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ON HICKS' COMPOSITE COMMODITY THEOREM

Hiroaki OSANA*

 Hicks (1946) succeeded in simplifying his exposition of consumer theory by 
employing the so-called composite commodity theorem which states that any group 
of commodities whose relative prices remain unchanged can be treated as a single 
commodity. He proved this theorem by showing that the substitution term in the 
Slutsky equation for a group of commodities with respect to its own price is negative 

(Hicks (1946, p. 312)). Samuelson (1947, p. 143) proved the same theorem by 
establishing the negative semi-definiteness of the substitution matrix involving  a. 

group of commodities. These properties of consumer demand functions are due to 
the convexity of preference relations. So it will be useful to have the same theorem in 
the following form: the preference relation in the new commodity space involving a 

group of commodities inherits all the relevant properties of the prerference relation 
in the original commodity space. What Hicks had in mind would be this. In fact, he 
writes: [So] long as the terms on which money can be converted into other 
commodities are given, there is no reason why we should not draw up a determinate 

 indifference system between any commodity X and money (that is to say, 

purchasing power in general) (Hicks (1946, p. 33). In the present paper, we shall 
present a proof of the composite commodity theorem in this form, which may be 
regarded as a geometric version of the Hicksian theorem. The Hicksian or 
Samuelsonian version follows from the geometric version through the usual 
consumer theory.

1. NOTATION AND DEFINITIONS

 In consumer theory, we are interested in the properties of a preference relation 
listed in the following definition. 

DEFINITION. Let T be a reflexive total transitive binary relation on a non-empty 
subset S of a finite-dimensional Euclidean space E. Then T is said to be: 

     upper semi-continuous if for every x E S the set ly E S: (y, x) e T} is closed in 
S, 
     lower semi-continuous if for every x e S the set { y e S: (x, y) E T} is closed in S, 

     continuous if T is upper semi-continuous and lower semi-continuous, 
     non-satiated if for every x e S there is y E S such that (x, y) T, 

 * An earlier version of the present paper was presented at the Keio Economic Research Project 
Conference on Economic Theory, January 1982, Tokyo. The author is indebted to Professors 
Michihiro Ohyama and Yoshihiko Otani for their valuable comments and suggestions. Needless to say, 
the author is solely responsible for the remaining defects.
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locally non-satiated if for every (x, c)  ES x R+ + there is y e S such that 

(x,y) st T & Ily—xll <s, 
weakly monotone if (x, y) E T for every (x, y) E E x S such that x >_ y, 
monotone if (y, x) E S2 — T for every (x, y) E E x S such that x> y, 

                                              strongly monotone if (y, x) e S2 — T for every (x, y) E E x S such that x >_ y & 
x0y, 
weakly convex if ((1 — t)x + ty, x) E T for every t e ]0, 1 [ and every (y, x) E T, 
convex if (x, (1 — t)x + ty) E S2 — T for every t E ]O, 1 [ and every (x, y) E S2 — T, 
strongly convex if (x, (1 — t)x + ty) E S2 - T for every t E ]0,1 [ and every 

(x, y) E T such that (y, x) E T & x0 y.

  Let H be a non-empty finite set, representing the set of commodities. The 
consumption set Xis a non-empty closed subset of RH that is bounded from below. 
The preference relation Qrs a reflexive total transitive binary relation on X. Let I be a 
non-empty proper subset of Hand define J= H— I. The prices of the commodities in 
I will be kept constant so that the commodities in I will form a composite 
commodity. Given a price vectorp in R + +, the set of possible pairs of consumptions 
of the commodities in J and expenditures on the commodities in I is defined by 

X(p)_ {(x, c) E R' x R: (x, y) E X for some y E R' such that p • y = c} . 

For each p E R + + and each (x, c) E X(p), define 

Y(p,x,c)={yeR': (x,y)EX & p•y=c} . 

Note that X(p)_ {(x, c) E R' x R: Y(p, x, c) � QS} for every p e R + + 

 LEMMA 1. For every p E R + + 

  (a) Y(p, x, c) is non-empty and compact for every (x, c) E X(p), 
  (b) X(p) is a non-empty closed subset of R' x R that is bounded from below, 

  (c) if X is convex then X(p) is convex. 

 Proof. (a) Clearly, Y(p, x, c) is non-empty and closed in R'. It is bounded from 
below since X is bounded from below, while it is bounded from above since p E R + + 
So Y(p, x, c) is bounded and hence compact. 

 (b) Non-emptiness and boundedness from below are obvious. Let {(x", c")} be a 
sequence in X(p) converging to (x°, c°) e R' x R. For every v there is y" e R' such that 

(x", y") E X & p • y" = c". Let d= c° + 1. Without loss of generality, we may assume 
that p • y" �d for every v. Since X is bounded from below, there is a E R such that 
a<xi for every xeX and every iEH. Let Y={yeR':.p•ySd&a<_yr for every tel}. 
Then Yrs compact and y" e Yfor every v, so that we may assume that {y"} converges 
to some y° e Y. Hence (x°, y°) e X by the closedness of X, and p • y° = c°; therefore, 
(x°, c°) E X(p). Thus X(p) is closed in R' x R. 

 (c) Let (xi, c'), (x2, c2) e X(p) and t E [0, 1]. Then there are y', y2 e R' such that 
(x',y')EX & (x2,y2)EX & p•yr=c' & p•y2=c2. Let x=(1—t)xi+tx2 & y=
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 (1—  t)yr  +  ty2 & c = (1— t)cl + tc2. Then (x, y) e X by the convexity of X. Clearly, 
y E R' and p • y = c so that (x, c) e X(p). Hence X(p) is convex. 

 The set X(p) is interpreted as the consumption set in the new commodity space of 
lower dimension. The above lemma shows that the fundamental properties of the 

original consumption set X are inherited by X(p). For each p e R + +, the preference 
relation on X(p) is defined by 

Q(p) = { ((x, c), (x', c')) e X(p) x X(p) : There is (y, y') E Y(p, x, c) 

           x Y(p, x', c') such that (a) ((x, y), (x', y')) e Q, 

          (b) ((x, y), (x, z)) E Q for every z e Y(p, x, c), and 

           (c) ((x', y'), (x', z)) E Q for every z e Y(p, x', c')} . 

In the next section, a sufficient condition will be given for Q(p) to be a well-defined 
preference relation on X(p). The following lemma shows that the same condition 
simplifies the definition of Q(p). 

 LEMMA 2. If Q is upper semi-continuous then, for every p e R + + Q(P) = 
{((x, c), (x', c')) E X(p) x X(p): There is y e Y(p, x, c) such that ((x, y), (x', z)) E Q for 
every z E Y(p, x', c') } 

 Proof Let T denote the set on the right-hand side. Then clearly Q(p) c T. Let 
((x, c), (x', c')) E T. Then there is y" e Y(p, x, c) such that ((x, y"), (x', z)) e Q for 
every z e Y(p, x', c'). Since, by Lemma 1, Y(p, x, c) and Y(p, x', c') are non-empty 
and compact, it follows that there is (y, y') e Y(p, x, c) x Y(p, x', c') such that (1) 
((x, y), (x, z)) E Q for every z E Y(p, x, c) and (2) ((x', y'), (x', z)) E Q for every 
z E Y(p, x', c'). Hence ((x, y), (x, y")) E Q & ((x, y"), (x', y')) E Q so that, by 
transitivity, (3) ((x, y), (x', y')) e Q. It follows from (1), (2), and (3) that 
((x, c), (x', c')) e Q(p). Thus T c Q(p) so that Q(p) = T.

2. INHERITANCE OF VARIOUS PROPERTIES

THEOREM. 1 (Complete Preordering). If Q is upper semi-continuous then, for every 

p E R + +, Q(p) is a reflexive total transitive binary relation on X(p). 

 Proof Let (x, c), (x', c') E X(p). By Lemma 1, Y(p, x, c) and Y(p, x', c') are non-
empty and compact so that there is (y, y') e Y(p, x, c) x Y(p, x', c') such that 
((x, y), (x, z)) e Q for every z e Y(p, x, c) and ((x', y'), (x', z)) e Q for every 
z e Y(p, x', c'). If ((x, y), (x', y')) e Q then ((x, c), (x', c')) E Q(p). Suppose 

((x, y), (x', y')) Q. Since Q is reflexive and total, it follows that ((x', y'), (x, y)) E Q 
so that ((x', c'), (x, c)) e Q(p). Hence Q(p) is reflexive and total. 

 Suppose ((x, c), (x', c')) E Q(p) & ((x', c'), (x", c")) e Q(p). Then there is 
(y, y') E Y(p, x, c) x Y(p, x', c') such that ((x, y), (x', z)) e Q for every z e Y(p, x', c') 
and ((x', y'), (x", z))e Q for every z e Y(p, x", c"). Hence ((x, y), (x', y')) E Q so that
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((x,  y),  (x", z)) E Q for every z E Y(p, x", c"). Thus ((x, c), (x ", c")) E Q(p), establish-
ing the transitivity of Q(p). 

  THEOREM 2 (Non-Satiation). If Q is upper semi-continuous and non-satiated 
then, for every p E R + +, Q(p) is non-satiated. 

 Proof. Let (x, c) E X(p). Since Y(p, x, c) is non-empty and compact, there is 
y E Y(p, x, c) such that ((x, y), (x, z)) e Q for every z e Y(p, x, c). Since Q is non-
satiated, there is (x', y ") E X such that ((x, y), (x', y")) 0 Q. Let c' = p y". Then 
y" E Y(p, x', c') and there is y' E Y(p, x', c') such that ((x', y'), (x', z)) E Q for every 
z e Y(p, x', c'). Hence ((x', y'), (x', y")) E Q so that ((x, y), (x', y')) Q. Suppose 
((x, c), (x', c')) E Q(p). Then there is y* e Y(p, x, c) such that ((x, y*), (x', z)) E Q for 
every z e Y(p, x', c'). Hence ((x, y*), (x', y')) e Q so that ((x, y), (x, y*)) 0 Q. But, 
since y* E Y(p, x, c), it follows that ((x, y), (x, y*)) E Q, which is a contradiction. 
Thus ((x, c), (x', c')) Q(p). 

 THEOREM 3 (Local Non-Satiation). If Q is upper semi-continuous and locally 
non-satiated then, for every p e R + +, Q(p) is locally non-satiated. 

 Proof Let (x, c) e X(p) and E e R + + . Since Y(p, x, c) is non-empty and compact, 
there is y e Y(p, x, c) such that ((x, y), (x, z)) E Q for every z e Y(p, x, c). Since Q is 
locally non-satiated, there is (x', y") E X such that ((x, y), (x', y")) Q & 
I~ (x', y ") — (x, y) II < s/max { 1, El E I pl }, where the maximum norm is used. Let 
c' =p y". Then, as in the proof of Theorem 2, we can see that ((x, c), (x', c')) Q(p). 
Since

I c'—cl=IP•(y"—y)1=lEieipi(yi'—yr)I < V lPilyi'—yil 

                  < EiE/PiE/max {1, EiEIPi} <E , 
it follows that

ll(x',c')—(x,c)II= max {maxiE,Ixi -xi I, Ic'—cl) 

     < max {E/max {1, ~;lpi} E} = E .

 THEOREM 4 (Weak Monotonicity). If Q is upper semi-continuous and weakly 
monotone then, for every p E R+ +, Q(p) is weakly monotone. 

 Proof Let ((x, c), (x', c')) E (R' x R) x X(p) & (x, c)>—(x', c'). Then there is 
y' e Y(p, x', c') such that ((x', y'), (x', z)) E Q for every z E Y(p, x', c'). For each i E I, 
let yt = y' + (c — c')/ pi # I. Then p y = p • y' + c — c' = c & (x, y) >_ (x', y') so that 
y E Y(p, x, c) & ((x, y), (x', y')) e Q and hence ((x, y), (x', z)) e Q for every 
z E Y(p, x', c'). Thus ((x, c), (x', c')) E Q(p). 

  THEOREM 5 (Monotonicity). If Q is upper semi-continuous and monotone then, 
for every p e R+ +, Q(p) is monotone. 

 Proof Let ((x, c), (x', c')) e (R' x R) x X(p) & (x, c) > (x', c'). Then there is
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y'  e Y(p,  x', c') such that ((x', y'), (x', z))e Q for every z E Y(p, x', c'). For each i E 1, 
let yr = y i +(c — c')/ pi # I. Then (x, y) > (x', y') & y E Y(p, x, c) & ((x', y'), (x, y)) 0 Q. 
Suppose ((x', c'), (x, c)) E Q(p). Then there is y" e Y(p, x', c') such that 

((x', y"), (x, z))e Q for every z E Y(p, x, c). Hence ((x', y'), (x', y ")) E Q & 
((x', y"), (x, y)) E Q so that ((x', y'), (x, y)) E Q, which is a contradiction. Thus 
((x', c'), (x, c)) Q(P)• 

 THEOREM 6 (Strong Monotonicity). If Q is upper semi-continuous and strongly 
monotone then, for every p e R + +, Q(p) is strongly monotone. 

 Proof Almost the same as the proof of Theorem 5. 

 THEOREM 7 (Weak Convexity). If Q is upper semi-continuous and weakly convex 
then, for every p e R + +, Q(p) is weakly convex. 

 Proof Let t E Jo, 1[ & ((x', c'), (x, c)) E Q(p) & (x*, c*) = (1— t)(x, c) + t(x', c'). 
Then there is y' E Y(p, x', c') such that ((x', y'), (x, z))e Q for every z e Y(p, x, c). 
Since Y(p, x, c) and Y(p, x*, c*) are non-empty and compact, there is 

(y, y*) E Y(p, x, c) x Y(p, x*, c*) such that ((x, y), (x, z)) E Q for every z E Y(p, x, c) 
and ((x*, y*), (x*, z))e Q for every z E Y(p, x*, c*). Let z* = (1 — t)y + ty'. Since 

((x', y'), (x, y)) E Q, the weak convexity of Q implies that ((x*, z*), (x, y)) E Q and 
hence z* e Y(p, x*, c*). So ((x*, y*), (x*, z*)) E Q, which implies that ((x*, y*), 
(x, y)) E Q. Thus ((x*, y*), (x, z))e Q for every z e Y(p, x, c). Therefore, ((x*, c*), 
(x, c)) E Q(P)• 

  THEOREM 8 (Convexity). If Q is upper semi-continuous and convex then, for 
every p E R + +, Q(p) is convex. 

 Proof Let t e ]O, 1 [ & ((x, c), (x', c')) E (X(p))2 — Q(p) & (x*, c*) = 

(1 — t)(x, c) + t(x', c'). Then ((x', c'), (x, c)) e Q(p) so that there is y" e Y(p, x', c') 
such that ((x', y"), (x, z)) E Q for every z E Y(p, x, c). Since Y(p, x', c') is non-empty 
and compact, there is y' e Y(p, x', c') such that ((x', y'), (x', z))e Q for every 
z e Y(p, x', c'). Hence ((x', y'), (x, z)) e Q for every z e Y(p, x, c). Also Y(p, x, c) and 
Y(p, x*, c*) are non-empty and compact so that there is (y, y*) E Y(p, x, c) x 
Y(p, x*, c*) such that ((x, y), (x, z)) e Q for every z E Y(p, x, c) and 

((x*, y*), (x*, z)) E Q for every z E Y(p, x*, c*). Let z* = (1 — t)y + ty'. If 
((x, y), (x', y')) E Q then ((x, c), (x', c')) e Q(p), which is a contradiction. Hence 
((x, y), (x', y')) Q so that, by the convexity of Q, ((x, y), (x*, z*)) e X2 — Q and 
hence z* e Y(p, x*, c*). Therefore ((x*, y*), (x*, z*)) e Q so that ((x, y), (x*, y*)) Q. 
Suppose ((x, c), (x*, c*)) e Q(p). Then there is z' e Y(p, x, c) such that 
((x, z'), (x*, z)) e Q for every z e Y(p, x*, c*). Hence ((x, y), (x, z')) E Q & 
((x, z'), (x*, y*)) e Q so that ((x, y), (x*, y*)) E Q, a contradiction. Thus 
((x, c), (x*, c*)) 0 Q(P)• 

  THEOREM 9 (Strong Convexity). If Q is upper semi-continuous and strongly 
convex then, for every p e R+ +, Q(p) is strongly convex.
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 Proof. Let t E 10, 1 [ &  ((x, c), (x', c')) e Q(p) & ((x', c'), (x, c)) e Q(p) & 
(x, c) (x', c') & (x*, c*) = (1— t)(x, c) + t(x', c'). Then there is (y, y') E Y(p, x, c) x 
Y(p, x', c') such that ((x, y), (x', z)) E Q for every z e Y(p, x', c') and 
((x', y'), (x, z)) E Q for every z e Y(p, x, c). Since Y(p, x*, c*) is non-empty and 
compact, there is y* e Y(p, x*, c*) such that ((x*, y*), (x*, z)) e Q for every 
z E Y(p, x*, c*). Let z* = (1 — t)y + ty'. Since (x, c) (x', c'), it follows that either 
x0 x' or c # c'. If c O c' then y y'. Hence (x, y) 0 (x', y'). Since ((x, y), (x', y')) e Q 
& ((x', y'), (x, y)) E Q, the strong convexity of Q implies that ((x, y), (x*, z*)) E 
X2 — Q and hence z* e Y(p, x*, c*). Therefore ((x*, y*), (x*, z*)) e Q so that 
((x, y), (x*, y*)) Q. Then, as in the proof of Theorem 8, we can see that 
((x, c), (x*, c*)) Q(P)• 

 THEOREM 10 (Upper Semi-Continuity). If Q is upper semi-continuous then, for 
every p E R + +, Q(p) is upper semi-continuous. 

 Proof Let (x, c) e X(p). Let {(x'',c")} be a sequence in the set {(x', c') E X(p): 
((x', c'), (x, c)) e Q(p)} converging to some (x°, c°) e X(p). By the definition of Q(p), 
for every v there is y" E Y(p, x", c") such that ((x", y"), (x, z)) e Q for every 
z E Y(p, x, c). Since {c"} converges to c°, we may assume without loss of generality 
that, for every v, y" belongs to the set { y' e R + : p y < c° + 11, which is compact. 
Hence, without loss of generality, we may assume that { y"} converges to some y° in 
the set. For every v, p • y" = c" & (x y") e X; therefore, p • y° = c° and, by the 
closedness of X, (x°, y°) e X so that y° E Y(p, x°, c°).Let z E Y(p, x, c). Then 
((x y"), (x, z)) e Q for every v so that, by the upper semi-continuity of Q, 
((x°, y°), (x, z)) e Q. That is, ((x°, y°), (x, z)) E Q for every z E Y(p, x, c). Since 
Y(p, x°, c°) is non-empty and compact, there is y* e Y(p, x°, c°) such that 
((x°, y*), (x°, z)) e Q for every z e Y(p, x°, c°). In particular, ((X°, y*), (x°, y°)) E Q. 
Hence ((X°, y*), (x, z)) E Q for every z e Y(p, x, c). Thus ((x°, c°), (x, c)) e Q(p) so that 
Q(p) is upper semi-continuous. 

 THEOREM 11 (Lower Semi-Continuity). Suppose X = R H . If Q is continuous 
then, for every p e R+ +, Q(p) is lower semi-continuous. 

 Proof Note that X(p) = R + x R+. For each c e R+, let K(c) = { y e R+: p • y= c}. 
Then K(c) = Y(p, x, c) for every (x, c) e X(p). Let (x, c) e X(p). Let {(x", cc)} be a 
sequence in the set {(x', c') E X(p): ((x, c), (X', c')) e Q(p)} converging to some 
(x°, c°) E X(p). By the definition of Q(p), for every v there is y" E K(c) such that 
((X, y"), (x", z)) e Q for every z e K(c"). Since K(c) is non-empty and compact, there 
is y e K(c) such that ((x, y), (x, z)) E Q for every z E K(c). Hence it suffices to show 
that ((x, y), (x°, z)) e Q for every z e K(c°). Note that ((x, y), (x", z)) E Q for every 
z e K(c"). Since K(c°) is non-empty and compact, there is y° e K(c°) such that 
((x°, y°), (x°, z)) E Q for every z E K(c°). 

  Case 1. y° = 0. Then c° = O. Take any i E I. For each v, let z = c" /pi and z i = 0 for 
every j e I— {i}. Then {z"} converges to 0 =y°. Since z" a K(c") for every v, it follows
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that ((x, y),  (x", z")) E Q for every v. By the lower semi-continuity of Q, 
((x, y), (x°, y°)) e Q so that ((x, y), (x°, z)) E Q for every z e K(c°). 

 Case 2. y° e R + — {0}. Then y° > 0 for some i E I. For each v, let z;'= 
y° +(c c°)/ pi and z;=y° for every jet—{i}. Then {z"} converges to y° and 
p • z" =e7 for every v. There is a positive integer µ. such that z" >_ 0 for every v > µ. 
Hence z" e K(c") for every v> µ, so that ((x, y), (x", z")) E Q for every v > µ. By the 
lower semi-continuity of Q, ((x, y), (x°, y°)) E Q so that ((x, y), (x°, z)) e Q for 
every z E K(c°). This completes the proof of Theorem 11. 

 COROLLARY (Continuity). Suppose X= R-l,1_.   If Q is continuous then, for every 
p E R+ +, Q(p) is continuous. 

 Proof Immediate from Theorems 10 and 11.

 Under the assumptions of Theorem 11 or its Corollary, there is a continuous 
utility function for Q(p). In that case, we may be interested in its differential 

properties. We shall discuss this problem in a sequel of the present paper.

3. A GRAPHICAL EXPOSITION

 We have seen how various properties of the original preference relation Q carry 
over to the induced preference relation Q(p) on the new commodity space X(p). We 
shall now visualize the situation graphically. 

 Assume that #H= 3 and #I= 2. Specifically, we shall write H= { 1, 2, 3} and I= 

{2, 3}. In Figure 1, the horizontal plane with night x and an indifference surface are 
depicted. Look at the intersection of the plane and the surface. To other indifference 
surfaces correspond other intersections. The projections on the y2 y3 plane of some 
of these intersections are depicted in Figure 2. In this figure, we draw a straight line 
orthogonal to p whose distance from the origin is equal to c. These is a curve tangent

 0

2  `- 3

Fig. 1.



52 HIROAKI OSANA

 3

2
 0

Fig. 2.

to this straight line; the tangent point is the point y defined by condition (b) in the 
definition of Q(p). We regard the indifference surface corresponding to the tangent 
curve as representing the satisfaction level of (x, c). Next, consider another 
consumption level x' of the first commodity. To determine the indifference curve 
passing through (x, c), we have to find the quantity c' of the composite commodity 
such that  (x', c') is indifferent to (x, c). For this purpose, we look at the intersection 
of the indifference surface identified above and the horizontal plane with height x'. 
There is a straight line which is orthogonal to p and is tangent to this curve. The 
distance of the straight line from the origin is the value of c' we want. 

 There is a simple way to visualize the shapes of indifference curves in the x—c 

plane. In Figure 1, consider the vertical plane whose intersection with the y2 y3 
plane owns the origin and the point p. This is the x—c plane on which indifference 
curves should be drawn. Take any indifference surface. The projection of the 
corresponding upper contour set on the plane forms the upper contour set in the x—c 

plane. The boundary of the latter set is the indifference curve we want.' Clearly, this 
is convex, provided the original indifference surface is convex.

4. AN EXAMPLE

 In this final section, we construct an example showing how important the upper 
semi-continuity of the original preference relation is for the composite commodity 
theorem. Let X= R3_, . For each (x, y, z) E X, define 

x+ 1/(1—z) if z< 1 , 
u(x, y, z) = 

                                          if z>_1. 

Let Q= { ((x, y, z), (x', y', z')) e X2: u(x, y, z) >_ u(x', y', z) } &p = (1, 1) & (x, c) = (1, 1). 

' See Katzner (1970, p. 145).
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Then  Y(p,x,c)={(y,z)ER+:  y+z=1}. 
 Suppose there is (y, z) e Y(p, x, c) such that ((x, y, z), (x, y', z')) E Q for every 

(y', z'), E Y(p, x, c). If y > 0 then z= 1 — y < 1 so that u(x, y, z) = x+ 1 /y <x + 2/y = 
u(x, i y, 1— k y); therefore, (2y, 1 — - y) E Y(p, x, c) & ((x, y, z), (x, 4y,1— l y)) Q, 
which is a contradiction. Hencey = 0 so that z =1. Then (4, ) E Y(p, x, c) & u(x, y, z)= 
x < x + 2 = u(x, ?, 4) so that ((x, y, z), (x, 4, 4)) Q, a contradiction. Thus there is no 

(y, z) E Y(p, x, c) such that ((x, y, z), (x, y', z')) E Q for every (y', z') E Y(p, x, c). 
Therefore, ((x, c), (x, c)) Q(p) so that Q(p) is not reflexive. 

 The conclusion of Theorem 1 fails for the relation Q(p) . Note that the set 
{(x, y, z) E X: ((x, y, z), (1, 1, 4-)) E Q} is not closed in X so that Q is not upper semi-
continuous. It is easy to see that Q is lower semi-continuous.

Keio University
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