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A VARIATIONAL PROBLEM IN THE THEORY OF 

     OPTIMAL ECONOMIC GROWTH 
 —  An Existence Theorem —

Torn MARUYAMA

                          1. INTRODUCTION 

 The theory of optimal economic growth is one of the most attractive themes in 
the recent developments in mathematical economics. The basic problem is to find 
out an optimal path of economic growth (or capital accumulation) in the sense 
that it maximizes certain economic welfare over time under some technological 
constraint. Being stimulated by the ingenious idea of Ramsey [ 12], a lot of 
economists, including P. A. Samuelson and T. C. Koopmans, have been working 
on this field and various mathematical theories of optimal control such as the 
Pontrjagin's maximum principle have been successfully introduced to economic 

analysis. 
 Recently, Chichilnisky [3] tried to prove rigorously the existence of an optimal 

path of economic growth relying upon an effective use of the weighted Sobolev 
space. And Takekuma [13] also gave another interesting version of the existence 

proof. 
 In Maruyama [10], the author also tried to add a further new insight to this 

existence problem, and established a sufficient condition for the existence of an 
optimal economic growth path in the case of finite planning time horizon. 
However it is quite apparent that we must encounter with various difficulties if we 
try to extend our analysis to the case of infinite time horizon. The purpose of this 

paper is to revise the earlier treatment of this problem in [11] and to show a way to 
overcome such difficulties. The key point is to transform the problem with an 
infinite measure space to the equivalent one with a finite measure space by means 
of the weighted Sobolev space. The author is indebted to Berkovitz [1] and 
Chichilnisky [3] for the important ideas embodied in the proof.

2. THE PROBLEM

 Let us begin by specifying some notations and their economic interpretations. 
First the following items are assumed to be given. 

R+ = [0, 00) planning time horizon. 
u: R+ xl2l±-42,  welfare function at each time. 

f: R, x RI, —*RI, production function at each time.
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 8 >0 the discount rate of the welfare in the future. 
A e (0, 1)1 the vector of the depreciation rates of 1 capital goods. 

Furthermore we have a couple of variable mappings to be optimized; 

   k: R+ —>R'„ path of capital accumulation. 
s: R, —>[0,  1 ]l path of the vector whose components are saving 

               rates of each goods. 

For any vector x ell',  we designate by Mx the diagonal matrix of the form

Mx=

 xi

0

x2

0

xi

where  xi (1 < i� I) is the i-th coordinate of x. 
 Then the problem of optimal economic growth can be formulated as follows: 

            Maximize 

J(k,^)= u[t,(1—Ms(r>)f(t,k(t))]e-a`di(1) 

(P)subject to 

k(t)= Ms(t) f(t, k(t)) — MAk(t)(2) 

k(0) = T (given vector)(3) 

(I is the identity matrix.) 

Define w: R+ x R`„ x [0,1]`—'R+ and g: R+ x R14. x [0,1]`—^R` by 

               w(t, k, s) = u[t, (I— Ms)f(t, k)] 

and 

                g(t, k, s)=Msl(t, k)—MAk 

respectively. Furthermore let v be a finite measure on R, defined by 

v(E)= f e-ardt 
                                     E for every Lebesgue-measurable set E in R+. Then the problem (P) can be rewritten 

in the form:
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                 Maximize 

 CO 

                 J(k,  s)= w(t, k(t), s(t))dv (1') 

                                  0 (P')subject to 

ll(t)= g(t, k(t), s(t))(2') 

k(0)-- k(3') 

 Throughout this paper, we shall assume the following conditions to be satisfied. 

 Assumption 1. u is measurable on R+ x R +. Furthermore u is upper semi-
continuous and concave in the last l-dimensional vector. 

 Assumption 2. f is continuous on R+ x R+. 

 Assumption 3. There exists C> 0 such that 

kl >_ C implies sup fi(t, k)<_Aiki 
tE R+ 

for any i (= 1, 2, • • • , 1), where kl (resp. f) is the i-th coordinate of k (resp. f). 

 Assumption 4. There exists a couple of positive constants, a and i, such that 

0 < /3 <612 and 

k)11 <alIkIIet`t for all tER+ and kR+ . 

 Assumption 5. There exist a non-negative v-integrable function 0: R,-012 and 
a vector b E R i such that 

          w(t, k, s) — <b, g(t, k, s)> <_ 0(t) for every (t, k, s) .

                 3. BOUNDEDNESS OF ADMISSIBLE PATHS 

 We denote by S the set of all the measurable mappings s: R  —> [O, 1]', and we 
also denote by W"2 the weighted Sobolev space on R+ with the weight function 
e-bf. (Cf. Kufner [7] or Kufner et al. [8] pp. 417-423.) 

 Definition. A pair (k, s)e Wbl' 2 x S is said to be an admissible pair if it satisfies 
(2) and (3). And k e Wbl'2 is called an admissible path if there exists an s e S such 
that (k, s) is an admissible pair. The set of all the admissible pairs is denoted by A, 
and the set of all the admissible paths by Ak. 

 Thanks to Assumption 3, the following lemma can be proved in the same 
manner as in Proposition 1 of Maruyama [10]. 

 LEMMA 1.sup Ilk IL „ ,v < IC . 
kE Ak
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  Proof Since 

 k(t)  + MAk(t) = Msct) f(t, k(t))0 , 

we must have 

kl(t) > — Aiki(t) for all i . 

Hence 

                kl(t) > >_ 0 for all i . 

On the other hand, since 

fi(t, k(t)) 5_ ,iki(t)if kl(t) >— C 

by Assumption 3, we must have 

kl(t)= si(t)f (t, k(t)) — 2iki(t) <— 0 if kl(t) >_ C 

Consequently 

kl(t) < C for all i . 

By (4) and (5), 

0< kl(t) S C for all t and i. 

Hence 

                       sup Ilkll.0,v<IC. 
keAk 

 Furthermore, taking account of Assumption 4, we have 

11 14011 11 < II Msct>f(t, k(t)) II + llMzk(t) II 

«Il k(t) II eRt +/C 

<IC(acpt+1) . 

The right-hand side is v-integrable. Hence 

sup IIkiIv�NI for some 0<NI <ac . 
keAk 

Similarly 

            sup Il k ll 2,v<_ N2 for some 0< N2 < CO . 
keAk 

The following proposition can easily be derived from Lemma 1 

PROPOSITION 1. Ak is bounded in W '2 

 COROLLARY 1. Ak is weakly sequentially compact in WW1,2 

 Proof Since W," is a Hilbert space, the boundedness of A,

and (8).

(4)

(5)

Q.E.D.

(6) 

(7)

(8)
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weakly sequentially compact.Q.E.D. 

                        4. EXISTENCE THEOREM 

 PROPOSITION 2. y  = supJ(k, s) is finite. 
(k,^)eA 

 Proof Let {(k„, s„)} be a sequence in A such that 

rim J(k„, s„) = y . 

By Assumption 5, 

            w(t, k„(t), s„(t)) 0(t) + <b, g(t, k„(t), s„(t))> 

= 0(t) + <b, k„(t)> . 

Taking account of (7), we obtain 

w(t, k„(t), s„(t))dv <_ 0(t)dv + <b, k„(t)>dv 
000 

<_ 0(t)dv+Nlllbll 

0 < co for all n .(9) 

Thus we can conclude that y must be finite.Q.E.D. 

  Let us define the correspondence Si: R+ x R+ - *->R' x R+ by 

S2(t, k) _ {( , ti) E RI x R + I = g(t, k, s) and (10) 

0<r~<—w(t,k,^) for some sE[0, l]`} . 

Thanks to our Assumption 1 and Assumption 2, it is quite easy to prove that Q is a 
compact-convex-valued upper hemi-continuous (u.h.c.) correspondence. There-
fore the correspondence 

k S2(7, k) = co C2(11 k)(11) 

is also a compact-convex-valued u.h.c. correspondence for each fixed teR+. If we 
denote 

K(t;k,E)={(t,k)ER+ xR+I Ilk <e} 

((t, k) E R + x R+), then we obtain the following result as a consequence of the 
u.h.c. of the correspondence (11). 

  PROPOSITION 3. For each (t, k) E R + x R ̀  , 

S2(t, k) = n co S2(K(t; k, e)) . 
e>0
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 Thus we have just finished up the preparation for the next crucial proposition . 
 Let  {(kn, sh)} be a sequence in A such that 

rim J(kn, sh) =y . (12) 

Then, by Corollary 1, there exists a weakly convergent subsequence (no change in 
notations) of {kn}; i.e. 

kn --^ k* weakly in Wbl'2 . (13) 

PROPOSITION 4. There exists an v-integrable function C: R+ —42 such that 

              j(t)d(14)                                v~v 

                          and 

(k*(t), C(t)) E Q(t, k*(t)) a.e. (15) 

Proof (13) implies that kn , k* strongly in L2(v). Hence we can assume, 
without loss of generality, that 

kn(t)k*(t) a.e. (v) . (16) 

On the other hand, (13) implies that 

kn — ^ k* weakly in L2(v) . (17) 

Therefore, by the well-known Mazur's Theorem (cf. Dunford—Schwartz [4] p. 422 
or Maruyama [9] Corollary 5.3), we can find out, for each j E N, some finite 
elements 

kn.+1' kn+2' ..., kn;+m(J) 

in {kn} and 

aij�0, 1�i�m(j) 

mu) 

E au-l 
i=1 

such that 

mu)1 

E  Ig 

                                                                                  , 
i= 12,v 

n;+1>n .i+m(j) • (18) 

We denote 

              0.0=mu) 
i=1 

mu) 

                     = E aijg(t, kn;+i(t), sh;+i(t)) • (19) 
                                         i=1
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By (18), we can assume, without loss of generality, that 

 j(t)  --> k* (t) a.e. (v) . 

Define a sequence of functions {(j: R+—+R} by 

                  jfmu)Ci(t) = Lr~ aijw(t, kn~ + i(t), sh j + i(t)) 
                                    i=1 

And if we define 

C(t) =lirn sup j(t) , 

then CO) is bounded as proved in Proposition 2. 
  Since 

      w(t, kn . + i(t), sh j + i(t)) — Kb, 9(t, n j + i(t), Snj + i(t))> C 0(t) 

by Assumption 5, we get 

m(j) 
~,(t) — Kb, j(t)> = E al j 

i=1 

m(j) 

<. E al j9(t) = 0(t) for all t . 
i=1 

Hence 

C j(t) < 0(t) + Kb, j(t)> 

50(t)+ + 1) 

by (6). The right-hand side of (23) is v-integrable. Thus 
lemma, 

C(t)dv >_ rim sup C j(t)dv 
00 

By a simple calculation, 

rim sup C j(t)d v = rim sup E al j 
  00 

= rim sup E al;J(knj+i, Snj+i) 
=7. 

Combining (25) with (24), we get (14) . 
 It remains to show (15). For each fixed t e R+, we can as 

Ci(t) (t)

for all t

Snj+i(t), snj+i(t)))}

applying the

Snj+i(t))dv

 It remains to show (15). For each fixed felt +, we can sume that

29 

(20)

(21)

(22)

(23)

Fatou's

(24)

(25)

(26)
Taking account of (16), we can find out some no E N, for each e> 0, such that
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Ilk„(t)—k*(t)II <s for all n>no . 

Therefore 

             (t, kn(t)) E K(t; k*(t), E) for all n >_ no . 

Consequently we have, for sufficiently large j, 

(g(t, kn3+~(t), s+i(t)), w(t, k+i(t), sn~+i(t))) E Q(K(t; k*(t), c)) 

which implies 

(t~/ j(t), WO) e Co Q(K(t; k*(t), E)) 

Furthermore by (20) and (26), 

(k*(t), CO)) E co Q(K(t; k*(t), s)) . 
Since (31) holds for arbitrary e> 0, 

(k*(t), (t)) e n co Q(K(t; k*(t), e))= S2(t, k*(t)) . 
E>0 

The last equality comes from Proposition 3. This completes the proof. 

 By Proposition 4, it has been verified that the value 

C(t)dv 

can be attained under the path k*(t) if s*(t)e[0, Ir is suit ably 0 
t e R . Finally we shall prove that s*(t) can be chosen so as to be tr

(27)

(28)

(29)

(30)

(31)

 (32) 

Q.E.D.
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i.e.

 p(t, s*(t)) = (g(t, k*(t), s*(t)), w(t, k*(t), s*(t))) E F(t) 

k*(t)=g(t, k*(t), s*(t)) 

(t) < w(t, k*(t), s*(t)) .

Therefore

(t)di = y , 

0 and we can conclude that the pair (k*(t), s*(t)) is optimal. 

 THEOREM 1. Under Assumptions 1-5, the problem (P) has an optimal solution.

  Keio University 
       and 

University of California, 
     Berkeley
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