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A BALANCED OUTCOME FUNCTION YIELDING PARETO 
  OPTIMAL ALLOCATIONS AT NASH EQUILIBRIUM 

  POINTS IN THE PRESENCE OF EXTERNALITIES: 
   A CASE OF LINEAR PRODUCTION FUNCTION*

Shinsuke NAKAMURA

 Abstract: The purpose of this paper is to construct a balanced outcome function 
which attains Pareto optimal allocations in such a way that nobody has any 
incentives to deceive the government even if there are externalities. With this 
outcome function, we will show (1) there exists a Nash equilibrium, (2) every Nash 
equilibrium is Pareto optimal, (3) every Pareto optimal allocation can be attained 
as a Nash equilibrium if the initial endowments are suit ably redistributed, and (4) 
every Nash equilibrium is individually rational.

                          1. INTRODUCTION 
  In the presence of externalities, a Walras equilibrium is not necessarily Pareto 

optimal and a Pareto optimal allocation is not necessarily sustained by a Walras 
equilibrium. The purpose of this paper is to construct an outcome function which 
attains Pareto optimal allocation in such a way that nobody has any incentives t 
deceive the government even if there are externalities. 

 In an economy with externalities, Aoki [1] discusses the relation between 
competitive equilibria and Pareto optimal allocations. But he restricts himself to 
an economy of very special type in which there is only a single consumer an d 
externalities exist only within each industry. In a more general framework, Osana 

[7] shows that every Pareto optimal allocation is a competitive equilibrium if some 
suitable tax-subsidy system is adopted. But these arguments do not consider 
implementability of the competitive equilibrium. 

 On the other hand, Hurwicz and Schmeidler [4] construct some mechanisms 

guaranteeing the existence of Nash equilibrium and the Pareto optimality of the 
equilibrium for every admissible profile of preferences, when the set of alternatives 
is finite. In a more practical case when the set of alternatives is a convex and 
compact subset of some Euclidean space, Rob [8] obtains necessary and sufficient 
conditions ensuring that every Nash equilibrium is Pareto optimal and derives 
sufficient conditions for the existence of a Nash equilibrium. However they treat a 
very abstract model and the relation between markets and mechanisms is not clear.

 * The author is grateful to Professors Masao Fukuoka
, Michihiro Ohyama, Kunio Kawamata, 

Hiroaki Osana, and Torn Maruyama for helpful comments .
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28 SHINSUKE NAKAMURA

Furthermore they do not consider individual rationality and the implementability 
of Pareto optimal allocations as a Nash equilibrium. But typically, our economy is 
a special case of Rob's. Hence it may appear that our mechanism must satisfy 
Rob's conditions because these are both necessary and sufficient. But in fact our 
mechanism does not satisfy Rob's conditions. This is because Rob treats only 
feasible mechanisms whose ranges are included by the attainable set and our 
mechanism is not necessarily feasible so that outcomes which are not in equilibria 
may not be in the attainable set. 

 Our approach is divided into two parts. First, we will define a price system with 
some tax-subsidy system which can attain a Pareto optimal allocation but in which 
economic agents may have incentives to lie. We shall show that the price system 
has the following four properties: Under standard assumptions, 

 (1) Existence: There exists an equilibrium. 
 (2) Non-wastefulness: Every equilibrium is Pareto optimal. 

 (3) Unbiasedness: Every Pareto optimal allocation can be attained as an 
equilibrium provided that the initial endowments are suit ably redistributed. 

 (4) Individual Rationality: For all consumers, every equilibrium is at least as 
good as the initial endowment. 

 Secondly we define a mechanism or a government which attains the above price 
equilibria through Nash strategies. A government is typically the ordered set of 
message spaces and an outcome function into a commodity allocation space. 
Namely we regard a government as a system which aggregates the messages of 
economic agents and determines an allocation. Consumers know the outcome 
function and report their optimal messages given the messages of others. If the 
allocation attained by the Nash equilibrium coincides with the allocation attained 
by the price system, then no consumer has any incentives to alter his message and 
the price system is incentive compatible. Construction of these governments is the 
main purpose of this paper. 

 In our context, we assume that there is one firm and externalities occur only 
among consumer's preferences. But in the field of welfare economics, externalities 
among firms and between firms and consumers are important. Hence generali-
zation to this direction is desirable. Furthermore this model does not cover the 

pure exchange economy. For this issue see Nakamura [6].

2. EXTERNALITIES AMONG CONSUMERS' PREFERENCES

 In the presence of externalities, the basic theorems of welfare economics do not 
hold. It is thought that some tax-subsidy system can remedy such failures. But it is 
not clear what tax-subsidy system is optimal. In this section we consider an 
optimal tax-subsidy system which solves the problem and discuss the implementa-
bility of the system. For simplicity we assume externalities exist only among 
consumers' preferences. For more general cases, see Osana [7].
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2.1. Economy 
 We consider an economy with n consumers, one firm, and 1+ 1 commodities. A 

commodity bundle is denoted by (x, y), where  x  E  R  + (numeraire) and y e R i+ 

(others). Our attention is chiefly directed to consumers and we assume, for 
simplicity, that the production function is linear, and may be expressed as 

x+xy=0, where ccR+\{0} .(1) 

 The i-th consumer's preference relation is denoted by }i which is assumed to be 
a complete monotone preordering on R+ x R+ x RI+n-' where monotonicity 
means 

(xi, yr, Y-i)}i (xi, Yr, y-l) if (xi, Yr)> (xi, Yr) •(2) 

 His initial endowment is given by (w , con e R+ x R+. Note that we assume 
implicitly that the consumption set is R+ x R+ x R`+"-1). 

 The attainable set for this economy is

A= (x, Y)ER+ x R+ E(xi—wfl+aE(Yr—(4)=4. (3) 
Pareto optimality and individual rationality are defined as follows. 

Definition 1. (x*, y*) E A is Pareto optimal if there is no (x , y) e A such that 
(i) for all i, (xi, y) i (x *, y*) and 
(il) for some i, (xi, y)>- i (x *, y*). 

Definition 2. (x, y) E A is individually rational if for all i, 

                     (Xi, WI, ... , Wiz)

2.2. Price Equilibrium 
 In this section we define a price equilibrium. First we define a transfer system. 

 Fix two distinct consumers i and j (i j). Let ti; be a transfer rate from i to j . 
Then if consumer j consumes y; unit of commodity y, then consumer i pays 

ti;( y; — w; ) 

for j's consumption. 
 Similarly, consumer j pays 

tji(Yr — co ) 

for i's consumption of commodity y of yr unit. Thus i's net transfer to j is 

ti;(y;— (DO -t;i(Yr-w ) 

Hence the sum of transfers paid by i is equal to

E (ti.xy;- (DP -t;i(Yr—wt))= Eti!{Yj—(D.i)+ - E tji (Yr—wt)• 
j#ij#ij*i
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Thus if we write  —  El  #  i  tit as tit, then the total transfer from i can be written as 

Etioi-wifi, 

i which is very simple. 

 Formally, the transfer system is defined as follows. 

Definition 3. t E Rt"z is called a transfer system if for every j, 

E tit = - tit • 
i*i 

 If i 0 j, to is a transfer rate from i to j, and tit can be interpreted as a tax rate for i. 
Hence the condition means that j's subsidy rate (= — tit) is equal to the sum of 
transfer rates to j. 

 The following remark is obvious. 

 Remark 1. t e R' 2 is a transfer system if and only if 

EEtii(yr— cop =0 
i i 

for every y E R + . 
tit(yr — wp is an amount of transfer from consumer i to consumer j. Hence this 

remark means that total transfer is always equal to zero so that the budget 

constraint of the government is always satisfied. 

  Given a price p E R+\{0} and a transfer system t E Rin2, the i-th consumer's 
budget set is defined by 

      Bi(P, t) _(xi, y) E R+ x R'_' xi + Pyi _< 0 + poor - E t4 yr — cop • (4) 

i 

  The budget set has a straightforward interpretation. We can now define a price 

equilibrium. 

  Definition 4. (p*, t*, x*, y*) e R+ x RI n2 x R+ x R'n is called a price equilib-
rium if 

  (i) p* E Rt \{0}, and t* is a transfer system, 
  (il) for every i, 

(x t, y*) E Bi(p*, t*) and 

(x t, y*)> i(xi, y) for every (xi, y) E Bi(p*, t*), 

  (iii) for all (x, y) with x+ ay= 0, 

>(x* — col`)+ p* Dy* — con> x+p*y , 

il



           A CASE OF LINEAR PRODUCTION FUNCTION 31 

 (iv) (x*, y*) E A. 
The corresponding allocation (x*, y*) is said to be a price allocation. 

 Conditions (i), (iii), and (iv) are obvious. (il) means that consumers maximize 
their utilities given prices and transfers. For y, condition (il) means that for each i, 
y* is optimal for all consumers under the transfer system t*. 

 It should be noted that price equilibrium is different from the equilibrium 
introduced by Osana [7] in which y * is optimal given not only prices and transfers 
but also ethers' consumption (y *, • • • , Y * 1, Y * 1, • • • , Yn )• In fact our definition 
of price equilibrium is stronger than that of the equilibrium in 'Osana [7], so that 
we can assure non-wastefulness (Theorem 2) and individual rationality (Theorem 
4). 

2.3. Mechanism and Nash Equilibrium 
 We define a mechanism as follows. 

 Definition 5 (message space). For every i, let 

Mi=Rt„ and M=fMi. 

 Definition 6 (outcome function). For all m = (mil, • • • , mi„)i E M, let 

Y,02)= mij 

xi(m) = cot + awT - al(m)— E t. (m)(y .(m) — col) , 

where tij(m)=mi+1,—mi+2,j• 
 Thus mi j can be interpreted as an additional demand of j reported i. The 

following remark is obvious. 

 Remark 2. This game is balanced, or 

E (xi(m) — (4)-F E (yr(m) — con  = 0 

for every m e M. 

 A Nash equilibrium is defined as follows . 

 Definition 7. m* e M is called a Nash equilibrium if for each i , 

(xi(m*),Y(m*))}i(xi(ml*, • •,m*-1,mi,m*+1, • • .,m„*), 

y(ml, • • •,m* 1,mi,in +1, ...~inn)) 

for every mi e Mi. 

The corresponding allocation is said to be a Nash allocation .
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2.4. Theorems and an Example 

 THEOREM 1 (existence). Assume  ~i is convex and continuous, and 

(co lx, w ly) E R + + x R i + + for every i. If a > 0, then there exists a price equilibrium. 

 THEOREM 2 (non-wastefulness). Every price allocation is Pareto optimal. 

 THEOREM 3 (unbiasedness). Suppose >-i is convex and continuous for every i. 
Then every Pareto optimal allocation (x*, y*) E 1?"_,  + x 121_7  + can be attained as a 

price allocation, provided that the initial endowments are suit ably redistributed. 

 It should not be confused with unbiasedness and full implementability in the 
sense of Dasgupta, Hammond and Maskin [2] which, in the context of this model, 
implies that the set of price allocations coincides with the set of Pareto optimal 
allocations, which is not true in this case. 

 THEOREM 4 (individual rationality). Every price allocation is individually 
rational. 

 The above theorems show the price equilibrium has the desired properties. But 
the implementability of the price equilibrium is not considered. Hence there 
remains a kind of "Free Rider Problem" or a problem of incentive compatibility. 
The following theorems show the implementability of price equilibria through 
Nash strategies. 

  From now on we assume that there are three or more consumers so that n� 3. 
The case n=2  is left as an open problem. 

 THEOREM 5. Every Nash allocation is a price allocation. 

  THEOREM 6. Every price allocation is a Nash allocation. 
  COROLLARY. In Theorems 1, 2, 3, and 4, one can replace price equilibrium 

(allocation) by Nash equilibrium (allocation). 

 Before presenting a formal proof, we first consider a simple economy with two 
commodities and three persons. We assume }i is represented by a twice 
continuously differentiable and quasi-concave utility function ui which is increas-
ing with regard to his consumption (xi, yr). Furthermore we assume interior 
maximum. 

Pareto Optimality 

                      Maximize ul(xi, yr, y2, y3) 

subject to 

                     ~(xyyy)=2                               2,i,2,3u , 

u3(x3, yr, y2, y3) = u3 , 

and



where

and

Let

So

where  ux 

Hence

Price Equilibrium 

                      Maximize ui(xi, yr, y2, y3) 

subject to 

x Let 

L - u`(xi, Yr, Y2, Y3) 

—2()Ci-w~ +p(Yr—wp+tit(Yr—wt)+t i2(Y2—(or)+ti3(Y3—w3)) 

Therefore at an interior maximum, we must have 

                      u =/~(p+tit) , u =At.ijif i#j ,

    A CASE OF LINEAR PRODUCTION FUNCTION 

xi +x2 +x3 —wx+a(Yr +Y2 +Y3 —wy)=0 , 

wx=cwt+(.v+w 

wy=co +w +c03 

L - u1(xi, Yr,Y2,Y3) 

+ )2(u2(x2, Yr, Y2, y3) — 172) + )3(u3(x3, Yr, Y2, y3) — u3) 
— µ(xi +x2 +x3 — cox + a(Yr +Y2 +Y3 —0Y)) 

uz=µ, 22u.x=µ, )susx=µ, 

ui+.l2ui+.lsui= pot , 

u2+.l2us+Asus=µa , 

u3+/l2us+Asus=pot , 

aui/axi, u i = auil ay1, u2 = auil ay2, and u3 = auiays. 

ui/ux+ui/ux+ui/ux=a , 

u2/ux+u2/u!+u2/u3x=a , 

u3/uX+u3/u!+u3/u3x=a . 

brium 

             Maximize ui(xi, yr, y2, y3)

33

(5)
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so that 

 z4/uX=p+tit,uj/uX=ti; if i#j, 

p= a (by profit maximization) . 
Thus 

u~/uX+u2/u2x+4usx=p+tu+t2i+t3i=p=a , 

Hence price equilibrium is Pareto optimal. 

Nash Equilibrium 

Maxm~i,mtz,mt3 ui(xi(m), yr(m), y2(m), y3(m)) 

ui(w +xw —a(m1i+m2i+m3i) 

—(mi+1,1 —mi+2,1)(mil +m21 +m31) 

-(mi+1 ,2 -mi+2,2)(m12 +m22 +m32) 
- (mi+1, 3 —ml+2,3)(m13 +m23 +m33), 

mil +m21 +m31, m12 +m22 +m32, m13 +m23 +m33) 

Hence the first order conditions for a maximum are 

           aui/amir= —(a+mi+1 ,i—mi+2,i)u.tx+u=0 , 

ui/ux=a+mi+1 ,i—mi+2,i • 

And 

aui/amt;=—(mi+1,i—mi+2,;)uz+u~=0 if i0j, 

     /i      u;lux=mi+1,;—mi+2,j if Z#j. 
Thus if we write 

ti;mi+1 ,;—mi+2,; , i,j= 1,2,3, 
then 

ui/ux = a + tit 

uji/uX=ti; if i0j 

 By (7) and (8), 

u; /ux+u?/ux 

for all i=1,2,3. 

Hence Nash allocation coincides with price allocation.

and

i=1,2,3.

so that

so that

(mli—m21)=a ,

(6)

(7)

(8)
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                              3. PROOFS 

  Proof or Reamrk 1. Obvious. 

  Proof of Remark 2. Obvious. 

 Proof of Theorem 1. Let 

 Xi=R+x{(0,  •••,0)}xR+x{(0,  •••,0)} 

cR x Rt"(`-1) x Rt" x Rln(n-i) 

     Y=(x,yr,•••,y")ERxRi"2 yr=•••=y n and x+aEyii=0 for all i , 

i and 

ciii=(wisO, • • •,O,wY,0, ...,0)EXi . 

We extend ›-i on Xi in the natural way , that is 

(xi, 0, ...,0,y,0, ...,0)>-i(xisO, ...,0,y',0, ...,0) 

if and only if 

(xi, Y),-_,i (xi, y') 

Denote 

A= (u,v)El Xi x Y Elli_ Edit+v . 
il i 

Then A is compact since a >0 and Xi's are lower bounded. 
 Hence there is a convex and compact set Kc R x R'"2 such that 

projx, A c int K and proj y A c int K. 

 Let Xi = Xi n K and Y= Y n K. 
Then Xi and V are convex and compact. 

 Fix v E N. Let 

                   Pv={geRi"21 Ilgll <v} . 

For all q E Pv let 

Bi(q) _ {(xi, 0, ... , 0, y, O, ... , 0) E Xi I xi + gr y c 04 + qiw''} 

for all i. 
 Since w4 e R++. Bi is a continuous correspondence of Pv into Xi. If we define 

i(q) _ fur E Xi I Lit  is }i-greatest subject to u E Bi(q)} , 

then by Beige's maximal principle, bl is upper hemi-continuous. Furthermore we 
can show that bl is convex- and compact-valued.
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 For every  q  E P" let 

C(q)={ve 1'1(1, q)v = max(1, q)C' 1 . 

Then c is upper hemi-continuous and convex- and compact-valued. For all q E P" 
define 

z(q) = El(q) — C(q) — E, of . 

il By Gale-Nikaido's lemma (see Debreu [3], pp. 82-83), there exist 

q" E P" and z" E z(q") 

such that 

(1,q)z"<0 

for all q E P". 
 Since z" e z(q"), there exist 

u E i(qv) and v" E i(q") 

such that 

zv=>ui —v"-Ecbi . 

il 

 Fix i. Suppose II q f II ---* co . Since u' E Xi, we may assume {u;'} converges to some 
u * E Xi. Since u i e i(q"), it follows that for every v e N, 

(1, q")ui <(1, q")wt and 

(1, q")u <(1, q")wt implies u` }i u . 

Namely for every v E N, 

 (i) (1/IlqnI, q"/Ilgl II)u<<(1/IlqnI, q"/Ire II)wt and 
(il) (1/Ilqii II, q"/Ire II)u--(1/IlgfI, q"/Ire II)thi implies ui }tu. 

Since it q / II q f mil =1, we may assume {qt/liq;'11} converges to some q *, and 
1/Ilgf II --0• 

 Let 

            q* _ (0, ... , 0, qt ,  0, • • • , 0) E Rin(i —1) x RI" X Rin(n — i) . 

By (i) 

 (iii) (0, q*)ui* <(0, q*)(iii. 
Let u e Xi be such that u>- tu*. By (il) for sufficiently large v, 

(1/IIqii II, q"/llgfI)u>(1/IIgfI, q"/IlgfI)wt • 

Hence 

                        (0, q*)u � (0, q*)&i
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This means that

 (0,  q*)u  <  (0,  q*)CVi implies u * }~ u . 

Since I I q * I I =1, (04 , co) e R„ + x R + ±, and >•i is continuous, we can show that 

(0, q*)u < (0, q*)hi implies u * } i u 

But this contradicts the fact that } i is monotone. 
 Hence for every i, co, so that we may assume {q; } converges to some qt 

for every i. On the other hand, since z" belongs to a compact set, we may assume 

{z"} converges to some z. Since z is an upper hemi-continuous correspondence, 

z E z(q) . 

Since P" c P" + 1 for every v E N, 

                  PvDRLnz , and limz"=z, 

it follows that 
 (iv) (1, Of < 0 for every q E Rln2. 

Hence if we write 

                       z=(x,91, ..., 7n) E R x RLn2, 

we can show that 

 (v) z<_0 and pi= 0 for every i. 
By the definition of z, there exist 

ui e ,(q) and 15e r(q) 

such that

Denote

            ui = lzi, 0, • • • 

Then by (v) 

 (vi) Dxi <x+DO

0, yr, 0, ... , 0) and 13=0Z,  Y,

for every i.

By the standard arguments, we can show that 

ui is >-l-greatest  subject to 

(1, q)u <(1, 4)di , and 

(1, 4)15=max(1, q)Y. 

By the definition of Y, we can assert

uCXi and
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 E  qt;  =  a for every j and (1, (1)r) = 0 . 

So 

(1,q)Z= —(1,4)v+E(1,4)(ui—wt)=0 

by monotonicity. Hence by (vi) 

so that ()Ci, • • • , X y) e A. 
  Define p* =a, 

t*=qij ifiOj , and t*=q;;-a. 

Then (p*, (t *), (zl, • • • , x„), y) is a price equilibrium, since 

q;;=p*+t* • 

  Proof of Theorem 2. Suppose the price allocation (x*, y*) is not 
optimal. Then there is (x, y) e A such that 

 (i) for each i, (xi, y)›. i (x *, y*) and 
  (il) for some i, (xi, y)>-1(x, y*). 

By (il) and utility maximization, 
  (iii) for some i, xi+p*yr>co' +p*cor -Et*(y—ca;)• 

  Suppose there is i such that 

xi+P*Yr<wt +p*(or—Et*(yj—wD. 

Then there is xi e R+ such that x i > xi and 

x+p*yr— w +p*04 —Et *{Yj—a)P. 

So 

(xi, Y)>_ (xi, y)}i (x*, y*) and (x;, Y) E Bi(p*, t*) , 

a contradiction. Hence for every i 

xi+p*Yiw4 +p*w —Et*{y;— cop . 

By (iii), 

E(xi—cot)+p*E(Yr—col)> —EEt*(y;—w =0. 

  But profit maximization implies p* =a, so that

Q.E.D. 

Pareto
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 E(xi—coo+aE(Yr—wt)>0, 

which contradicts the fact that (x, y) e A.Q.E.I. 

 Proof of Theorem 3. Let 

D={(x, • • •,YOERxRin2l 

     There is (xi, • • , yn) e R" such that x = > xi and 

     for every i, (xi + x *, yr + y*) >- i (x *, y*)} 

and 

F= {(x,•'• , yn) E R x Rt"2 IY1= •••=yn and 

     x + a E yr; = 0 for every i} . 

 Then D and F are convex and D n F= 0 since (x*, y*) is Pareto optimal. Hence 
there are 

(qX; q i, ' ' • , qn) E R x RI"2\{0} and r E R 

such that 

qxx + E q r yr < r for every (x, v.,i 9 • ' • , Yn) E F 

so that 

 (i) qxx+>gYY<r 

where yr = y for all i, and 

 (il) qxx+>gYYi>r 

for every (x, yr, • • • , yn) E cl D. 
By monotonicity qX>_0. 

 Since (x*, y*, • • • , y*) E cl D n F, it follows that 
      ~ r 

                      n-times 

qXx*+>qYY*=r. 

Hence by (i), for all (x, y) E R x RI" with x + a > y; = 0, 

qxx*+>qY Y*>qxx+EqY Y 

so for all (x, y) E R x k" with x + (a, • , a)y = 0, 
n-times 

qxx*+EqY Y*>qxx+>qY Y 

      il
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Hence with  qx  > 0, we may assume 

                   qx              =1 andqiy                                       = (a, • • • , a) , 
i,___...,,_„ 
                                                                      n-times 

so that r = 0. 

  Define p* =a, 

t*=q if i0j , 

t*=q —a,and 

(w, cop = (x r, y *) for every i and j . 

Then 

Et*= E q b+ el —a=0 for every j . 
            i i#j 

 Since profit maximization and attainability are obviously satisfied 
utility maximization. Fix i. Note that 

(4, y*) e Bi(p*, t*) . 

 Let (xi, y) >- i (x *, y*). Then 

(xi-w+(x7—w7), y*—wy, ...,y*—coy, y—wy, 
(i - 1)-times 

y*—wy, ..., y*—wy eclD. 

r (n — i)-times 

Hence 

(xi - of) +  E (x*— (0 +qAy—w')+ E q;(y*—wy)>_0 
j*ij*i 

Since (x*, y*) = (wx, WY), 

(xi —wt)+qy(y—wy)?0 , 

which is equivalent to 

                xi+p*yr>=(of +p*(or—Et*{yj—w4). 

j Hence 

xi+P*Yr<(of +p*co —Et*{yj-COD 

j implies

we wt 11 show
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 (x  *,  Y*)  i  (xi,  Y) 

By continuity and (w', wY) E R+ + x R'1! +, it follows that 

                      (xi, y) e Bi(p*, t*) 

implies 

(4, Y) 

 Proof of Theorem 4. Since 

x. Y • Y 

for every i, the assertion is obvious. 

 Proof of Theorem 5. Let m* be a Nash equilibrium. Define 

p* = a , t * = tit(m*) , x * = xi(m*) , and y * = yr(m*) . 

Then attainability and profit maximization are obvious. We will show 
maximization. Fix i. Note that 

(x *, y*) e Bi(p*, t*) . 

Let (xi, y) E Bi(p*, t*). 
 We may assume 

xi+p*yr=wt +p* — t*(y—cop . 

Define 

mkJ 
k*i 

for every j. 
 Then mi e Mi and 

Y j=Y,(m*, ...,m* lgmi,m*i+11 ...,inn*) for all j, 

it follows that 

xi=xi(mi, ..•,m?k 1,mi,mt+1, ...,inn)• 

Since m* is a Nash equilibrium, 

(x*,Y*)=(xi(m*), .. ...,inn), 

Amt, ,mi—l,mi,mi+1, ',inn)) 

= (Xi, Y) 

 Proof and Theorem 6. Let (p*, t*, x*, y*) be a price allocation. Then 

p*=a •

41

Q.E.D. 

Q.E.D. 

utility

Q.E.D.
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 Fix  jell,  •••,n}  andke{1, 
Consider a following equation

The

1, 1,  -• • ,

1, — 1, 0,

0, .. • , 0,

above equations have

m*=

• • ,1}. 
system.

1,

1,

a unique

m tik jk

1

0

 m  i;k 

m2jk

—lJLmnkJ 

solution (m Kik)i. 

 and m* =

Let

Yjk 

tok 

tlJk

to-2 ,jk

 (m  *)i

Then

 ti;(m*)=t * Il and y,(m*) =y,*

Hence

xi(m* )=x*

by monotonicity. 

 Let mi E Mi. Then

(xi(m*, ...,m* 1,mt,m* i, 

satisfies the budget constraint.

(xi(m*), y(m*)) =(x*, y*) ,--t

xi(ml, •,mt-l,

so that m*

mi, in 11+1, 

.. • ,m:), Am

Hence

... , m„*), y(m

is a Nash equilibrium.

*
'...,m* t,mt,mi*+1,

* ..* 
1,••,mi-l,

 Proof of Corollary. In view of Theorems 2.5 
allocation if and only if it is a Nash allocation.

mi,m* 1,

.. ,m^*))

.. ,inn))

and 2.6, an allocation 

Hence the assertion is

Q.E.D.

is a price 
obvious. 

  Q.E.D.

Keio University
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