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TASTE CHANGE AND THE STABILITY 
 OF COMPETITIVE EQUILIBRIUM

Ryuzo SATO and Victor CHOLEWICKI

 I

    The paucity of concrete results in the area of taste change is in no small part 
due to the very nature of the topic. It is clear to the casual observer that tastes do 
in fact change from one period to another. The difficulty lies in isolating the effects 
of taste change from the income and substitution effects, which are themselves 
likely to be altered by a change in tastes. The issue is further complicated by the 
changing characteristics of what is considered the same good over time, and the 
emergence of new goods. 

  At the level of the individual consumer it is known that a change taste will cause 
the consumer to change his utility maximizing choice within his attainable set. 
However, since there is no a priori method of determining the direction of the taste 
change, there is no a priori method of determining the direction of change in the 
consumer's consumption pattern. The fact that in the general case the effects of 
taste change in the absence of advertising are not predictable is a major reason for 
the relative dearth of literature on the subject. 

 Throughout this paper tastes will be treated as being exogenously determined. 
For our system  to accord with the traditional competitive model we must assume 
the absence of advertising. This is a major omission only if the primary effect of 
advertising is to induce people to buy a type of product they would not otherwise 
buy. However, if advertising simply induces consumers to buy a particular brand 
of a type of product they had already decided to purchase then our system must be 
regarded as being a highly relevant paradigm . Clearly, tastes can and do change in 
the absence of and even despite advertising. In that case shifts of demand between 

product categories are at least partially attributable to exogenous phenomena, 
the remainder being attributable to standard income and substitution effects; shifts 
of demand within product categories may result primarily from advertising. 
However, since our system deals with general product categories, the phenomena 
we intend to investigate are adequately represented in our model. 

 In equilibrium the consumer maximizes utility by attaining a commodity bundle 
and supplying services such that the marginal rate of substitution between every 

pair of goods and services is equal to the ratios of their prices. If the consumer's 
utility function contains parameters which are exogenous functions of time and 
which cause some or all of the marginal rates of substitution to also depend 
exogenously on time then we would expect the consumer's equilibrium of the
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26 RYUZO SATO and VICTOR CHOLEWICKI

initial time period to be non-optimal in a subsequent time period. His adjustment 
to a new equilibrium in the second time period would result in a new bundle of 

goods demanded and services supplied. However, if the production relationships 
have not also shifted, the result is market disequilibrium at the old set of prices. 
Hence, taste change, if it is empirically observable, would be expected to imply an 
equilibrium price vector which itself is a function of time. 

 Empirically meaningful taste change will be understood to denote changes in the 
consumer's utility which cause a change in the shape of the set CR where 

 CR={x : xRxo}(1.1) 

i.e., the "at least as good as" set. This occurs if at least some of the marginal rates 
of substitution change. The equilibrium, however, will not be displaced unless at 
least some marginal rates of substitution change when evaluated at x0, the initial 
equilibrium. Any utility functions which contains taste change parameters in a 
separable form, i.e., 

                 U(X, t) = a(t) + b(t) U(x) 

clearly will not result in displacement of equilibrium. A sufficient condition for 
taste change to result in equilibrium displacement is 

a Uxi 00(1 .2) 
at LUxii 

for some i # j. Condition (1.2) is also sufficient for the slope of the individual 
consumer's demand function in each direction to be functions of time. If the taste 
change parameters are continuously differentiable functions of time and, as is 
assumed, the partial derivatives of the utility function with respect to the taste 
change parameters exist, then the slopes of the individual's demand function will 
be continuously differentiable. Thus barring the possibility that each consumer's 
change in taste is exactly offset by changes in tastes of the other consumers, 
empirically significant taste change, as defined, will result in excess demand 
functions with continuous partial derivatives with respect to time. 

  The system of excess demand functions implied by the existence of exogeneously 
changing tastes over time is considerably more complicated than its counterpart in 
traditional analysis. A general excess demand function is particularly difficult to 
deal with since the null solution is not the critical point; transformation of the 
system to consideration of the null solution is not feasible in the general case since 
it results in a system which has no intuitive economic meaning. If the null solution 
cannot be considered for stability purposes, most of the techniques of Liapunov, 
indispensable for this kind of analysis, cannot be applied. Finally, linearization is 
not an acceptable alternative due to the presence of the exogeneously time 
dependent parameters which prevents arbitrarily close approximations for the 
entire time interval under consideration. Thus, we find the linear competitive 
model with time dependent coefficients to be the most efficient model for our
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investigation: it incorporates the basic properties of taste change , the exogenous 
time dependence of the excess demand system, while  remaining to the 

available mathematical techniques. 

 We will consider an economy in which the demand functions are approximated 

by the form

x;° = y;(t) + E ail(t)P  i = 1, 
j=i 

and the supply functions by the form 

                  xi' = 6i+ ElsijPj i= 1,  . • 

yielding the system of excess demand functions 

is eaaliernWeE=A(t)P+b(t) where A(t) is an n x n matrix whose elements are fur n x 1 vector, also time dependent. Price is assumed te to excess demand; speeds of adjustment are as sun exposition. The market price vector, P*(t), can be cor when excess 

,n

,n

(1.3)

(1.4)

(1.5)

whereA(t)isannxnmatrixwhoseelementsarefunctions of time and b(t) is an 
nxlvector,alsotimedependent.Priceisassumedtochange in direct proportion 
toexcessdemand;speedsofadjustmentareassumed to be unity to simplify 
exposition.Themarketpricevector,P*(t),canbecomputed by solving the system 
whenexcessdemand is equal to zero..._ assumethat A(t) is nonsingular . Thus 

P*(t) _ — A -' (t)b(t) . (1.6) 

 We would not expect P to tend to zero in our system; equilibrium in our model 
is defined to be zero deviation from the market-clearing price vector P*(t) . Thus, 
we are interested in the deviation from equilibrium over time and whether the 
deviation tends toward zero. Changes in the actual price vector , P(t) over time are 
governed by excess demand and can be solved for explicitly. 

 Assume for simplicity unit speed of adjustment in all markets. The standard 
assumption that market price changes as a function of excess demand yields 

P= A(t)P(t) +b(t)(1.7) 

= A(t)[P(t) — P*(t)](1 .8) 

where (1.7) and (1.8) follow from (1.5) and (1.6) respectively. Since we are 
interested in the dynamic behavior of deviations from equilibrium price we 
subtract P*(t) from both sides of (1.8) which yields 

1= A(t)z(t) + h(t)(1.9) 

where

z(t) - P(t) — P*(t) (1.10)
and
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 h(t)  =  p*(t)(1.11) 

= —A-lb(t)—A-lb(t)(1.12) 

The term A-l is the derivative of the inverse of A(t), not the inverse of the 
derivative of A(t). Also, it can be shown that the same derivation of the basic 
equation of motion holds for any set of strictly positive speeds of adjustment. 

 Our model takes the form of a non-autonomous, non-homogeneous system of 
first order, ordinary differential equations, which includes the traditional linear 
model as a special case. When A and b are constant we are left with the far simpler 
autonomous case. In our analysis we will find it necessary to use definitions of 
stability commonly found in the literature on the stability of non-autonomous 
systems. The equation 

y=A(t)y(1.13)

is said to be 

 (i) UNIFORMLY STABLE if and only if there exists a positive constant K such that 

               Y(t) Y-l(s) I<_K for to < s < t < 00(1.14) 

 (il) UNIFORMLY ASYMPTOTICALLY STABLE if and only if there exist positive 
constants K and a such that 

Y(t)Y-l(s)I <—Ke-""-S) for to<-s<t<00(1.15) 

In contrast, the more familiar definitions of stability are of the form: STABILITY if 
and only if I Y(t) I <K and ASYMPTOTIC STABILITY if and only if I Y(t) I —40 as t—> co. 
Throughout, Y(t) denotes the fundamental matrix of (1.13). In subsequent 
analysis we will find that the stability of our system will depend on the bounds we 
can compute on the characteristic roots of A(t), the rate of change of A(t) and b(t), 

the boundedness of A-l(0, A(t) and b(t), and the magnitude of the changes of 
A(t). 

 A final note before proceeding: Our model can be regarded either as an 
approximation of an equilibrium system, in which case we seek a tendency to 
return to equilibrium; or disequilibrium system in which the short side of the 
market prevails and in which goods are not carried from one period to the next.

II

As our first result we state

 THEOREM 1. (a) If, for the multi-market system, 

i= A(t)z+h(t) 

 (i) The real parts of the characteristic roots of A(t) 
—E, where E>0, for all t>—to,

(2.1)

are all less than or equal to
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 (il) taste change is bounded and results in the boundedness of  I A(t) I and I b(t) I for 
all t> to, and 

  (iii) tastes change occurs at a sufficiently small rate where "sufficiently small" is 
defined as I A(t) I satisfying the bound derived in the proof below and also satisfying 

A(s) I os < M 1 < 00(2.2) 
to 

                   b(s) I os < M2 < 00(2.3)         Jo 
then the multi-market system is stable. 

  (b) If, in addition, tastes converge to an ultimate taste pattern at a sufficiently 
fast rate, where "sufficiently fast" is defined to be a rate which satisfies 

A(t) I <—Kle-atQ>0 for t> to (2.4) 

16(0 I <K2e-°t a>0 for t> to (2.5) 

then the system is globally asymptotically stable and the absolute value of z(t), the 
deviation of f P(t) from P*(t), satisfies an exponential bound 

I P(t)—P*(t)I <Ke-"t a>0 for t>to(2.6) 

Proof: (a) Consider the Liapunov function 

                V(x, t) = X'Q(t)X(2.7) 

where Q(t) is a bounded, differentiable symmetric, positive definite matrix which 
satisfies 

QA + A'Q = —1.(2.8) 

By a theorem of Liapunov we know that a symmetric positive definite matrix 
satisfying (2.8) exists for a given matrix A whose roots all have negative real parts 
less than —E. Therefore, a matrix Q(t) can be found for each A(t). Since A(t) is 
differentiable, Q(t) must also be differentiable. The boundedness and non-
singularity of A(t) assures the boundedness of Q(t). Taking the derivative of (2.8) 
with respect to time we have 

QA+QA+A'Q+A'Q=O.(2.9) 
The smaller the bound we impose on II A II, the smaller will be the bound on 11011 
since A(t) and Q(t) are bounded. 

 The time derivative of our Liapunov function is 

V = x' [A'Q + QA + Q]x(2.10) 

        =x'Bx(2 .11) 

where
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 B=[—I+0].(2.12) 

Clearly, if B, a symmetirc matrix, is negative definite over the entire interval, the 
null solution of 

.x=A(t)x(2.13) 

is exponentially stable. This is guaranteed if the elements of Q are sufficiently 
small. The fact that Q(t) is bounded means that V(x, t) possesses an infinitely small 
upper bound, ensuring the uniform asymptotic stability of (2.13). 

 We now return to our system 

a=A(t)z—p*(2.14) 

which has the solution 

z(t) = X (t)X -1(to)11 +X (t)X -1(s)h(s)os.(2.15)                 It: 
The boundedness of A(t) to tether with the strict negativity of its characteristic 
roots ensures that A- (t)  exists and is bounded for all t> to. Continuous 
differentiability of both A(t) and b(t) ensures that A(t) and b(t) are also bounded 
for t> to. Since 

A-l=A-IAA-l(2.16) 

and 

IA-l I = IA-IAA-l I < IA-ll2IA I.(2.17) 

This allows us to deduce that 

 t<00(2.18)              jlAl(s)Ids_<M3<cc 
                                o and, therefore, that 

JIh(s)Ids~M4<00 t<00(2.19) 
since each individual term in h(s) is either bounded or has a convergent integral. 
We have 

          z(t) I <_ I X (t)X -1(to)n I+ 1 X (t)X -1(s) I I h(s) I os (2.20) 
to 

<Kle-fl`+K2Ms(2.21) 

due to the uniform asymptotic stability of the homogeneous system, and 

P(t)—P*(t) I <—K2Ms+Kle-jJ` t> to(2.22)
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 (b) If I  A(t) I converges at a sufficiently fast rate then I A -1(01 does also since           

I A-l(t) I< I A-l(t) 12 IA(t) IA-l(t) I2Kle-at t>_ to (2.23) 

Thus, I h(t) I, consisting of bounded terms multiplied by exponentially declining 
terms must also satisfy an exponential bound 

h(t) I _<Kse-a` t> to(2.24) 

Using (2.21) we have

z(t) <Kle-a'+K4e-act-s)e-asds (2.25)

<Kse-Yl y>0(2 .26) 

where y is the maximum of 0—a, a, o — f , /3) . Q.E.D. 

  The theorem allows us to deduce stability of the linear competitive system on the 
basis of the negativity of the real parts of all characteristic roots of A(t) over the 
entire interval, the boundedness of our excess demand functions, and a "suf-
ficiently" small rate of change of the coefficients of the excess demand matrix, A(t). 
It should be stressed that the boundedness of IIA(t) II is not in itself sufficient when 
combined with the conditions on the real parts of the characteristic roots of A(t). 
We need II A(t) II and therefore, II Q(011 to satisfy an a priori bound. Since Q(t) is 
unique for each t E [0, 00), and II Q(t) II is directly related to 1124(011 11 it is clear that for 
sufficiently small IIA(t)II our Liapunov function has a negative time derivative 
along all solutions of the homogeneous portion of our system. 

 The restrictions on A(t) can be viewed as representing bounds on the rate of 
change of price elasticities of demand which, in principle, are empirically 
observable phenomena. For the purpose of the theorem, the rate of change of the 
intercept terms need only be bounded, thereby ensuring the boundedness of P*(t). 
The standard case, in which no exogenous changes occur, can be seen as being a 
special case of the above system since P*(t) is identically zero. However, it should 
be noted that as long as exogenous change occurs, i.e., if either A or b is time 
dependent, the standard analysis is inappropriate since P*(t) will not be zero. 

 The behavior of the actual price, P(t), over time is evident from the estimates 
(2.25) and (2.26) above. Given an initial set of prices P(0), all deviations from P*(t) 
will be bounded by a function which decreases over time. If II P*(t) II is simply 
bounded the function approaches a positive constant asymptotically; thus, the set h
as the form as shown inside the shaded areas in Fig. 1. All solutions will remain 

within the outer boundaries of the shaded region. The boundaries of the region 
tend to a horizontal shape as 00. In the case of exponential convergence of the 
coefficients of our excess demand function the boundaries of our attraction set 
approach zero as t— 00. (Shaded area is region of attraction. Area between dotted 
line is stability region.)



32 RYUZO SATO and VICTOR CHOLEWICKI

 P(t)

Ps (1)

Fig.  1.

 We now seek to establish stability conditions on the linear competitive system 
when the rate of change of the coefficients of our excess demand functions, and 
therefore, the rate of taste change, are bounded but not required to satisfy an a 

priori bound. However, we must first develop some preliminary concepts. The 
measure of a matrix A, p(A) is defined to be 

             p(A) = rim 1 + hA—1(2.27) 
h-•+o h 

where I I+ hA I is the norm of I + hA. The above formulation can be used with any 
norm which translates an array, such as a matrix or a vector, into a nonnegative 
distance on the real line. An important property of a matrix is 

               p(A) < I A I(2.28) 

which can be deduced from the definition. A second important property of the 
measure of a matrix is 

u(A)—u(B)<IA—Bl.(2.29) 

This follows from 

 limII+hAI —1—II+hBI —lliml+IhAI—1—1—IhBI+—hl 
h-.+ohhh-^hhh hhh 

                                                (2.30) 

 The importance of (2.29) is that if A = A(t) and B = A(t + h) we can deduce that 

p[A(t)] possesses a right-hand derivative.'

' Much of the material regarding the continuous differentiability of the measure of A(t) is drawn 

from Copper [10], Chapters 1 and 2.
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 THEOREM 2. (a) If 

  (i) taste change is bounded and results in bounded demand elasticities and 
intercepts, and 

  (il) tastes change smoothly and continuously yielding excess demand f unctions 
whose coefficients and intercepts have bounded time derivatives and satisfy (2.2) and 
(2.3), and 

 (iii) the own price effect is negative and greater in absolute value than the sum of 
the absolute values of the cross price effects for each market over the entire time 
interval, 0 < t< 00 then the linear competitive system is stable. 

 (b) If the conditions of part (a) hold and if ' tastes converge to an ultimate taste 
regime exponentially, resulting in the exponential convergence of'b(t) and A(t) , the 
linear competitive system is uniformly asymptotically stable . 

 Proof (a) Let r(t)=1Y (t) I where Y(t) is a fundamental solution of 

A(t)y(2.31) 

and r+'(t) denote the right-hand derivative of I Y(t) ~. 

r = rim I Y(t)+ hY(t) I — I Y(t) l (2.32) 
n-a+o

= rim 
h-+ +0

Y(t) + hA(t) Y(t) — I Y(t)

h
(2.33)

I------------------I + hA(t) I —1 r' < limY(t) I 
.(2.34) 

h-' +o h 

Since (2.22) satisfies the Kamke condition for differential inequalities we can state 

r+'(t) <p[A(t)]r(t) .(2.35) 

Integrating (2.23) we have 

               Y(t) I < I Y(to) I exp p[A(s)]os . (2.36) 
to 

Provided that p[A(t)] < —y <0 over the entire interval (to, 00) we have uniform 
asymptotic stability.2 The strict negativity of the measure of A(t) throughout 

precludes convergence of the integral on the right-hand side, i.e ., 

                 Y(t) I < I Y(to) I exp [—yt] • (2.37) 

Choosing as a norm 

Y I= sup I Y I.(2.38) 
1<i<„

2 The mathematics which forms the basis of the theorem is due to Lozinskii [22].
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We find that the measure of A(t), for this choice of norm for A(t) real, is defined to 
be 

 u[A(t)]  = sup [ail(t) + E aij(t) • (2.39) 
1 <<i<n j#i 

The strict negativity of (2.27) is the condition on the slopes of the excess demand 
functions imposed by the theorem. 

 As in the proof of the previous theorem we consider the explicit solution of the 
linear competitive system 

z(t) = X (t)X -1(to)ti + X (t)X -1(s)h(s)os . (2.40) 
to 

The boundedness of the elements of A -1(t), b(t), A -1(t) and b(t) again ensures the 
boundedness of the elements of I P*(t) I over the entire interval, [0, co). Using the 
same argument as in Theorem 1 we can deduce stability. 

  (b) Again, the argument is the same as in part b of Theorem 1. Q.E.D. 

  The results of Theorem 2 depend on our choice of norm. By choosing the norm 

IyI= Iyil (2.41) 
i=1 

we obtain another sufficiency condition since for this norm with A(t) real, yields, as 
a computation for the norm of A(t)

p[A(t) = sup [ajjt)  + E la il(t) . (2.42)                       1 �j<nj*i 

We can now state: 

 THOREM 3. (a) If'conditions (i) and (il) of Thorem 2 hold and if the effect of a 
change in the 11h price has a greater effect on excess demand in the i"' market than the 
sum of the absolute values of its effects on all other markets, for all i, and over the 
entire interval [to, 00), i.e., if 

ail(t) + E l al j(t) I < --y<0  j=1, ... , n (2.43) 
                        i*j 

for all t>_ to, then the linear competitive system is uniformly stable. 
 (b) If, in addition, part (b) of Theorem 2 holds then the system is uniformly 

asymptotically stable. 

  Theorems 2 and 3 are the non-autonomous counterparts of' the dominant diagonal 
theorems of fthe traditional analysis. It is interesting to note that since the signs of'the 
off.-diagonal elements need not be specified, and since these elements are functions of 
time, the transition of'one good for being a substitute for, say the k`h good to being a 
complement for the same good in a subsequent time period need not destabilize the
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system, providing that the conditions of the theorems are met. Also, it should be 
noted that the sufficiency conditions derived from the use of the measure of A(t) 
are slightly stronger than the requirement of the strict negativity of the real parts 
of all the characteristic roots of A(t) over the entire interval,  [to, 00). It can be 
shown that p[A(t)] is an upper bound for the R[At(t)] for any t E [to, 00). 

 Finally, it should be clear that none of the theorems above is a special case of 
any of the others. In Theorem 1 it was necessary to impose restrictions on the 
norm of A(t) to derive sufficient conditions for the convergence of the homo-

geneous system. Thus, not just any bound on 11/.1(011 11 would suffice. However, it is 
evident that systems which do not possess the dominant diagonal properties of 
Theorems 2 or 3 could satisfy the sufficiency criteria of Theorem 1. 

 We now consider the question of whether the linear competitive system can be 
shown to be stable if the magnitudes of the taste change effects in the excess 
demand matrix are "sufficiently small." Intuition suggests that infinitesimally 
small changes in the price effect terms would not significantly alter the stability 

properties of the system. To determine just how small these changes must be we 
consider a special case of our system where 

A(t)=[A + B(t)](2.44) 

where A is a matrix of constants and whose characteristic roots all have strictly 
negative real parts. B(t) is a matrix whose elements are continuous functions of 
time. We can now state 

 THEOREM 4. (a) If taste change is of a sufficiently small magnitude, resulting in 
sufficiently small deviations of the excess demand function matrix A(t) from a 
constant matrix A, all of whose characteristic roots have real parts strictly negative, 
i.e., if I B(t) I is "sufficiently small," which is defined to be 

B(01 K(2.45) 

where —a is greater than the largest characteristic root of A, and K is a positive 
constant whose magnitude depends on the characteristic roots of A, and conditions (i) 
and (il) of Theorem 2 hold. 

      in particular I b(s) I os < m l < + 00, 11)(s) I os < m2 < + 00 

                              I
over the entire interval, t e [to, 00], then the linear competitive system is stable. 

 (b) If all the conditions of part (a) hold, and if I B(t) I and 11(t) I decline at an 
exponential rate then the competitive equilibrium system is uniformly asymptotically 
stable. 

Proof: Let X(t) represent the solution of the autonomous system 

           z = Ax(2.46) 

and Q(t) can be expressed as
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 Q(t)  = X (t)X - i(to)Q(to) + X (t) X - i (s)B(s)Q(s)os 
                                                         to 

Using the fact that (2.46) is uniformly asymptotically stable we have 

Q(t) I <— K exp [ — a(t — to)] I Q(to)

(2.47)

              + k exp [ — r(t — s) I B(s) I I Q(s) I os .(2.48) 
to 

Multiplying both sides by exp (at), and denoting 

w(t) = exp (at) I Q(t) I(2.49) 

we have 

           w(t) < K exp (010)I Q(to) I + K w(s) I B(s) I os .(2.50) 
to 

Application of Gronwall's inequality yields 

          w(t) �_k exp (ate) I Q(to) I exp[KfIB(s)Ids .(2.51) 
                                                                  o If I B(t) I < a/k for all t e [to, 00] then our solution of (x = (A + B(t)) is uniformly 

asymptotically stable. 
 We again turn to the full system. As before we conclude that the boundedness of 

P* together with the uniform asymptotic stability of the homogeneous segment 

yields the desired result. The proof of part (b) is also straightforward and is 
omitted. Q.E.D.

III 

 In conclusion, we outline some of the factors that account for the divergence of 
our analysis from the traditional results. 

 The fact that A(t) is a function of t together with b > 0 or A(t) const and 

b(t) a function of time makes the system non-autonomous since it insures 
that P* = P*(t), a function of time. This is what prevents easy translation to 
origin, i.e., it always leaves one extra term. 

 The stability of z = A(t)x requires more restrictions than the constant A case to 
ensure stability. It can be shown that some A(t) with rapidly increasing off-
diagonal elements are unstable. Also, crossings of characteristic roots are a 

problem for exponential stability. This is similar to the standard constant A case in 
that it can cause divergence from equilibrium for a period of time. However, unlike 
the constant A case, where it is known that exponential terms in solution will soon 
dominate the t" terms, in the A(t) case it is not known when and how often roots 
will cross, making the establishment of an exponentially decreasing upper bound
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on the absolute divergence from equilibrium difficult. Thus, not just any A(t) with 
all roots having negative real parts will do. 

 The restrictions on I b(t) I and  ( A(t) I are due to the fact that, in our system, A(t) 
and b(t) are "driving forces" which would otherwise continuously drive the 
system from equilibrium. The assumption that tastes converge over time to an 
ultimate taste pattern is consistent with the hypothesis that taste is a function of 
the level of education which itself converges as a function of time. 

 As a final note it should be made clear that the case of variable speeds of 
adjustment in the individual markets is a far simpler matter than what has been 
discussed above. The possibility that the adjustment speeds are functions of time 
does not yield an equilibrium price which varies as a function of time. The 
resulting system is non-autonomous but is still homogeneous after the translation, 
z(t) = (P(t) — pc). For this case the system is stable whenever I X(t)X -1(s) I < K and 
is uniformly . asymptotically stable whenever I X(t)X -1(s) I < Kc - en, for K, o > 0, in 
the theorems above.
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