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ON A COOPERATIVE SOLUTION FOR GENERALIZED 

             N-PERSON GAMES

Hiroaki OSANA

 1. INTRODUCTION

 Scarf (1971) proved the existence of a cooperative solution for a general class of 
n-person games, in which each player has a fixed set of possible strategies and a 
utility function of joint strategies. In such games there may be some externalities in 

preferences. but no externalities in technologies which determine the sets of 
possible strategies. In this note we consider a more general class of n-person games 
admitting externalities in technologies and provide a proof of the existence of a 
cooperative solution for the case n� 4. Proof for the case n> 4 is left as an open 

problem.

2. COOPERATIVE SOLUTION: DEFINITION

 Let N= { 1, 2, • • , n} be the set of players. A strategy of player i E N is denoted 
by a point xi of R"', which is called the strategy space. An n-tuple x = (xi, x2, • • • , 
x„) of strategies of the players is called a joint strategy. The set X of possible joint 
strategies is a subset of Rm". A coalition S is a nonempty subset of N. For each 
coalition S, we denote by xs a collection of strategies of the members of S, i.e., 
xs = (xi : i E S). If S= {i} we write x; for x{j}. For each coalition S, we denote by )S( 
the complementary coalition of S, i.e., )S(=N—S. If S={i} we write )i( for ){i}(. 
Let

Xs= {xs: (xs, x)s() e X for some x)s(}, 

Fs(x)s() = {xs : (xs, x)s() E X}, 

Xs = n {Fs(x)s() : x}s{ E X}s(}. 

Xs may be called the set of conditionally possible collusive strategies of coalition S 
and Xs may be called the set of unconditionally possible collusive strategies of 
coalition S. If S= {i} we write X; and X` for X{i} and X{`}, respectively. Let the 
preference relation of player i E N be represented by a utility function U; defined on 
X. Then, following Scarf (1971), we can introduce a concept of cooperative 
solution.

 DEFINITION.A joint strategy x* e X is called a cooperative solution if for 
every SE 2" — {0} and every xs E Xs there is an x)s( E F)s{(xs) such that
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48 HIROAKI OSANA

 U(xs, x)s() < U(x*) for some i E S. 
 It may be helpful to restate the definition as follows: A joint strategy x* e X is 

called a cooperative solution if there is no Se 2N — {C such that there is xs E Xs 
such that U(xs, x)s() > U;(x*) for every i E S and every x)s( E F)s((xs). That is, a 
cooperative solution is a joint strategy which can be improved upon by no 
coalition with unconditionally possible collusive strategies. We note that every 

joint strategy is trivially a cooperative solution if Xs is empty for every coalition 
S.

3. CHARACTERISTIC FUNCTION

 In order to prove the existence of a cooperative solution, we begin by describing 
the game in characteristic-function form. Let the characteristic function V be 
defined for every S E 2' — {0}  by

V(S)={u E R": There is an xs E Xs such that if either S = N 

          or x)s( E F)s((xs) then U;(xs, x)s() > u; for every i E S}. 

In what follows, several properties of V will be studied. 
 We first note the following obvious facts. 

  PROPOSITION 1.For every SE2N—{0}, 
 (i) Xs = U {Fs(x)s(): X)s( e X)s( }, 

 (il) f X is closed then the correspondence Fs is closed on xso 
 (iii) if X is closed then Xs is closed, 

 (iv) if X is bounded then Xs is bounded, 
 (v) Xs c Xs, 

 (vi) if X is compact then Xs is compact. 

PROPOSITION 2. If X is compact and U; is a continuous real-valued function on X 
for every i E S then V(S) is closed in K. 

  Proof Let {u9}9 1 be any sequence in V(S) converging to some u° E R. Then 
for every q there is an 4 e X5 such that if S = N or X)s( E F)s((xs) then Ut(4, 
x)s()>__u? for every i e S. By (vi) of Proposition 1, Xs is compact and hence we may, 
without loss of generality, suppose that the sequence {4}9 1 converges to some 
xs E Xs. If S= N then U.(x°) >_u° for every i E N by the continuity of U, so that 
u° e V(N). Next suppose S � N. Suppose further that U(xs, xs() <u? for some i E S 
and some xis(E F)s((xs). Since (4, x)s() E X for every q and every x)s( e Xs(, it 
follows that (4, x>s() E X, i.e., x())5( e F)s((xs) for every q. Therefore Ut(4, 4s()�4 uq 
for every q and every i E S, so that, by continuity, U;(4, x~s()>--_u° for every i E S, a 
contradiction. Hence U(4, x)s()>= u° for every i.e S and every x)s( E F)s((xs). 
Thus u° E V(S), completing the proof of the closedness of V(S). 

  PROPOSITION 3. If X is compact, Xs is nonempty, and U; is a continuous real-
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valued function on  X  for every i E S then V(S) is nonempty. 

Proof: Since, for every i e S, Ut is a continuous real-valued function on a 
compact set X, there is a ui = min Ut(X) for every i E S. Let u = (us, u)s(), where u)s( 
may be arbitrary. Take some xs E Xs. By (v) of Proposition 1, xs E Xs, so that 
F)s((xs) is nonempty. Let x)s( be any element of F)s((xs). Then (xs, x)s() E X, so that 
U,(xs, x)s() >_ui for every i E S. Thus u E V(S), proving the nonemptiness of V(S). 

  For every i E N, let 

V'(i) = {ui : (ui, nm) e V(i) for some u)<<}, 

where V(i)= V({i}). 

  PROPOSITION 4. If X is compact, Xi is nonempty, and Ut is a continuous real-
valued function on X then V'(i) has a maximum. 

  Proof By proposition 3, V(i) is nonempty, and so is V'(i). Let ui E V'(i). Then 
(ui, u)i() E V(i) for some u)i(. Hence there is an xi E Xi such that Ut(xi, x)i() >_ ui 
for every X)i( E Fw(xi). Since (xi, x)i() e X for every x)i( E Fw(xi), it follows that 
Ut (xi, x)i()<_ max Ut(X). Thus max Ut(X) is an upper bound of V'(i). Since 
V'(i) is nonempty, it has a least upper bound. Let ui = sup V'(i). Then there is a 
sequence {uq}q 1 in V'(i) converging to ui. Let u)i( be any element of R"-'. Then 
(u9, u)i() E V(i) for every q. Since V(i) is closed by Proposition 2, (u1, no() e V(i), so 
that ui E V'(i). Thus ui = max V'(i), completing the proof of the proposition. 

  For every nonempty SE 2N, let 

W(S) = {u E V(S) : ui >_ max V'(i) for every i E S} . 

  PROPOSITION 5. If X is compact and, for every i e S, Xi is nonempty and Ut is a 
continuous real-valued function on X then W(S) is nonempty. 

 Proof: By Proposition 4, we may define ui = max V'(i) for each i e S. Let u= 
(us, u)s(), where u)s( may be arbitrary. If we can show that u E V(S) then u E W(S) 
and the proposition will be proved. Since ui E V'(i) for every i e S, u E V(i) for every 
i E S. Hence for every i e S there is an xi e Xi such that Ut(x', xo ? ui for every 
every x)i( e Fm(xi), i.e., for every x)1( such that (x;, x)i() e X. Clearly xs E Xs. 
Let x)s( E F)s((xs). Then (xs, x)s() E X, so that Ut(xs, x)s() >__ ui for every i E S. 
Thus ne V(S). 

 PROPOSITION 6. If X is compact and, for every i e N, Xi is nonempty and Ut is a 
continuous real-valued function on X then W(N) is compact. 

 Proof By Proposition 2, V(N) is closed and so is W(N). Let u E W(N). Then 
u E V(N), so that there is an x e X such that Ut(x) >_ ui. for every i e N. Since x E X, 
Ut(x) S max Ut(X) for every i e N and therefore ui _< max Ut(X) for every i E N. Thus 
W(N) is bounded from above. Evidently W(N) is bounded from below. Hence 
W(N) is compact.
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PROPOSITION 7. If u e V(S) and u' �u then u' e V(S). 

Proof Obvious by the definition of V.

4. CORE

 In this section, we establish a relation between a cooperative solution of the 
game in normal form and the core of the game in characteristic-function form. We 
say that a utility vector u e V(N) can be improved upon by coati tion S if us > us for 
some u' E V(S). The core C(V, N) of a game (V, N) in characteristic-function 
form is defined by 

C(V, N) =— {u E V(N): u can be improved upon by no coalition} . 

  PROPOSITION 8. Suppose that X is compact and Ut is a continuous real-valued 
function on X for every i e N. If C(V, N) is nonempty then there is a cooperative 
solution. 

  Proof. Let u* e C( V, N). Then u* e V(N), so that there is an x* e X such that 
U.(x*) >__u* for every i E N. Suppose x*. were not a cooperative solution. Then there 
would exist an S e 2N, and an xs e Xs such that Ut(xs, x)s() > 1;11(x*) for every i E S 
and every x)s( E F)s((xs). By (i), (il), and (iv) of Proposition l., F)s((xs) is compact. 
Hence for every i E S there exists a u1= min { Ut(xs, x)s(): x)5( E F)s((xs)}. Then 
Ut(xs, x)s() >= ul > Ut(x*) for every i e S and every x)s( e 1) s((xs). Let u = (us, 
ujs(). Then us > us and use V(S), so that u* can be improved upon by S. Hence 
u*OC(V, N), a contradiction. Thus x* is a cooperative solutiion. 

  For proving the existence of a cooperative solution, it is t here fore sufficient to 
show the nonemptiness of the core C(V, N). For that matter, Scarf (1967) proved 
the theorem stated below. We need two definitions. A collection T of coalitions is 
said to be balanced if there is a p = (ps : SET)  such that psi" 0 for every SET  and 
ESET, iESPS= 1 for every i E N. An n-person game (V, N) issaid to be balanced if 
n{V(S): Sc T} c V(N) for every balanced collection T of coalitions. 

  THEOREM (Scarf). If (i) V(S) is closed for every nonempty SE 2N, (il) W(S) is 
nonempty for every nonempty Se 2N, (iii) W(N) is compact, and (iv) u E V(S) and 
u' ..�_u  imply u' E V(S), then the balanced n-person game (V, N.) has a nonempty core 
C(V, N). 

  This theorem, together with the results in the previous section, in particular, 
Propositions 2, 5, 6, and 7, implies that in order to show the nonemptiness of C( V, 
N) we have only to show that the game (V, N) is balanced. In the succeeding 
sections, we show that the game (V, N) is balanced if n� 4.

5. PRELIMINARY OBSERVlaIONS

Before proceeding to the special cases with n < 4 , we find it useful to prove a few
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preliminary results. A collection T of coalitions is said to be structural if there is a 
subcollection  T' such that N= U {S:  SeT ' } and either S=S'  or Sn S' = QS for 
every S, S' ET'. If a collection T of coalitions is structural then it is balanced. For 

we may let ps =1 for every SET' and Ps = 0 for every SET—T' . 

  PROPOSITION 9. If T is a structural collection then n{ V(S) : SET} V(N). 
                                                        Proof: Since T is structural there is a subcollection T' such that N=U{S: 

SET'} and either S=S' or SnS'=0 for every S. S' E T'. Let u E n{V(S): SET}. 
Then u E V(S) for every SET'. Hence for every Se T' there is an xs(S) E XS such 
that if S= N or x)s( E F)s((xs(S)) then U;(xs(S), x)s() >_ u; for every i E S. Let x= 
(x5(S): SET') and T' = { SI, S2, • • , S„, }. Let X = (XS X)S, () E X. Then X)S, ( E X)s, (. Si

nce xS, (SI) E X S', (xS, (SI), Xs2, --)Si „s2() _ (xs, (Si ), X)s, () E X, so that (x5, (SI), 
X)S, vs2() E X)s2{. Since x52(S2) E X S2, it follows that (x5,(Si), xs2(S2), X)S, US2) E X. C

ontinuing this process, we arrive at x = (x5, (SI), xs2(S2), • • • , xsm(S,n)) = (xs(S): 
S E T') e X. For each S' ET', let x)S-{()S'() = (xS(S): SET' — {S'}). Then 
x)s,(()S'( ) E X)S•{, so that U;(x)=U;(xs-(S'), x)s'(( )S'()) >__ u; for every i E S'. Since 
S' may be arbitrary in T' and N = U {S: Se T'}, it follows that U;(x) >_ u, for every 
i E N. Thus u E V(N). 

PROPOSITION 10. Suppose that (i) X is convex and (il) for every i E N, U; is a real-
valued function on X such that U;((1— t)x + tx') >__ U;(x') whenever U;(x)>--_U;(x) and 
0 _< t S 1. If T contains all the (n —1)-person coalitions then T is balanced and 
n { V(S): SET } V(N). 

Proof. Let T' be the collection of all the (n— 1)-person coalitions. We may write 
T'={51, 52, • • •, Sn}={N—{1}, N—{2}, • • •, N—{n}}. Let pS=1/(n-l) for every 
SET' and ps = 0 for every SET—T'. Then E; E S E Tp5 =1 for every i E N. Hence T is 
balanced. 
 Let ne n { V(S): S E T}. Then for every  Sc T there is an xs(S) E Xs such that if S = 

N or x)s( E F)s((xs(S)) then Ut(xs(S), x)S{) >_u; for every i E S. If N E T then clearly 
u E V(N). Hence suppose NOT. For every i E N, let x; = E;E sETPsx;(S). Then 

                        1             x; _ E psx;(S) _------ E x.(N 
ieSET•n—ljEN–{(} 

Let x = (xi, x2, • • • , xn). Then 

x= 
n-----l— IE xi(N — {j}) , x2(N — {j}), • • •, E x„(N — {j})      CN-ll}jeN–{2}jEN –;n} 

   

=--------1((xN_{„}(N—{n}), xn(N—{1}))+(xN_{i_1}(N—{N-l}), xi_1(N—{1})) 

       n-l + • • +(xN_{2j(N—{2}), x2(N—OD) 
” 1  

_ 

    ;En-l(xN_{;}(N—{i}), x;(N—{1})).
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Since xN _ Il}(N — { i}) E X N - ti} for every i= 2, 3, • • , n and xi(N — {1})  E Xi for every 
i= 2, 3, • • • , n, it follows that (xN _ {i}(N— {i}), xi(N — {1}))  E X for every i= 2, 3, • • • , 
n. Hence x E X by convexity. Furthermore Ut (xN _ (i}(N — {i}), xi(N — {1}))  >_ u1 for 
every i=2,  3, • • • , n, so that U, (x) > u, by the quasi-concavity of Ut. Similarly 
Ut(x)�u, for every i = 2, 3, • • • , n. Thus u E V(N). 

 PROPOSITION 11. If there is an i E N such that i E S for every S E T, then either 
N E T or T is not balanced. 

Proof. Suppose that N T and T is balanced. If te S for every i E N and every 
SET  then T={N}.  But NOT  by assumption, so that TO{N}.  Hence i (t S for some 
i E N and S E T. Let T(0= {S E T: i S} and T'(i) = {S E T: i E S}. Then T(00 0 for 
some i E N. Clearly U7=,  T (i) c T. Let S E T. Since N T, S 0 N. Hence i S for some 
i E N, so that S c T (i). Therefore S c U7, T(i). Thus T g U7=, T(i), implying that T= 
Un=1 T(i). Since T is balanced, there is a p= (ps: Se T) such that ps >_ 0 for every 
S c T and ESE T'(i>ps =1 for every i E N. But T= T'(i*) for some i* c N by hypothesis, 
so that EsETPs =1. Let S' be any coalition in T. Then S' T, so that i' S' for some 
i' c N, that is, S' E T(i') for some i' c N. Since T= T (i') u T'(i') and T (i') n T'(i') = 
0, it follows that

E Ps+ E Ps= > Ps =1= Ps 
SE T(i') SE T'(i') SETSE T'(i')

and therefore

E Ps=O. 
                                   SE T(i') 

Thus ps. = 0. Since S' is arbitrary in T, ps = 0 for every SE T, which contradicts that 

T is balanced. Hence N c T or T is not balanced.

6. TWO OR THREE-PERSON GAMES

 THEOREM 1. Suppose that (i) X is compact, (il) X' is nonempty for every i E N, and 

(iii) Ut is a continuous real-valued function on X for every i E N. If n=2  then there 
exists a cooperative solution. 

 Proof There can be at most two balanced collections of coalitions: Tl= 

{{1},  {2} } and T2 = {{1,  2} }. Both are structural. Hence the theorem follows 
from Propositions 2, 5, 6, 7, and 9 and Scarf's Theorem. 

 We note that the above theorem for two-person games requires no convexity 
assumptions. On the other hand, we note also that cooperative behaviors play no 
crucial roles in two-person games. 

  Let us now turn to three-person games. 

 LEMMA 1. If n=3  and T is balanced but not structural then T= {{ 1, 2}, {2, 31, 

{3, 1}}.
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  Proof Clearly,  { 1, 2, 3} 0 T. Suppose {1}  E T. Since T is not structural, {2, 
3} T and either {2} T or {3} 0 T. But, since T is balanced, it contains at least one 
coalition owning 3, so that {3, 1} e T. Then, letting T' = {{2}, {3, 111, we see that T 
is structural, a contradiction. Hence {2} 0 T. Similarly, {3} 0T. Since T is balanced, 
for every i E N, T contains at least one coalition owning i, so that T= {{11, { 1, 2}, 
{3, 1}}.  But this is not balanced by Proposition 11. Therefore {1}  0 T. Similarly, 
{2} OT and {3} 0 T. Thus T{{1, 2}, {2, 3}, {3, 111. Clearly, TO {{ 1, 2}}, TO 
{{2, 3}}, and TO{{3, 1}}. Furthermore, by Proposition 11, TO{{1, 2}, {2, 3}}, 
TO{{2, 3}, {3, 1}}, and TO{{3, 1}, {l, 2}}. Hence it follows that T={{l, 2}, 
{2, 3}, {3, 1}}. 

 THEOREM 2. Suppose that (i) X is compact and convex, (il) Xi is nonempty for 
every i E N, and (iii) for every i E N, Ut is a continuous real-valued function on X such 
that Ut((1- t)x + tx') >_ Ut(x') whenever Ut(x) >_ Ut(x) and 0 < t _< 1. If n=3  then 
there exists a cooperative solution. 

 Proof In view of Propositions 2, 5, 6, and 7 and Scarf's Theorem, it suffices to 
show that the game (V, N) is balanced. Let T be any balanced collection of 
coalitions. We wish to show that n { V(S): S E T} c V(N). By Proposition 9, we have 
only to consider the case for which Tis not structural . By Lemma 1, we may then let 

T= {{1, 2}, {2, 3}, {3, 1}}. But then n{V(S):Sc T} c V(N) by Proposition 10, as 
desired.

7. FOUR-PERSON GAMES

  In this section, we prove the following theorem in a series of lemmas . 

  THEOREM 3. Suppose that (i) X is compact and convex , (il) Xi is nonempty for 
every i e N, and (iii) for every i E N, Ut is a continuous real-valued f unction on X such 
that Ut((1- t)x + tx') >= Ut(x) whenever Ut(x) >_ Ut(x') and 0 �t�  1. If n= 4 then there 
exists a cooperative solution. 

 This is exactly the same as Theorem 2 for three-person games . But its proof is 
rather lengthy. In the following proof, we assume that all the assumptions of this 
theorem are always satisfied. It is again sufficient to show that the game (V, N) is 
balanced. Let T be any balanced collection of coalitions . By Proposition 9, we 
have only to show that n{ V(S): Se T} V(N) whenever Tis not structural. Hence 
from here on we assume that T is not structural . Moreover, by Proposition 10 , we 
may assume that T contains at most three s-person coalitions . 

 LEMMA 2. If T contains three s-person coalitions then n { V(S): Se T} V(N). 
 Proof Without loss of generality, we may assume that {{1, 2, 4}, {1, 3, 4}, {2, 

3, 4} } c T and { 1, 2, 3} 0 T. Since T is not structural, {1}  T, {2} T, and {3}  0 T. If 
{I, 2} 0T, {2, 3} 0 T, and {3, 1} 0T then 4 E S for every S E T. Since { 1, 2, 3, 4} T, 
it follows from Proposition 11 that T is not balanced, a contradiction. Hence { 1,
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 2} e T or {2, 3} e T or {3, 11 e T. It suffices to consider the case for which { 1, 2} e T. 
Now let ne n { V(S): S E T}. Then for every SET  there is an xs(S) E XS such that 
U.(xs(S), x)s() >__ ui for every i e S and every x)s( e X)s(. Let x = 2(xls4(134), 
x2(234))+ 2(x12(12), x34(234)), where we simplify notation by writing, say, 
(x12(12), x34(234)) for (xi({1, 2}), x2({1, 2}), x3({2, 3, 4}), x4({2, 3, 4})) and 
(xls4(134), x2(234)) for (xi(134), x2(234), x34(134)). Clearly, (xls4(134), 
x2(234)) E X and (x12(12), x34(234)) E X, so that x E X by convexity. Furthermore 
Ut(xls4(134), x2(234)) >_ u1 and Ut(x12(12), x34(234)) >_ u1, so that Ut(x) > u1 by the 
quasi-concavity of Ut. Noticing that x = Z(xi(134), x2s4(234)) + Z(x12(12), 
x34(134)), we see that U2(x)>_ u2. Similarly U3(x) > u3 and U4(x) > u4. Thus 
u e V(N), which completes the proof. 

 LEMMA 3. If T contains two s-person coalitions then n{V(S): Sc T} c V(N). 

 Proof Without loss of generality, we may assume that { 1, 2, 3} T, { 1, 2, 4} T, 
and {{ 1, 3, 4}, {2, 3, 4}} _c T. Since T is not structural, {11  T and {2} 0 T. 
If {1, 2} E Tthen the same argument applies as that in the proof of Lemma 2. We as-
sume that { 1, 2} T in what follows. Suppose further that { 1, 3} E T and { 1, 4} e T. 
Then {2, 4} T and {2, 3} 0 T. Consider the linear equation 

          1 0 1 1 0 0 0 pi 1 

0 1 0 0 0 0 0 •1 

1 1 1 0 1 1 0 •1 

                                                                                                                                                                       • 1 1 0 1 1 0 1 _p,_ _1_ 

It is easy to see that this system has no nonnegative solution. Hence T is not 
balanced, a contradiction. Therefore { 1, 3} T or { 1, 4} 0T. Suppose that { 1, 3} E T 
or { 1, 4} E T. It suffices to consider the case for which { 1, 3} E T. Then { 1, 4} T and 

{2, 4} 0T. The system of linear equations 

          1 0 1 0 0 0 0 pi 1 

0 1 0 1 0 0 0 •1 

1 1 1 1 1 1 0 •1 

                                                                                                                                                                                                      • 

              1 1 0 0 1 0 1_ p7_ 1_ 

has no nonnegative solution, so that T is not balanced. Hence {1, 3} 0 T. Similarly 

{ 1, 4} 0T. But the linear system
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          1 0 0 0 0 0 0  pi 1 

             0 1 1 1 0 0 0 

                                                                                                                                                                                                     •                                   

1 

1 1 1 0 1 1 0 

                                                                                                                                                                                                     •                                   

1                                                                                                                                                                                                      

• 

1 1 0 1 1 0 1 _p,_ _1_ 

has no nonnegative solution. Thus it is impossible that { 1, 2} 0 T. This completes the 
proof of the lemma. 

 LEMMA 4. If T contains one s-person coalition then n { V(S): S E T} c V(N). 
 Proof Without loss of generality, we may assume that { 1, 2, 3} T, { 1, 2, 4} T, 

{ 1, 3, 4} 0 T, and {2, 3, 4} E T. Then {1}  0 T. Let u E n { V(S): Sc T}. Then for every 
SET  there is an xs(S) E XS such that Ut(xs(S), x)st) >_ ui for every i E S and every 
x)s( E Xs(. Two cases will be considered separately. 

 Case 1. ({ 1, 2} E T, { 1, 3} E T, {4} E T) or (IL 2} E T, { 1, 4} ET, {3} E T) or 
({ 1, 31e T, { 1, 41e T, {21e T). 

 It is sufficient to consider the subcase for which {1, 2} E T, {1, 3} e T, and {4} e T. 
Then {3, 4} 0 T and {2, 4} 0 T. Let x = 1(x12(12), x34(234)) + 2(x13(13), x2(234), 
x4(4)). Then x E X and Ut (x) >= u1. Since x = i (xi(13), x2s4(234)) + 1(x12( 12),  x3(13), 
x4(4)), U2(x)>_ u2. Similarly U3(x)>_ u3 and U4(x) >_ u4. Therefore u E V(N). 

 Case 2. ({1, 2}0 T or {1, 310 T or {4}0 T), ({1, 210 T or {1, 410 T or {3} 0 T), 
and ({ 1, 3} T or { 1, 4} T or {2} 0T). 

 This case will be divided into two subcases. 
 Case 2.1. { 1, 2} E T, { 1, 3} ET, and { 1, 4} E T. Let x = 3(x12(12), x34(234)) + 

3 (x13(13), x24(234)) + 3 (x14(14), x23(234)). Then x E X and Ut(x)>_ u1. Since x = 
3 (xi(13), x2s4(234)) + -31(xi(14),  x2s4(234)) + 3 (x12(12), x3(13), x4(14)), it follows 
that U2(x)>_ u2. Similarly U3(x) >_ u3 and U4(x) >_ u4. Thus u E V(N). 

 Case 2.2. { 1, 2} 0 T or { 1, 3} T or { 1, 4} 0 T. Let us first suppose that 
({ 1, 2} E T, { 1, 31e T) or ({ 1, 21e T, { 1, 41e T) or ({ 1, .3} E T, { 1, 41e T). We have 
only to consider the case for which { 1, 2} e T and { 1, 3} e T. Then { 3, 4} 0 T, 
{2, 4} 0T, {1, 4} T, and {4} 0T. But the linear system 

              0 1 1 0 0 0 -pi- -1-

              1 1 0 1 1 0 

                                                                                                                                                                                                   •                                   

1 

                                                                                                                                                                       • 

1 0 1 1 0 1 

                                                                                                                                                                                                   •                                   

1                                                                                                                                                                                                    

• 

1 0 0 0 0 0 _p61 
                            _ __ 

has no nonnegative solution, so that T is not balanced . Hence ({ 1, 2} T or
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{ 1, 3} T), ({ 1, 2} T or { 1, 4} T), and ({ 1, 3} T or { 1, 4} T). Now suppose 
that { 1, 2} E T or { 1, 3} ET or { 1, 4} E T. It suffices to consider the case for which 

{1, 2} E T. Then {1, 3} T, {1, 4} T, {3, 4} T, and either {3} T or {4} 0 T. Sup-
pose further that {3} e T or {4} ET. If {3} E T then the linear system 

0 1 0 0 0 0 -pi- -1-

               1 1 1 1 1 0 

•                                   

1 

1 0 1 0 0 1 

                                                                                                                                                                        •                                   

1 

1 0 0 1 0 0 _p6__1_ 

has no nonnegative solution, and therefore T is not balanced. Hence {3} 0 T. 
Similarly {4} 0 T. But then 2 e S for every Se T, so that, by Proposition 11, T is not 
balanced. It is therefore impossible that { 1, 2} E T or { 1, 3} e T or { 1, 4} E T. Hence 

{ 1, 2} 0T, { 1, 3} 0T, and { 1, 4} 0T. But then no coalition in T contains 1, so that Tis 
not balanced. Thus Case 2.2 is impossible. This completes the proof of the lemma. 

 LEMMA 5. If T contains at least one 2-person coalition then n { V(S): 
SET} V(N). 

Proof The case for which T contains at least one s-person coalition has been 
treated in Lemmas 2 to 4. So we assume in what follows that T contains no s-person 
coalition. By hypothesis, T contains at least one 2-person coalition. We may, 
without loss of generality, that { 1, 2} e T. Then {3, 4} 0 T. We first show that 
{1, 3} T or {1, 4} 0T. To this end, suppose on the contrary that {1, 3} e T and 
{1, 4} ET. Then {2, 4} T and {2, 3} 0 T. Suppose further that {2} e T or {3} e 
T or {4} ET. We consider the case for which {2} e T. Then {3} T and {4} 0 T. 
Since the linear system 

            1 1 1 1 0 pi- 1 

1 0 0 0 1 

                                                                                                                                                                                       •                                 

1 

0 1 0 0 0 

                                                                                                                                                            •                                 

1                                                                                                                                                             

• 

_0 0 1 0 0 p5_1_ 

has no nonnegative solution, Tis not balanced. Hence .{2} 0T. Similarly {3} Tand 

{4} 0 T. But then 1 e S for every Se Tand hence Tis not balanced by Proposition 11. 
Thus we cannot have { 1, 3} E T and { 1, 4} ET simultaneously. Therefore either 

{1, 3} 0 T or {1, 4} 0 T. Similarly either {2, 3} T or {2, 4} 0 T. Two cases will 
be considered separately. 

 Case 1. ({1,3}ET,{2,3}ET, and {4} ET) or({1,4}ET,{2,4}ET, and {3}ET).
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 It suffices to consider the case for which  { 1, 3} e T, {2, 3} e T, and {4} E T. 
Let u E n { V(S):S E T}. Then for every  Sc T there is an xs(S) e Xs such that 
Ut(xs(S), x)s() >_ ui for every i E S and every x)s( E X)s(. Let x=-1-(x12(12), 

                                                        x3(23), x4(4)) + 1(x13(13), x2(23), x4(4)). Then x e X, Ut(x) > u1, and U4(x) >_ u4. 
Furthermore U2(x)>_ u2 since x = i (x12(12), x3(23), x4(4)) + 2(x13(13), x2(23), x4(4)). 
Similarly U3(x) >_ u3. Thus u E V(N). 

 Case 2. ({1, 31 OT or {2, 3} T or {4} T) and ({1, 41 T or {2, 4} T or 
{3} T). 

 Suppose { 1, 31E T. Then { 1, 4} OT, {2, 4} T, and either {2, 3} OT or {4} 0 T. If 
{4} T then no coalition in T contains 4, so that T is not balanced. Hence {4} E T, {2

, 3} T, {2} T, and {3} 0 T. But then the linear system

 1  1  1  0

1 0 0 0

0 1 0 0

 pl

P2

P3

 1

 1

1

             LO 0 0 1j Lp4J L1J 
has no nonnegative solution, and therefore T is not balanced. Thus { 1, 3} 0 T. 
Similarly { 1, 4} OT. In view of the fact that the argument involved is symmetric with 
respect to 1 and 2, we may conclude that {2, 31 0 T and {2, 41 0 T. Since {1, 2} e T, 
either {3} 0 T or {4} 0 T. If {3} 0 T then no coalition in T contains 3, so that T is not 
balanced. Therefore {4} 0 T. But then a similar contradiction obtains. Thus Case 2 
cannot occur. Hence the proof of Lemma 5 is complete. 

  All the cases for which Tcontains at least one 2 or s-person coalition are covered 
by Lemmas 2 to 5. Only the case for which T contains only one-person coalitions is 
left with us. If T is balanced then T= {{1}, {2}, {3}, {4}}, which is structural. But we 
have ruled out the structural cases. This completes the proof of Theorem 3.
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