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ON A COOPERATIVE SOLUTION FOR GENERALIZED
N-PERSON GAMES

Hiroaki OsaNA

1. INTRODUCTION

Scarf (1971) proved the existence of a cooperative solution for a general class of
n-person games, in which each player has a fixed set of possible strategies and a
utility function of joint strategies. In such games there may be some externalities in
preferences. but no externalities in technologies which determine the sets of
possible strategies. In this note we consider a more general class of n-person games
admitting externalities in technologies and provide a proof of the existence of a
cooperative solution for the case n <4. Proof for the case n>4 is left as an open
problem.

2. COOPERATIVE SOLUTION: DEFINITION

Let N={1, 2, - - -, n} be the set of players. A strategy of player ie N is denoted
by a point x; of R™, which is called the strategy space. An n-tuple x=(x,, x,, * * -,
x,) of strategies of the players is called a joint strategy. The set X of possible joint
strategies 1s a subset of R™. A coalition S is a nonempty subset of N. For each
coalition S, we denote by x5 a collection of strategies of the members of S, i.e.,
xs=(x;:i€S). If §={i} we write x; for x;,. For each coalition S, we denote by ).S(
the complementary coalition of S, i.e., )S(=N—S. If S={i} we write )i( for ){i}(.
Let

Xs={xs: (x5, x)5) € X for some x,},
FS(X)S() = {xS : (-xs’ x)S()eX}a
Xi= O{FS(X)S() D X5 € X)s)-

Xs may be called the set of conditionally possible collusive strategies of coalition S
and X® may be called the set of unconditionally possible collusive strategies of
coalition S. If S={i} we write X; and X' for X, and X, respectively. Let the
preference relation of player i € N be represented by a utility function U, defined on
X. Then, following Scarf (1971), we can introduce a concept of cooperative
solution.

DEFINITION. A joint strategy x*e X is called a cooperative solution if for
every Se2¥—{¢} and every xseXS there is an xg€F5(xs) such that
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Ui(xs, x,5) < Ui(x*) for some i€S.

It may be helpful to restate the definition as follows: A joint strategy x*e X is
called a cooperative solution if there is no S€2”—{¢} such that there is xge X5
such that Ujxs, x,5) > Uy(x*) for every ie S and every x5 € F)s(xs). That is, a
cooperative solution is a joint strategy which can be improved upon by no
coalition with unconditionally possible collusive strategies. We note that every
joint strategy is trivially a cooperative solution if X is empty for every coalition
S.

3. CHARACTERISTIC FUNCTION

In order to prove the existence of a cooperative solution, we begin by describing
the game in characteristic-function form. Let the characteristic function V' be
defined for every Se2¥—{¢} by

V(S)={ue R" There is an xge X5 such that if either S=N
or x5 € Fig(xs) then Ufxs, x)5) Zu; for every ie S}.

In what follows, several properties of ¥ will be studied.
We first note the following obvious facts.

PROPOSITION 1. For every Se2¥N—{¢},

) Xs= U{FS(X)S(): X)s(€ X)s(}>

(i) if X is closed then the correspondence Fg is closed on X,
(iii) if X is closed then X5 is closed,

(iv) if X is bounded then X is bounded,

V) X°cX;,

(vi) if X is compact then X5 is compact.

PrOPOSITION 2. If X is compact and U, is a continuous real-valued function on X
for every i€ S then V(S) is closed in R".

Proof. Let {u?}2, be any sequence in V(S) converging to some "’ e R". Then
for every q there is an x{eX® such that if S=N or x5 € F5(x% then U(x,
x)s) 2 uf for every ie S. By (vi) of Proposition 1, X' S is compact and hence we may,
without loss of generality, suppose that the sequence {x%},_, converges to some
xgeX S, If S=N then U (x°)=u{ for every ie N by the continuity of U,, so that
u° € V(N). Next suppose S # N. Suppose further that Uy(x3, x%) <u{ for some i€ S
and some x,s(eF,s((xs) Since (x x,s) € X for every g and every x5 €X)s, it
follows that (x¢, x{5)€X, i.e., x% € Fg(x%) for every q. Therefore Ui(xd, xs) = uf
for every ¢ and every i€ S, so that, by continuity, U(x3, x%) = u? for every i€ S, a
contradiction. Hence Ui(x§, x5)=u for every ieS and every X5 € Fys(x3)-
Thus «° € V(S), completing the proof of the closedness of V(S).

PROPOSITION 3. If X is compact, X5 is nonempty, and U, is a continuous real-
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valued function on X for every i€ S then V(S) is nonempty.

Proof. Since, for every ie S, U, is a continuous real-valued function on a
compact set X, there is a ;=min U,(X) for every i€ S. Let u=(ug, u,5), where Uys
may be arbitrary. Take some xse X®. By (v) of Proposition 1, xge X;, so that
Fys(xs) is nonempty. Let x5 be any element of Fys(xs). Then (xg, x,5) € X, so that
Uixs, x)5) Zu; for every ie S. Thus ue V(S), proving the nonemptiness of V(S).

For every ie N, let

V@) ={u; : (u;, uy)e V(i) for some uy;},
where V(i) = V({i}).

PROPOSITION 4. If X is compact, X' is nonempty, and U, is a continuous real-
valued function on X then V'(i) has a maximum.

Proof. By proposition 3, V(i) is nonempty, and so is ¥’(i). Let u;e V'(i). Then
(u;, uy)€ V(i) for some uy. Hence there is an x;e X* such that Ux;, x;)=u
for every x € Fy(x,). Since (x;, x,)eX for every x,€F,(x,), it follows that
Ui(x;, x,)<max UyX). Thus max U (X) is an upper bound of V’(i). Since
V(i) is nonempty, it has a least upper bound. Let #;=sup V’(i). Then there is a
sequence {uf};>, in V(i) converging to ;. Let u, be any element of R"~', Then
(u, u,;) € V(i) for every gq. Since V(i) is closed by Proposition 2, (i, u;)e Vi, so
that ;e V'(i). Thus &;=max V'(i), completing the proof of the proposition.

For every nonempty Se 2V, let

W(S)={ueV(S) : y;2max V(i) for every ie S} .

PROPOSITION 5. If X is compact and, for every i€ S, X' is nonempty and U, is a
continuous real-valuyed function on X then W(S) is nonempty.

Proof. By Proposition 4, we may define ,=max V’() for each ie S. Let u=
(a5, uy5), where uyg may be arbitrary. If we can show that ue V(S) then ue w(S)
and the proposition will be proved. Since i; € V(i) for every i€ S, ue V(i) for every
i€ S. Hence for every ieS§ there is an x/e X' such that U(x], xy;) 2 4; for every
every x € F(x), ie., for every xy such that (x/ x,)eX. Clearly xzeX5.
Let x)5€ Fjs(x5). Then (xg, xs)€X, so that U(x§, xs)=u; for every ieS.
Thus ue V(S).

PROPOSITION 6. If X is compact and, for every i€ N, X' is nonempty and U, is a
continuous real-valued function on X then W(N) is compact.

Proof. By Proposition 2, V(N) is closed and so is W(N). Let ue W(N). Then
ue V(N), so that there is an x € X such that Ui(x)=u, for every ie N. Since xe X,
Ui(x) Smax U(X) for every ie N and therefore u, < max U(X) for every ie N. Thus
W(N) is bounded from above. Evidently W(N) is bounded from below. Hence
W(N)is compact.
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PROPOSITION 7. If ue V(S) and u’ Zu then u’ € V(S).

Proof. Obvious by the definition of V.

4, CORE

In this section, we establish a relation between a cooperative solution of the
game in normal form and the core of the game in characteristic-function form. We
say that a utility vector u € V(N) can be improved upon by coalition S if ug> ug for
some u’ € V(S). The core C(V, N) of a game (V, N) in characteristic-function
form is defined by

C(V, N)={ue V(N): u can be improved upon by no coalition} .

PROPOSITION 8. Suppose that X is compact and U; is a continuous real-valued
function on X for every i€ N. If C(V, N) is nonempty then there is a cooperative
solution.

Proof. Let u*e C(V, N). Then u*e V(N), so that there is an x*€X such that
U(x*) = u* for every i€ N. Suppose x* were not a cooperative solution. Then there
would exist an S€2V, and an xge X such that U(xg, x,5) > IU(x*) for every i€ S
and every x,s € Fs(xs). By (1), (ii), and (iv) of Proposition 1, Fyg(xs) is compact.
Hence for every ieS there exists a #;=min{U/(xs, X)5): X5 € F)s(xs)}. Then
Uixs, %,5) 28> U(x*) for every ieS and every xg€Fg(xs). Let i = (s,
w%). Then ig>uf and dge V(S), so that u* can be improved upon by S. Hence
u*¢C(V, N), a contradiction. Thus x* is a cooperative soluti.on.

For proving the existence of a cooperative solution, it is therefore sufficient to
show the nonemptiness of the core C(V, N). For that matter, Scarf (1967) proved
the theorem stated below. We need two definitions. A collection T of coalitions is
said to be balanced if there is a p=(ps : Se T) such that pg220 for every Se T and
Yser, iesPs=1 for every ie N. An n-person game (V, N) is said to be balanced if
({V(S): Se T} V(N) for every balanced collection T of coalitions.

TueOREM (Scarf). If (i) V(S) is closed for every nonempty Se€ 2N (i) W(S) is
nonempty for every nonempty S€ 2%, (iii) W(N) is compact, and (iv) ue V(S) and
u’ Su imply u’ € V(S), then the balanced n-person game: (V, N) has a nonempty core
C(V, N).

This theorem, together with the results in the previous section, in particular,
Propositions 2, 5, 6, and 7, implies that in order to show the nonemptiness of C(V,
N) we have only to show that the game (V, N) is balanced. In the succeeding
sections, we show that the game (V, N) is balanced if n<4.

5. PRELIMINARY OBSERVATIONS

Before proceeding to the special cases with n <4, we find it useful to prove a few
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preliminary results. A collection T of coalitions is said to be structural if there is a
subcollection T’ such that N=| J{S:Se T’} and either S=S’ or SNS’=¢J for
every S, S"eT’. If a collection T of coalitions is structural then it is balanced. For
we may let pg=1 for every Se T’ and pg=0 for every Se T—T".

PROPOSITION 9. If T is a structural collection then [ \{V(S):Se T} S V(N).

Proof. Since T is structural there is a subcollection 7’ such that N ={J{S:
SeT'} and either S=S" or SNS’= forevery S, S’ e T". Letue {V(S): Se T}.
Then ue V(S) for every Se T'. Hence for every Se T there is an x¢(S)e XS such
that if S=N or x5 € Fj5(xs(S)) then U,(x4(S), xs)2u; for every ieS. Let x=
(x5(S): SeT")and T'={S,, S,, - -, S,,}. Let x=(Xs,, X5,) € X. Then X5, € X5,
Since x5,(S;) € X5, (x5,(S)), Ts,» Fys, 5,0 = (x5,(S1), X5,)€X, so that (xg(S),),
X5, 0520 € Xysy (- Since xg,(S,)€ X2, it follows that (x5,(S)), Xs,(S,), %5, 5,0 € X.
Continuing this process, we arrive at x=(xs,(81), x5,(S,), -, x5, (S)=(xs(S):
SeT)eX. For each S’eT’, let x5()S'()=(xs(S): Se T'—{S’}). Then
X)s()S' ()€ X5, so that Ufx)=Ulxz(S"), X,5:()S’()) 2 u; for every ie S’. Since
S’ may be arbitrary in T’ and N=| J{S: Se T}, it follows that U(x) =u; for every
ie N. Thus ue V(N).

ProposITION 10.  Suppose that (i) X is convex and (ii) for every i€ N, U, is a real-
valued function on X such that U{((1 — Ox + tx") = U(x’) whenever Ux)=2 U(x’) and
0=<t=<1. If T contains all the (n—1)-person coalitions then T is balanced and
(V{V(S): SeT} = V(N).

Proof. Let T’ be the collection of all the (n— 1)-person coalitions. We may write
T'={S,, 8,;, -, S;}={N—{1}, N—{2}, - - -, N—{n}}. Let ps=1/(n—1) for every
SeT’and pg=0forevery Se T—T'. Then Y, s rps=1 for every ie N. Hence Tis
balanced.

Let ue (){¥(S): Se T}. Then for every Se T there is an x5(S)€ X5 such that if S=
N or x5 € Fis(xs(S)) then Ufxs(S), x,5)=u; for every ieS. If NeT then clearly
ue V(N). Hence suppose N¢T. For every ie N, let x;=Y;.s.rpsxi(S). Then

1
X = 2 Psx(S)=—— Z xi(N—{j})'

ieSeT n—1; 87

Let x=(x;, x,, -+, x,). Then

x=n11< Y x(N={h, ¥ xaN-{) o, Y x,,(N—{j})>

JeN—{1} JeN—{2} jeN—{n}
1
= (Con (N = {n}), X, (N = {1})+ (ey - pu- 1 (N = {N = 1}), x, _,(N = {1}))

el (N = (2), N —{1))

n 1
i=2 n—1

(xN—{i}(N_ {i}), x(N — {1})) .
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Since xy_ (N —{i})e X"~ for every i=2, 3, - - -, n and x(N—{1})€ X; for every
i=2,3, -, n, it follows that (xy_ (N —{i}), x(N—{1}))€ X for every i=2, 3,

n. Hence xe X by convexity. Furthermore U,(xy_,(N—{i}), x(N—{1})) = u, for
every i=2, 3, - -+, n, so that U;(x)=u, by the quasi-concavity of U,. Similarly
U{x) 2y, for every i=2, 3, - - -, n. Thus ue V(N).

PROPOSITION 11. [If there is an ie N such that i€ S for every SeT, then either
NeT or T is not balanced.

Proof. Suppose that N¢ T and T is balanced. If ie S for every ie N and every
Se Tthen T={N}. But N ¢ T by assumption, so that 7# {N}. Hence i ¢ S for some
ieNand SeT. Let T())={SeT: i¢S} and T'(i)={SeT: ieS}. Then T(i)# I for
some ie N. Clearly ( J/_,T()=T. Let SeT. Since N¢ T, S# N. Hence i¢ S for some
i€ N, so that Se€ T(i). Therefore Se | )., T(i). Thus T< | J7-, T(i), implying that 7=
\Ji=1 T(). Since T is balanced, there is a p= (ps: S€T) such that ps>0 for every
SeTand 35 rps=1 for every ie N. But T=T"(i*) for some i* € N by hypothesis,
so that > g_rps=1. Let S’ be any coalition in T. Then S’ # T, so that i’ ¢ S’ for some
i’e N, that is, S’ e T(i") for some i’eN. Since T=T(")uT'(i")and T(@")NnT'(i")=
&, it follows that

> PS+ ) ps=), ps=1= ) ps

SeT(i") SeT'(i’) SeT SeT'(i’)

and therefore

z ps=0.

SeT(’)

Thus pg. =0. Since S” is arbitrary in 7, pg=0 for every Se T, which contradicts that
T is balanced. Hence Ne T or T is not balanced.

6. TWO OR THREE-PERSON GAMES

THEOREM 1. Suppose that (i) X is compact, (ii) X' is nonempty for every i€ N, and
(iii) U; is a continuous real-valued function on X for every ie N. If n=2 then there
exists a cooperative solution.

Proof. There can be at most two balanced collections of coalitions: T; =
{1}, {2}} and T,={{1,2}}. Both are structural. Hence the theorem follows
from Propositions 2, 5, 6, 7, and 9 and Scarf’s Theorem.

We note that the above theorem for two-person games requires no convexity
assumptions. On the other hand, we note also that cooperatxve behaviors play no
crucial roles in two-person games.

Let us now turn to three-person games.

LemMa 1. Ifn=23 and T is balanced but not structural then T={{1, 2}, {2, 3},
{3, 1}}.
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Proof. Clearly, {1, 2, 3}¢T. Suppose {1}eT. Since T is not structural, {2,
3} ¢ T and either {2} ¢ T or {3} ¢ T. But, since T is balanced, it contains at least one
coalition owning 3, so that {3, 1} € 7. Then, letting 7" = {{2}, {3, 1}}, we see that T
is structural, a contradiction. Hence {2} ¢ T. Similarly, {3} ¢ T. Since T'is balanced,
for every ie N, T contains at least one coalition owning i, so that T={{1}, {1, 2},
{3, 1}}. But this is not balanced by Proposition 11. Therefore {1} ¢ T. Similarly,
{2}¢T and {3}¢T. Thus T<{{1,2}, {2,3}, {3, 1}}. Clearly, T#{{1,2}}, T#
{{2,3}}, and T#{{3, 1}}. Furthermore, by Proposition 11, T# {{1, 2}, {2, 3}},
T#{{2,3}, {3,1}}, and T#{{3,1}, {1,2}}. Hence it follows that T={{1, 2},
{2,3}, {3, 1}}.

THEOREM 2.  Suppose that (i) X is compact and convex, (i) X' is nonempty for
every i€ N, and (i1i) for every i€ N, U; is a continuous real-valued function on X such
that U((1—0x+1tx")Z U/x’') whenever U(x)= U/(x") and 0<t<1. If n=3 then
there exists a cooperative solution.

Proof. In view of Propositions 2, 5, 6, and 7 and Scarf’s Theorem, it suffices to
show that the game (¥, N) is balanced. Let T be any balanced collection of
coalitions. We wish to show that (\{V'(S): Se T} < V(N). By Proposition 9, we have
only to consider thé case for which T'is not structural. By Lemma 1, we may then let
T={{1,2}, {2, 3}, {3, 1}}. But then (\{V(S): SeT}< V(N) by Proposition 10, as -
desired.

7. FOUR-PERSON GAMES
In this section, we prove the following theorem in a series of lemmas.

THEOREM 3.  Suppose that (i) X is compact and convex, (i) X' is nonempty for
every i€ N, and (iii) for every i€ N, U, is a continuous real-valued function on X such
that U((1 —)x+tx") 2 U(x") whenever U(x) = U(x") and0< < 1. Ifn=4then there
exists a cooperative solution.

This is exactly the same as Theorem 2 for three-person games. But its proof is
rather lengthy. In the following proof, we assume that all the assumptions of this
theorem are always satisfied. It is again sufficient to show that the game (V, N) is
balanced. Let T be any balanced collection of coalitions. By Proposition 9, we
have only to show that (\{V'(S): Se T} = V(N) whenever Tis not structural. Hence
from here on we assume that T is not structural. Moreover, by Proposition 10, we
may assume that T contains at most three 3-person coalitions.

LEmMMA 2. If T contains three 3-person coalitions then N{V(S): SeT}= V(N).

Proof. Without loss of generality, we may assume that {{1, 2,4}, {1, 3, 4}, {2,
3,4}}<=Tand {1, 2, 3} ¢ T. Since T'is not structural, {1} ¢ T, {2}¢ T,and {3} ¢ T. If
{1,2}¢T,{2,3}¢ 7T, and {3, 1} ¢ T then 4€ S for every Se T. Since {1,2,3,4}¢T,
it follows from Proposition 11 that 7 is not balanced, a contradiction. Hence {1,



54 HIROAKI OSANA

2}eTor {2,3}eTor {3, 1} T. It suffices to consider the case for which {1, 2}eT.
Now let ue (\{V(S): SeT}. Then for every SeT there is an x5(S) € X5 such that
Ulxs(S), xs)=u; for every ieS and every x€Xs. Let x=4(x,;3,(134),
x,(234)) +4(x;,(12), x34(234)), where we simplify notation by writing, say,
(x15(12), x34(234) for (x,({1, 2}), x({1, 2}), x3({2, 3, 4}), x,({2, 3, 4})) and
(x;34(134), x,(234)) for (x,(134), x,(234), x;,(134)). Clearly, (x134(134),
x,(234)) € X and (x,,(12), x3,(234))€ X, so that xe X by convexity. Furthermore
U, (134(134), x,(234)) 2 u; and U, (x,,(12), x34(234)) Z uy, so that U,(x) = u, by the
quasi-concavity of U,. Noticing that x=14(x;(134), X734(234)) + 3(x,,(12),
x34(134)), we see that U,(x)Zu,. Similarly Us(x)=2u, and U,(x)=u,. Thus
ue V(N), which completes the proof.

LeMMA 3. If T contains two 3-person coalitions then (V{V(S): SeT} = V(N).

Proof. Without loss of generality, we may assume that {1,2,3}¢ 7, {1,2, 41 ¢ T,
and {{1, 3, 4}, {2, 3, 4}}<T. Since T is not structural, {1}¢7 and {2}¢T.
If {1, 2} € T then the same argument applies as that in the proof of Lemma 2. We as-
sume that {1, 2} ¢ Tin what follows. Suppose further that {1, 3} e T and {1,4}€T.
Then {2, 4} ¢ T and {2, 3} ¢ T. Consider the linear equation

101100 0 [p] [17
0100000 : 1
1110110 NE
_1101101__;;7_ 1

It is easy to see that this system has no nonnegative solution. Hence T is not
balanced, a contradiction. Therefore {1, 3} ¢ T or {1, 4} ¢ T. Suppose that {1, 3}eT
or {1, 4} e T. It suffices to consider the case for which {1, 3} e T. Then {1, 4} ¢ T and
{2, 4} ¢ T. The system of linear equations

101 000 07 [p] [17
0101000 : 1
1111110 N
_1100101__,;7_ 1]

has no nonnegative solution, so that T is not balanced. Hence {1, 3} ¢ T. Similarly
{1, 4} ¢ T. But the linear system :
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1 00000 0] [p 1
0111000 : 1
1110110 ::1
_1101101__,;.7_ 1]

has no nonnegative solution. Thus it is impossible that {1, 2} ¢ T. This completes the
proof of the lemma.

LemMMA 4. If T contains one 3-person coalition then N{V(S): SeT} = V(N).

Proof. Without loss of generality, we may assume that {1,2,3}¢7, {1, 2, 4} ¢T,
{1,3,4}¢T,and {2,3,4}eT. Then {1}¢T. Let ue ({V(S): Se T}. Then for every
SeT there is an x4(S)e X° such that U(xg(S), X,s) Zu; for every ieS and every
X)5(€ X)5. Two cases will be considered separately.

Case 1. ({1, 2}eT, {1, 3}eT, {4}eT) or ({1, 2}€T, {1, 4}€T, {3}€T) or
(1, 3}eT, {1,4}eT, {2} ).

It is sufficient to consider the subcase for which {1,2}e T, {1, 3} e T,and {4} e T.
Then {3, 4}¢T and {2, 4}¢T. Let x=4(x,(12), x3,(234))+1(x,5(13), x,(234),
x4(4)). Then xe X and U,(x) Zu,. Since x=4(x,(13), x,34(234)) +1(x,,(12), x;5(13),
x4(4)), Uy(x) Zu,. Similarly U;(x)2u; and U,(x) = u,. Therefore ue V(N).

Case 2. ({1,2}¢Tor {1,3}¢Tor {4} ¢T),({1,2}¢Tor {1,4}¢ Tor {3}¢7),
and ({1, 3}¢ T or {1,4}¢T or {2} ¢T).

This case will be divided into two subcases.

Case 2.1. {1,2}eT, {1, 3}€T, and {1, 4} e T. Let x=14(x,,(12), x3,(234)) +
$(x13(13), x24(234)) +4(x,,(14), x,3(234)). Then xe X and U,(x)=u,. Since x=
3(x1(13), x234(234)) +5(x;(14), x,34(234)) +4(x,5(12), x3(13), x,(14)), it follows
that Uy(x) Zu,. Similarly U;(x)2u, and U,(x)=u,. Thus ue V(N).

Case 2.2. {1, 2}¢T or {1, 3}¢T or {l, 4}¢T. Let us first suppose that
({1,2}eT, {1,3}eT)or ({1,2}eT, {1,4}eT) or ({1,3}€eT, {1, 4} e T). We have
only to consider the case for which {1, 2}eT and {1, 3}eT. Then {3, 4}¢7T,
{2,4}¢T,{1,4}¢T, and {4} ¢ T. But the linear system

001 100 0] [p] 17
110110 : 1
1 0110 1 ]
_100000__,)@ 1

has no nonnegative solution, so that T is not balanced. Hence ({1, 2}¢ T or
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{1,3}¢7), {1,2}¢Tor {1,4}¢T), and ({1, 3}¢ T or {1, 4} ¢ T). Now suppose
that {1,2}e T or {1, 3}e T or {1, 4} e T. It suffices to consider the case for which
{1,2}eT. Then {1,3}¢T, {1,4} ¢ T, {3,4} ¢ T, and either {3} ¢ T or {4} ¢ T. Sup-
pose further that {3}e T or {4} e T. If {3} € T then the linear system

01000 0 [p ] 17
111110 ' 1
101001 T
(1001 0 0| _p.6_~ 1

has no nonnegative solution, and therefore T is not balanced. Hence {3}¢T.
Similarly {4} ¢ T. But then 2€ S for every Se T, so that, by Proposition 11, T is not
balanced. It is therefore impossible that {1, 2}e T or {1, 3}e T or {1, 4} e T. Hence
{1,2}¢T, {1,3}¢ T, and {1, 4} ¢ T. But then no coalition in 7 contains 1, so that Tis
not balanced. Thus Case 2.2 is impossible. This completes the proof of the lemma.

LEMMA 5. If T contains at least one 2-person coalition then (\{V(S):
SeT}= V(N).

Proof. The case for which T contains at least one 3-person coalition has been
treated in Lemmas 2 to 4. So we assume in what follows that T contains no 3-person
coalition. By hypothesis, T contains at least one 2-person coalition. We may,
without loss of generality, that {1, 2}e 7. Then {3, 4} ¢ T. We first show that
{1,3}¢Tor {1, 4}¢T. To this end, suppose on the contrary that {1, 3} e T and
{1, 4}eT. Then {2, 4} ¢ T and {2, 3}¢ T. Suppose further that {2}eT or {3} e
T or {4} e T. We consider the case for which {2} eT. Then {3}¢ 7 and {4}¢T.
Since the linear system

1111 0[p] 17
1 00 0 1 : 1

01 0 0O : 1

0010 0] p] L1

has no nonnegative solution, T'is not balanced. Hence {2} ¢ T. Similarly {3} ¢ T and
{4} ¢ T. But then 1 € S for every S'e T and hence T'is not balanced by Proposition 11.
Thus we cannot have {1, 3}e T and {1, 4} € T simultaneously. Therefore either
{1, 3}¢ T or {1, 4} ¢ T. Similarly either {2, 3}¢ T or {2, 4} ¢ T. Two cases will
‘be considered separately.

Case 1. ({1,3}eT,{2,3}eT,and {4}eT)or({1,4}€T,{2,4}eT,and {3} e T).
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It suffices to consider the case for which {1, 3}eT, {2, 3}e7, and {4}eT.
Let ue(){V(S): SeT}. Then for every SeT there is an x4(S)e XS such that
Uxs(S), xs)2u; for every ieS and every xg €X)s. Let x=14(x,,(12),
x3(23), x4(4))+4(x,5(13), x,(23), x,(4)). Then xe X, Ui(x)Zu,, and Uy(x)=u,.
Furthermore U,(x) Z u, since x = 4(x,(12), x3(23), x,(4)) + 1(x,3(13), x,(23), x4,(4)).
Similarly U;(x) 2u;. Thus ue V(N).

Case 2. ({1, 3}¢T or {2, 3}¢T or {4}¢T) and ({1, 4}¢ T or {2, 4}¢T or
{31¢7).

Suppose {1, 3} e T. Then {1, 4} ¢ T, {2, 4} ¢ T, and either {2,3}¢Tor{4}¢T. If
{4} ¢ T then no coalition in T contains 4, so that T is not balanced. Hence {4}eT,
{2,3}¢T, {2}¢ T, and {3} ¢ T. But then the linear system

1t ro [ [0
1 000 P2 1
01 00 Ds ) 1
L0 00 1 Lpo] |1

has no nonnegative solution, and therefore 7T is not balanced. Thus {1, 3}¢T.
Similarly {1, 4} ¢ T. In view of the fact that the argument involved is symmetric with
respect to 1 and 2, we may conclude that {2, 3} ¢ T and {2, 4} ¢ T. Since {1, 2} T,
either {3} ¢ T or {4} ¢ T. If {3} ¢ T then no coalition in 7 contains 3, so that T is not
balanced. Therefore {4} ¢ T. But then a similar contradiction obtains. Thus Case 2
cannot occur. Hence the proof of Lemma 5 is complete.

All the cases for which T contains at least one 2 or 3-person coalition are covered
by Lemmas 2 to 5. Only the case for which T contains only one-person coalitions is
left with us. If T'is balanced then T={{1}, {2}, {3}, {4}}, which is structural. But we
have ruled out the structural cases. This completes the proof of Theorem 3.
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