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Notes

ON HICKS’ COMPOSITE COMMODITY THEOREM:
A SUPPLEMENTARY NOTE

Hiroaki OsANA

In a previous paper (Osana (1982)), it was shown that the order property, non-
satiation, local non-satiation, weak monotonicity, monotonicity, strong mono-
tonicity, weak convexity, convexity, strong convexity, upper semi-continuity, and
lower semi-continuity of the preference relation defined on the original commodity
space carry over to the preference relation defined on the new commodity space
involving a composite commodity. This constitutes an exact formulation of Hicks’
Composite Commodity Theorem. The present note supplements the results by
showing that some differential properties of the original preference relation are
inherited by the induced preference relation.

We shall use the same notation as in the previous paper. Let H be a non-empty
finite set, representing the set of commodities. The consumption set X is a non-
empty closed subset of R¥ that is bounded from below. As we shall deal with the
case of differentiable and hence continuous preference relation, we shall assume, in
particular, that X= R¥ (cf. Osana (1982, Theorem 11)). The preference relation
Q 1s a reflexive total transitive binary relation on X. As Q is assumed to be
continuous, there is a continuous utility function u on X representing Q. Let I be a
non-empty proper subset of H and define J= H—I. Given a price vector pin R/, ,
the set of possible pairs of consumptions of the commodities in J and expenditures
on the commodities in 7 is defined by

X(p)={(x,c)e R’ x R: (x, y)e X for some ye R' such that p-y=c} .

Since X=RY, it follows that X(p)=R’x R, for every peR’ ,. For each
“pe R’ | and each (x,c)e X(p), let

Y(p,x,c)={yeR" (x,y)eX & p-y=c}.

Actually, Y(p,x,c) is independent of x under our assumption, so that we shall
write Y(p,c)=Y(p, x,c). For each (p,x,c)e R, , x RIx R, let

h(p,x,c)={yeY(p,c): u(x, y) Zu(x, y’) for every y’e Y(p,c)} ,
v(p, x,c)=u(x, h(p, x,c)),
vP(x,c)=v(p, x,c) .
For every pe R’, ., the preference relation Q(p) on X{(p) can be expressed as

2(p)={((x,¢),(x", ¢ €(R{x R, )% v7(x,c) Z0P(x", ¢')} .
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88 HIROAKI OSANA

That is, v” is a utility function on X{(p) representing Q(p). Our aim in the present
note is to demonstrate that some differential properties of u carry over to v?. In
what follows, we shall assume that

(1) u is twice continuously differentiable on R _,

(2) u,(z)>0 for every ze R¥ ,, where u,(2) is the gradient at z of u,

(3) a"u,,(z)a<O forevery ze R¥ , and every ae R¥ — {0} such that u,T(z)a=0,
where u_,(z) is the Hessian matrix at z of u,

(4) u is strictly quasi-concave on RY ie., u((1—1z+1z")>u(z’) for every
t€]0,1] and every z,z’ € R such that u(z)2u(z’) & z#z'.

LEMMA 1. 4 is a function of R'. , x R), x R, into R', which is continuous on
I J
R, ., XxR{xXR,,.

Proof. Let(p,x,c)eR’ . x R%.x R,. Since Y(p, c) is non-empty and compact
(cf. Osana (1982, Lemma 1)) and u is continuous on R¥, it follows that A(p, x, ¢)
is non-empty. Furthermore, A(p, x,c) is a singleton, since u is strictly quasi-
concave on RH. For each (p,c)eR% . xR, ., let B(p,c)={yeR’: p-y<c}. Let
(p,c)eR’. , xR, ,. Then B(p,c)c{yeR". —a<y<a)} for some ac R. ,. Write
K={yeR" —a<y<a}. Let b=min{q;p;: iel} and P={(p’,c’)eR’ , xR, ,:
¢’ <3(b+c) & p;/>(b+c)/2a; for every ieI}. Then P is an open neighborhood in
R'x Rof (p,c). Forevery (p’,c’)e P, B(p’,c’)= K<=cl K. Since Bis closed at (p, ¢),
this implies that B is upper hemi-continuous at (p, ¢) (cf. Hildenbrand (1974, B.I1I,
Proposition 2)). Let G be an open subset of R! such that Gn B(p, ¢) # . There is
yeGnB(p,c). If y=0 they yeGnB(p’,c’) for every (p’,c)eR%, xR, ..
Suppose y#0. Since G is 6pen, there is t€]0,1[ such that tyeG. Hence
p-ty<p-y<cso that there is an open neighborhood P’ in R x R of (p, c) such that
tye B(p’,c’) for every (p’,c¢’)e P’. Thatis, GnB(p’,c’)# & for every (p’,c’)e P".
Thus B is lower hemicontinuous at (p,c) and hence continuous at (p,c). Let
xeR’.. Since h(p, x,c)={yeB(p,c): u(x, y)Zu(x, y’) for every y’ € B(p,c)} and u
is continuous at (x, y), it follows that 4 is upper hemi-continuous at (p, x, ¢) (cf.
Hildenbrand (1974, B.I11, Theorem 3)). Since 4 is single-valued, this implies that 4
is continuous at (p, x, ¢). That is, 4 is continuous on R’ , x R,x R, ,.

Let D={(p,x,c)eR’, . xR’ . xR, ,: h(p,x,c)eR’, .}. Then D is open in
R'x R’ x R, since h is continuous on R, , xR’ . xR, ,.

LEMMA 2. There is a unique function u of D into R,, such tha
u,(x, h(p, x, ¢)) = u(p, x, c)p for every (p,x,c)€D.

Proof. Let (p,x,c)eD. Foreach ye R, _, let f(y)=u(x, y) and g(y)=c—p-y.
Then f and g are continuously differentiable on R% .. Note that g(h(p, x,c))=0
and g,(h(p, x, c))= —p so that rank g, (h(p, x, c))= 1. Since f(A(p, x,c))=f(y) for
every ye R’ , such that g(»)=0, there is a unique real number u(p, x, ¢) such that
f(h(p, x,¢))=u(p,x,c)p. By assumption, f(h(p,x,c))=u,x,h(p,x,c))>0 and
p >0 so that u(p, x,c)>0.
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LEMMA 3. h and u are continuously differentiable on D.

Proof. Let Z=R' xR,,xD. Then Z is an open subset of
R'xRxR'xR'xR. Let (p*x*c¥)eD. Let (y* m*)=(h(p* x*,c*),
w(p*, x*, c*)). Then (y*, m*, p* x* c¢*)e Z. For each (y,m, p, x,c)eZ, let

G(y,m, p,x, )= [:ixp .yy)_ mpJ |

Then
det [Gy(y*s m*9 p*’ X*9 C*)’ Gm(y*’ m*, P*, X*a C*)]

uyy(x*, y*) uy(x*’ y*)
uyT(x*, y¥) 0

so that, by the implicit function theorem, there is an open nieghborhood U in
R'x R? x R of (p*, x*, c*), a continuously differentiable function g of U into R’
and a continuously differentiable function 6 of U into R such that g(p*, x*, c*)=
y* & O(p* x* c*)=m* & (g(p,x,c), O(p,x,c),p,x,c)eZ & G(g(p,x,c).
0(p,x,c),p,x,c)=0 for every (p,x,c)eU. Hence, for every (p,x,c)elU.
g(p,x,c)e R L & O(p,x,c)e R, . & u,(x,g(p,x,c))=0(p,x,c)p & c=p-g(p, x, ).
For each xe R’ and each ye R’ , let f*(y)=u(x, y). Then, for every xe R’ , f*is
quasi-concave on R’ . For every (p,x,c)eU, £ g(p, x, ) =uyx,g(p, x,c))=
0(p, x, c)p so that g(p, x, c)e h(p, x, ¢) (cf. Arrow and Enthoven (1961, Theorem 3))
and hence, by Lemma 1, A(p, x, ¢)=g(p, x, c) € R, .. Without loss of generality, we
may assume that UcRY , x R%. . xR, ,. Then UcD so that, by Lemma 2,
u(p, x,c)=0(p, x, c) for every (p,x,c)eU. Thus h and u are continuously differ-
entiable at (p*, x*, c*).

#0

:(m*)‘z

LEMMA 4. v is twice continuously differentiable on D.

Proof. Note that >, ph'(p, x,c)=c for every (p,x,c)eD. Let (p,x,c)eD.
Then p"h(p,x,c)=—h"(p,x,¢c) & pTh(p.x,c)=0 & pTh(p,x,c)=1 so that
0,7(p. %, €)= u, (%, h(p, %, Ny (p, X, )= (p, X, Ap"hy(p, x, &)= — u(p, x, W T(p.
x, ¢) & v.7(p, x, )=u,"(x, h(p, x, ) +u,"(x, h(p, x, Nh(p, x, )=uT(x, h(p, x.
N +u(p, x, pTh(p, x, )=u,"(x, h(p, x, ©)) & vp, x, )=u,"(x, h(p, x, )hp.
x, o)=u(p, x, )pTh(p, x, c)=u(p, x, ¢). Since h and u are continuously
differentiable at (p, x,¢) and u, is continuously differentiable at (x, h(p, x, c)), it
follows that v,, v,, and v, are continuously differentiable at (p, x, ¢). Thus v is twice
continuously differentiable at (p, x, ¢).

Let P*={peR" (p,x,c)e D for some (x,c)e R’ x R}. For each pe P*, let
D(p)={(x,c)e R xR: (p,x,c)e D}.

THEOREM. For every pe P*, (1) v? is twice continuously differentiable on D(p),
(2) v,7(z)>0 for every ze D(p), and (3) a"v?(z)a<O0 for every ze D(p) and every
ae R’ x R—{0} such that v.,P(z)-a=0.
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Proof. (1) follows from Lemma 4 and (2) follows from the proof of Lemma 4.
(3) Take any (x,c)e R/ x R—{0} such that (v, v,)-(x,c)=0. Then

Voo Ve |l X

el ]

=xTu x+xTu hx+ep x+xTuhe+cpe

=xTu x+xTu (hox +ho)+pT(hx+hou x+cpc

=xTu x+x"u (hox+he)+hx+he) pux+cpuc

=xTu x+xTu  (hx+he)+(hx+he) (u, +u h)x+cpc

=xTux +x"ug (hox +ho)+ (hox +he)uy, x + (hox+ho)Tu, hox
+(hx+ho)pupT(hx+h.c)

=xTu x4+ xTu (hox+ho)+ (hex +he)Tuyx + (hox+he)u, hox
+(hx+he)Tuyh pT(hx+hc)

=xTu x+xTu (hx+he)+hx+he) u,x
+(hx+he)Tuy(hx+h.pThx+hpThc)

=xTug x+xTug (hx+ho)+ (hx+he) u,x+(hx+ho)Tu,(hox+hec)

u, u, |[x
=[xT(hx+hc)"] [u:x uyj[hxx N hcc} <0,
the last inequality being due to Assumption (3) and the fact that
(g ) (X, hx+he)=ux+u, (hx+he)=v"x+up (hx+ho)
=v T x+pc=v."x+vec=(v,0) (x,)=0.

The theorem asserts that, if corner solutions are ruled out in the choice of
commodity bundles in the commodity subspace forming a composite commodity,
then twice continuous differentiability, positive marginal utilities, and strong
quasi-concavity are preserved for the new utility function defined in the new
commodity space involving a composite commodity.

Keio University
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