 (Y yy Y — @)
So

uy=p, hui=p, Aui=u,
ui+Aui+Aui = pa,
Uy +Apu3 + Agu3 = o,
uz+Aud+ Aul=po,
where u’ = 0u'/ox,, u} =0u'/dy,, ub=0u/dy,, and ul = ou'dy,.
Hence
utfut+uifui+udfud=a,
uzfuy+uiful+uzjui=a,
uzfuytudful+udfui=c. (5)
Price Equilibrium
Maximize w'(x;, ¥y, ¥, ¥3)
subject to
X;+pyi= 07 +pwi —t;(y1 — 0)) — 1;(y, — 03) — t;3(y; —03) .
Let
L=u'(x;, y1, Y2, ¥3)
— A — 0F +p(yi— o)) + 11 (y — 0) + 1,(y, — @) + 15(y; — @3)) .
Therefore at an interior maximum, we must have

ui=14, ui=Ap+1t,), u§'=ltij if i#j,
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so that
ulful=p+t,;, uilul =t if i#j, and (6)
p=uo (by profit maximization) .
Thus
uul +ui vudud=p+t,;+t+t5,=p=a, i=1,2,3.
Hence price equilibrium is Pareto optimal.
Nash Equilibrium
MaX,,,. mz.m, W Cx(m), y1(m), y,(m), y3(m))
=u(wf +aw! —oa(my; +my;+ms)
— (M4 1,1 =My 45 )My + My +myy)
— (M4 2= Mgz 3) My +myy +myy)
— (M4 1,3 =M 45 3)(My3+My3+my3),
My +Myy +Msy, My +Myy + My, My3+Myz +ms;)
Hence the first order conditions for a maximum are
v [Omy= —(a+m;yq ;—my,, Jui+ui=0,  so that
Uil =o+m g =M. (7
And
oufom=—(m;,y j—my;,, Jui+ut=0  if i#j, so that
uj'/ugc=mi+l,j_mi+2,j if i#j. 3)
Thus if we write
LiSMity,j—Miya s L,j=1,2,3,
then
ujful=a+1;
ubful=1; if i#j.
By (7) and (8),
uf fuy+ubfud+ui fud = o+ (my; —my) + (my;—my) +(my;—my) = o,
for all i=1,2,3.

Hence Nash allocation coincides with price allocation.
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3. PROOFS

Proof or Reamrk 1. Obvious.
Proof of Remark 2. Obvious.
Proof of Theorem 1. Let
X;=R. x{(0, - --,0)} x RY x {(0, - - -, 0)}

c R, x R'Mi~D x RIn x Rlnn=0
Y={(x,y1, ©,y)JERXR™ |y, ==y, and x+a) y;=0 for all i},
j

and
o;=(w,0,---,0,w",0,---,0)eX,.
We extend 2z; on X; in the natural way, that is
(xi’o, . .’O,y’O, .. "O)Ei(xi/’os . .’O’y”o, .. ,O)
if and only if
(i M Zi (x5 5) .
Denote

ZuéZd)ﬁv}.
i i

Then 4 is compact since a>0 and X,’s are lower bounded.
Hence there is a convex and compact set K< R x R™ such that

Z:{(u,v)enX,-x Y

projy, AcintK  and  projydcintK.

Let X,;=X,nKand Y=Y~ K.
Then X, and ¥ are convex and compact.
Fix ve N. Let

P,={qeR"™||q| <v}.
For all ge P, let
Ei(q)={(xi909 T ':05 y’O’ o .’O)GYilxi-i_qiyéw?_}-qiwy}

for all i.
Since wi€ R, ,. B; is a continuous correspondence of P, into X,. If we define

E(@)={u¥eX,|u¥ is = -greatest subject to ue B(q)} ,

then by Berge’s maximal principle, ¢; is upper hemi-continuous. Furthermore we
can show that &; is convex- and compact-valued.



36 SHINSUKE NAKAMURA

For every ge P, let
Ug)={ve T|(1,qv=max(1,)T}.

Then ¢ is upper hemi-continuous and convex- and compact-valued. For all ge P,
define

2g)=Y. &dg)~ Ua)~ X .

By Gale-Nikaido’s lemma (see Debreu [3], pp. 82-83), there exist
q'€P, and 2" ez(q")
such that
(1,9)2"=0

for all ge P,.
Since z* € z(¢q"), there exist

uret(g’) and  v'el(q")
such that

2’=Yul—v"' =) d;.
i i

Fixi. Suppose ||g}|— co. Since u} € X,, we may assume {u}} converges to some
u¥e X,. Since u}€&,(q"), it follows that for every ve N,

(L, ¢u;=(1,¢")®»;  and

(1,¢")u=s(1,q")®; implies ujzu.

I~

Namely for every ve N,
@ A/lgill.q" Mg ui =(1/4:N, 4"/ lIq71)é; and
) (1/lq:ll, ¢*/lgiNu=(1/ligill, q"/g;1Ncd; implies u; 2, u.

Since |¢!/llgllll=1, we may assume {q}/llq}l|} converges to some gq¥, and
1/llg71-0.
Let

q*~_—(0, .. ',O,Q,*,O, .. _’O)eRln(i—l)lenlen(n—i) .

By (i)
(i) (0,¢*)u*=(0,9%)a;.
Let ue X, be such that u>>,u¥. By (ii) for sufficiently large v,
/gl ¢*/igiu>/lg:ll, g/ lg:1)ad; -

Hence
0,4%)u=(0,9%)®; .



A CASE OF LINEAR PRODUCTION FUNCTION 37

This means that

(0,g%)u<(0,g%)®;  implies u}x,u.

1 ~1

in

Since |lg#*|| =1, (0f,w’)eR, ; x RY,, and 2z, is continuous, we can show that
0,g*)u=(0, g%)o; implies u*>.u.

T ~1

But this contradicts the fact that >; is monotone.

Hence for every i, ||g;| oo, so that we may assume {gq}} converges to some §;
for every i. On the other hand, since z* belongs to a compact set, we may assume
{z"} converges to some Z. Since z is an upper hemi-continuous correspondence,

zez(q).

Since P,c P, ,, for every ve N,
2 . -
UP,oR"™, and limz’'=7,
v

it follows that
(iv) (1,9)z<0 for every ge R™.
Hence if we write

Z—:(‘iﬁ.}jl’ .."yn)GRXRlnz’

we can show that
(v) x=0 and y,=0 for every i.
By the definition of Z, there exist

u;€l(q9) and  vel(g)
such that

Denote
#;=(x,0,---,0,75,0,---,0) and o=(x,5, ", P .
Then by (v)
(vi) Zii§i+2wf
Vi=y+o’=y for every .

By the standard arguments, we can show that

4; is z;-greatest subject to wuelX; and

(L, us(L, @, and

(1,§)i=max(1,9)Y.

By the definition of Y, we can assert
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Zqij:a forevery j and  (1,9)5=0.

So
(1,9)z= —(1,®5+Z(1,q)(zz,.—ca,.)=0

by monotonicity. Hence by (vi)

so that (x,, - -+, X,,, )€ A.
Define p*=a,

th=q,; if i#j, and tfi=q;—a.
Then (p*,(t}), (%, - - -, X,), ¥) is a price equilibrium, since
g =p*+1}. Q.E.D.

Proof of Theorem 2. Suppose the price allocation (x*, y*) is not Pareto
optimal. Then there is (x, y)€ 4 such that

(i) for each i, (x;, ¥)Z;(x¥, y*) and

(ii) for some i, (x;, y)>;(x¥, y¥).
By (ii) and utility maximization,

(iii) for some i, x;+p*y;>w+p*w!— Zt "(yi— o))

Suppose there is i such that

xi+P*)’i<w?+P*wiy_Zt?}(J’j_w§)-
j
Then there is x/ € R, such that x> x; and
Xi+p*ySof +prol =Y iy — o).
So J
(i, >l ZixF, p*)  and  (x{, y)eB(p*, 1¥),

a contradiction. Hence for every i
Xi+p*yiz of +prol =Y tHy;—w)).
j
By (iii),
Z(xi—wi‘)+P*Z(y,-—w$’)> —Zzt?}(yj—w}’)=0.
i i i

But profit maximization implies p*=a, so that
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Z(xi—wf)+°‘Z()’i—wf)>0,

which contradicts the fact that (x, y)e 4. Q.E.D.
Proof of Theorem 3. Let

D={(x, 1, "> y) ERX R™|

There is (x;, - * -, y,) € R" such that x=2x,~ and

for every i, (x,+x%, yi+y*)=i(x, 7))
and
F={(x,y, ", y)€RXR™|y;=---=y, and

x+aZy,-j=O for every i} .

j

Then D and F are convex and D n F= & since (x*, y*) is Pareto optimal. Hence
there are

(4543 ,q) e Rx R™\{0} and re R
such that
qxx‘*‘qu'yyl'ér for every (x,y;, ",y )€F,

so that

() gx+Xqlysr
where y,=y for all i, and

(i) g x+2qiy;2r
for every (x, y;, -+, y,)€cl D.
By monotonicity ¢*=0.

Since (x*, y*, - - -, y*¥)ecl D n F, it follows that
[ —]

n-times

TxX*+) gl y*=r.
Hence by (i), for all (x, y)e Rx R" with x+a 3 y;=0,
j
qxx*+Zq,~yy*gqxx+Zq,-yy.

so for all (x, y)e Rx R™ with x+(a, - - -, )y =0,
n-times

TxX*+2qly* 2qx+).qly.
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Hence with ¢* =0, we may assume

¢'=1 and Y q'=(a,-"-,0),
i ——
n-times

so that r=0.
Define p*=a,
ti=qh if i#j,
t¥=ql—a, and
(oF, ) =(x}¥,y¥) foreveryiand;j.
Then
Zt}'}=;.qiyj+q,{-—a=0 for every j.
i i#j

Since profit maximization and attainability are obviously satisfied, we will show
utility maximization. Fix i. Note that

(xl*’ y*)EBi(p*a t*) .
Let (x;, y)>; (x#, y*). Then

x %* * o o —_—
(x,.—a),- + E (xj —w3), y*—a’, V¥ -, y— o,
Jj#i — ’

(i—1)-times

yr—o?, - ',y*—wy)ech.

(n—i)-times

Hence

(x;i—oP+ ) (xF—o)+qiy— o)+ Y ¢A(y*—0”)20.

Jj#i : Jj#i
Since (x*, y*) =(w*, w"),
(x;—0))+q¥(y—w’) 20,

which is equivalent to
X+ p* Y2 of +prol—Y i}y, — o).
i
Hence
Xi+p*y<of+p*ol-Y ¥y~ w?)
j

implies
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(xF yZi(x p) -
By continuity and (o¥, ®’)e R, , x R, , it follows that
(x;, y) € B p*, t*)
implies
(¥, y9Zi(x, 9) Q.E.D.

Proof of Theorem 4. Since
(0f 0, - -+, ;) € B{(p*, t*)
for every i, the assertion is obvious. Q.E.D.
Proof of Theorem 5. Let m* be a Nash equilibrium. Define
pr=a, ti=t,;(m*), x¥=x(m*), and y¥=y(m*).

Then attainability and profit maximization are obvious. We will show utility
maximization. Fix i. Note that

(xF, y*) e B(p*,1*).
Let (x;, y) € B(p*, *).
We may assume

X+ p*y=0f+prol =Y tHy,— ).
J

Define

for every j.
Then m;e M’ and

)’j=)’j(mika emE g ,mm* L, mF) for all j,
it follows that
xp=x{mf, - ,mi,mymf o mpE).
Since m* is a Nash equilibrium,
(¥, y*)=(x(m*), ym*) Zx(m¥, - - - ,m¥,mym¥ ., - m}),
ymt, - ml mm g, e m)
=(x;, 7). Q.E.D.
Proof and Theorem 6. Let (p*,t*, x*, y*) be a price allocation. Then

p*=a.
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Fix je{l,---,n} and ke {1, - - -, [}.
Consider a following equation system.

_ls 15 T, ls 1 _—mikjk— —yﬁc ]
1’ _15 0, ’ 0 m21k t:‘jk
= | i

0’ cee 0’ 1, —1 mr’lkjk_ _t:‘—Z,jk__

The above equations have a unique solution (mf,);. Let
mF=(m%)u and m*=(mf); .
Then
Lim*)=tf and yim*)=y¥.
Hence
x(m*)=x¥

by monotonicity.
Let m,e M'. Then

* ... * * * * ... * * .
(xi(ml’ sMi_1, M, My, smn)’y(ml’ ’mi-l’mi’mi+1,

satisfies the budget constraint. Hence

(xi(m*), y(m*)) = (x ¥, y*) Z;

* * * * ... * * .
(xi(mik’ ’mi—l,mi’mi-i-l’ 3mn)’y(m17 smi—15miami+1>

so that m* is a Nash equilibrium.

my))

Q.E.D.

Proof of Corollary. In view of Theorems 2.5 and 2.6, an allocation is a price
allocation if and only if it is a Nash allocation. Hence the assertion is obvious.

Q.E.D.

Keio University
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