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Notes

ON HICKS' COMPOSITE COMMODITY  THEOREM: 

        A SUPPLEMENTARY NOTE

Hiroaki OSANA

 In a previous paper (Osana (1982)), it was shown that the order property, non-
satiation, local non-satiation, weak monotonicity, monotonicity, strong mono-
tonicity, weak convexity, convexity, strong convexity, upper semi-continuity, and 
lower semi-continuity of the preference relation defined on the original commodity 
space carry over to the preference relation defined on the new commodity space 
involving a composite commodity. This constitutes an exact formulation of Hicks' 
Composite Commodity Theorem. The present note supplements the results by 
showing that some differential properties of the original preference relation are 
inherited by the induced preference relation. 

 We shall use the same notation as in the previous paper. Let H be a non-empty 
finite set, representing the set of commodities. The consumption set X is a non-
empty closed subset of RH that is bounded from below. As we shall deal with the 
case of differentiable and hence continuous preference relation, we shall assume, in 
particular, that X = R H (cf. Osana (1982, Theorem 11)). The preference relation 
Q is a reflexive total transitive binary relation on X. As Q is assumed to be 
continuous, there is a continuous utility function u on X representing Q. Let I be a 
non-empty proper subset of H and define J= H-l. Given a price vector p in RI, + 
the set of possible pairs of consumptions of the commodities in J and expenditures 
on the commodities in I is defined by 

X(p) = {(x, c) e R' x R: (x, y) E X for some y E RI such that p • y =cl . 

Since X= R H, it follows that X(p) = R +x R + for every p e R + +. For each 
p e RI„  and each (x, c) e X(p), let 

Y(p,x,c)={yeRI: (x, y)EX & p•y=c} . 

Actually, Y(p, x, c) is independent of x under our assumption, so that we shall 
write Y(p, c) = Y(p, x, c). For each (p, x, c) E R +  x R + x R +, let 

     h(p, x, c) = { y E Y(p, c): u(x, y) >= u(x, y') for every y' e Y(p, c)} , 

      v(p, x, c) = u(x, h(p, x, c)) , 

vp(x, c) = v(p, x, c) . 

For every p e RI_, +, the preference relation Q(p) on X(p) can be expressed as 

Q(p) = Mx, c), (x', c')) E (R + x R +)2: v"(x, c)>_ v"(x', c') } .
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That is,  v" is a utility function on X(p) representing Q(p). Our aim in the present 
note is to demonstrate that some differential properties of u carry over to vp. In 
what follows, we shall assume that 

  (1) u is twice continuously differentiable on R H +, 
  (2) uz(z) > 0 for every z E R e +, where uz(z) is the gradient at z of u, 

  (3) aT uzz(z)a < 0 for every z e R II + and every a E RII — {0} such that uzT (z)a = 0, 
where uzz(z) is the Hessian matrix at z of u, 

  (4) u is strictly quasi-concave on R I, i.e., u((1— t)z + tz') > u(z') for every 
t e]0, 1[ and every z, z' E R H such that u(z)�_u(z) & z 0 z'. 

  LEMMA 1. h is a function of R++ x R+ x R+ into R+ which is continuous on 
          J RI„„ xR+xR++. 

  Proof. Let (p, x, c) E R+ + x R +x R. Since Y(p,c) is non-empty and compact 
(cf. Osana (1982, Lemma 1)) and u is continuous on R H, it follows that h(p, x, c) 
is non-empty. Furthermore, h(p, x, c) is a singleton, since u is strictly quasi-
concave on RH. For each (p, c) e R + + x R+ +, let B(p, c) = { y e R+: p • y�.0.  Let 
(p,c)eR++ xR++. Then B(p,c)c{yeRI: —a<y<a} for some ac RI„ +. Write 
K= {ye RI: —a<y<a}. Let b= min {aipi: tel} and P={(p',c')ER++xR++: 
c' <1(b  + c) & pi' >(b + c)/2ai for every te .0.  Then P is an open neighborhood in 
RI x R of (p, c). For every (p', c') E P, B(p', c') c K c cl K. Since B is closed at (p, c), 
this implies that B is upper hemi-continuous at (p, c) (cf. Hildenbrand (1974, B.III, 
Proposition 2)). Let G be an open subset of RI such that G n B(p, c) 0. There is 
yeGnB(p,c). If y = 0 they yeGnB(p',c') for every (p',c')ER++ xR++• 
Suppose y 00. Since G is open, there is t e10,1[  such that ty e G. Hence 
p • ty <p • y �c so that there is an open neighborhood P' in RI x R of (p, c) such that 
ty E B(p', c') for every (p', c') E P'. That is, G n B(p', c') 0 0 for every (p', c') E P'. 
Thus B is lower hemicontinuous at (p, c) and hence continuous at (p, c). Let 
x E E. . Since h(p, x, c) = { y E B(p, c): u(x, y) >--_ u(x, y') for every y' E B(p, c)} and u 
is continuous at (x, y), it follows that h is upper hemi-continuous at (p, x, c) (cf. 
Hildenbrand (1974, B.III, Theorem 3)). Since h is single-valued, this implies that h 
is continuous at (p, x, c). That is, h is continuous on R+ + x R +x R, + 

  Let D={(p,x,c)ER++xR++xR++: h(p,x,c)e RI„ +}. Then D is open in 
RI x RI x R, since h is continuous on R' + x R + + x R + + • 

  LEMMA 2. There is a unique function p of D into R+ + such that 
uy(x, h(p, x, c)) =,u(p, x, c)p for every (p, x, c) e D. 

  Proof Let (p, x, c) E D. For each y E R+ , let f(y) = u(x, y) and g(y) = c — p • y. 
Then f and g are continuously differentiable on R+ +. Note that g(h(p, x, c)) = 0 
and gy(h(p, x, c)) = — p so that rank gy(h(p, x, c)) = 1. Since f(h(p, x, c)) >— f(y) for 
every y E R + + such that g(y) = 0, there is a unique real number p(p, x, c) such that 
ly(h(p, x, c)) = p(p, x, c)p. By assumption, ly(h(p, x, c)) = uy(x, h(p, x, c)) > 0 and 
p> 0 so that u(p, x, c) > 0.
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 LEMMA 3. h and p are  continuously differentiable on D. 

 Proof Let Z = R + + x R + + x D. Then Z is an open subset of 
R' x R x R' x R' x R. Let (p*, x*, c*) E D. Let (y*, m*) = (h(p*, x*, c*), 
p(p*, x*, c*)). Then (y*, m*, p*, x*, c*) E Z. For each (y, m, p, x, c) E Z, let 

                   G(y, m, p, x, c) _uy(x, y)—mp 
                                            c—p•y 

Then

                 def [Gy(y*, m*, p*, x*, c*), G, (.y*, m*, p*, x*, c*)] 

                   *2uYY(x*,y*) uy~o                                    (x*, y*)                   _on*)-
 y*) 0 

so that, by the implicit function theorem, there is an open nieghborhood U in 
R' x R' x R of (p*, x*, c*), a continuously differentiable function g of U into R'.. 
and a continuously differentiable function 0 of U into R such that g(p*, x*, c*) = 
y* & 0(p*, x*, c*) = m* & (g(p, x, c), 0(p, x, c), p, x, c) e Z & G(g(p, x, c). 
0(p, x, c), p, x, c) = 0 for every (p, x, c) E U. Hence, for every (p, x, c) E U. 
g(p, x, c) E R + + & 0(p, x, c) e R + + & uy(x, g(p, x, c)) = 0(p, x, c)p & c= p g(p, x, c). 
For each x E R-l+ and each y E R+ , let f X(y) = u(x, y). Then, for every x E R+ , f X is 
quasi-concave on R+ . For every (p, x, c) E U, fyX(g(p, x, c)) = uy(x, g(p, x, c)) = 
0(p, x, c)p so that g(p, x, c) E h(p, x, c) (cf. Arrow and Enthoven (1961, Theorem 3)) 
and hence, by Lemma 1, h(p, x, c) =g(p, x, c) E R+ +. Without loss of generality, we 
may assume that Uc R+ + x R + + x R„. Then Uc D so that, by Lemma 2. 
p(p, x, c) = 0(p, x, c) for every (p, x, c) E U. Thus h and p are continuously differ-
entiable at (p*, x*, c*). 

  LEMMA 4. v is twice continuously differentiable on D. 

 Proof Note that El E I p,h`(p, x, c) = c for every (p, x, c) E D. Let (p, x, c) E D. 
Then pT h p(p, x, c) = — hT(p, x, c) & pT hX(p, x, c) = 0 & pT he(p, x, c)= 1 so that 
vpT (p, x, c) = uyT (x, h(p, x, c))hp(p, x, c) = p(p, x, c)pT hp(p, x, c) = — p(p, x, c)hT (p, 
x, c) & vXT (p, x, c) = uxT(x, h(p, x, c)) + uyT (x, h(p, x, c))hX(p, x, c) = uXT (x, h(p, x. 
c)) + p(p, x, c)pT hX(p, x, c) = uXT (x, h(p, x, c)) & vc(p, x, c) = uyT(x, h(p, x, c))he(p. 
x, c) = p(p, x, c)pThc(p, x, c) = p(p, x, c). Since h and p are continuously 
differentiable at (p, x, c) and uX is continuously differentiable at (x, h(p, x, c)), it 
follows that v p, vX, and v are continuously differentiable at (p, x, c). Thus v is twice 
continuously differentiable at (p, x, c). 

 Let P* = { p E R': (p, x, c) E D for some (x, c) E R' x R} . For each p E P*, let 
D(p) = { (x, c) E R' x R: (p, x, c) E D} . 

 THEOREM. For every pEP*, (1) vp is twice continuously differentiable on D(p), 
(2) v,P(z) > 0 for every z E D(p), and (3) aT v f z(z)a < 0 for every z E D(p) and every 
aeR'xR—{0} such that vZ"(z)•a=0.
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 Proof (1) follows from Lemma 4 and (2) follows from the proof of Lemma 4. 

(3) Take any (x, c) E R x R — {0} such that (vx, vo) • (x, c) = O. Then 

          vxxvxcX 

   [XT,C] 
          vex vac C 

= XT uxxX + XT uxyhxx + CItxT X + XT Uxyhcc + CIIcC 

= X T UXXX + xT uXy(hXX + hoc) + pT (hxx + hoc) pxTx + cps 

= XT UXXX + XT uXy(hxX + hoc) + (hxx + hoc)TppxT x+ cps 

= xT u,xx + XT Uxy(hxX + hoc) + (hxx + hoc)T(uyr + uyyhx)x + CµcC 

= xT uxXx + xT uxy(hXx + hoc) + (hxx + hoc)T uyxx + (hxx + hoc)T uyyhXx 

+ (hXx + hoc)Tppo pT (hxx + hoc) 

= xT uxxX + xT uxy(hxx + hoc) + (hxx + hoc)T uyxx + (hXx + hoc)T uyyhXx 

+ (hxx + hoc)T uyyhcpT (hxx + hoc) 

= xT uxxx + xT uXy(hXx + hoc) + (hxx + hCc)T uyxx 

+(hXx+hoc)TUyy(hXx+hopThxx+hopThoc) 

= XT UXXX +- XT Uxy(hXx + hoc) + (hxx + hCC)T uyxx + (hxx + hoc)T uyy(hxx + hoc) 

               [uxxux_ [xT (hxx+hoc)T]xy1<0,                                            uyXuyyhxx + hoc 

the last inequality being due to Assumption (3) and the fact that 

(ux, uy) • (x, hXx + hoc) = uxT x + uyT (hXx + hoc) = vxT x + ppT(hxx + hoc) 

=vxTX+pc=vxTX+vac=(vx, vc)•(x, c)=0 . 

  The theorem asserts that, if corner solutions are ruled out in the choice of 
commodity bundles in the commodity subspace forming a composite commodity, 
then twice continuous differentiability, positive marginal utilities, and strong 

quasi-concavity are preserved for the new utility function defined in the new 
commodity space involving a composite commodity.

Keio University
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