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A VARIATIONAL PROBLEM RELATING TO THE 

  THEORY OF RESOURCE ALLOCATIONS

Torn  MARUYAMA*

1. INTRODUCTION

 Aumann-Perles [5] rigorously examined the following variational problem and 
established a sufficient condition for the existence of optimal solutions. 

 Let T = [0, 1 ] with Lebesgue measure di and X= RI, (non-negative orthant of 
R`). Furthermore let u: T x X—R be measurable on T x X. The problem is to

Maximize 
x:T X 

subject to

 u(t, x(t))di 

T

x(t)di=(1, 1, • • •, 1) . 

T

 The motivation of this type of the variational problem comes from mathemati-
cal economics. (cf: Aumann-Shapley [6], Kawamata [17], and Yaari [23].) For 
example, we can interprete u(t, x) as the utility of the agent t when his 
consumption vector is x. The total quantity of each consumption good is assumed 
to be equal to 1. In this setting, x : T-*X can be interpreted as an allocation of 
consumption goods among agents. And our problem is to find out an allocation 
which maximizes the sum (or integral) of the utilities of all agents corresponding to 
this allocation. 

 Some generalizations of the Aumann-Perles' problem were given by Artstein [3], 

[4] and Berliocchi-Lasry [8]. (See also Ark in [1], Arkin-Levin [2], Balder [7], and 
Ekeland-Temam [16], pp. 361-373.) 

 The present paper is a revised and enlarged version of Maruyama [18], and aims 
at a further sophistification of the above problem, which is required for a certain 
kind of economic analysis (cf. Kawamata [17]). 

 Sketch of the problem: Let T be a compact metric space, and µ be a non-atomic 

positive Radon measure on T which satisfies 

( i) µ(T) = C < + 00, 
  * The earlier version of this paper was read at the annual meeting of the Mathematical Society of 

Japan in 1979. The author wishes to express his cordial thanks to Professors Shokichi Iyanaga, Kiyosi 
Ita, Zvi Artstein, Wataru Takahashi and Kunio Kawamata for thier helpful comments. The financial 
support by "Keio Gijuku Fund for the Advancement of Education and Research" is also gratefully 
acknowledged.
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86TORU MARUYAMA 

 (il)  ,u(aE)  =  0 for every measurable set E in T . 

We designate by anx the set of all non-negative Radon measures p on T such that 

p is absolutely continuous with respect to it (denoted by p< µ) and 

(*)the Radon-Nikodym derivative of p is a characteristic             function of some measurable set of T. 

 Let X be a locally compact Polish space, and let 

u:TxX—>R 

gr:TxX->it+; i=1, 2, •••, 1. 

Then our problem is : 

          Maximize u(t, x(t)) op 
            µ, x T 

           subject to 
(I)              a) Ig;(t, x(t))op__<w,; i=1, 2, • • •, 1 

                       T

            b) pETUX 

             c) x : T-o(  is measurable 

where (wt,w2, • • • , w) is a fixed vector. 
 Our purpose is to establish a set of sufficient conditions which assures the 

existence of optimal solutions for the problem (I). 

 Let p E 93/X and let h be its Radon-Nikodym derivative. Then h and x : T—*X 

jointly determine a Radon measure on T x X of the form: 

(t)y = 81 O bx(oh(t) dµ 

                                  T Hence our problem is equivalent to the problem: 

           Maximize u(t, x) dy 
TxX 

            subject to (II) 

                 fa)gr(t, x) dy<(D„i= 1,  2, •,.,1 
                           TxX 

            b) y is of the form (t). 

 I am indebted to Berliocchi-Lasry [8] for such a transformation of the original 

problem (I) into the form (II) and a full use of disintegration theory in this
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problem. In contrast with 
variable  h as well as x.

Berliocchi-Lasry [8], we introduce the new control

 II. SOME RESULTS

Let y be a Radon measure on

ON DISTINTEGRATION OF MEASURES 

T x X which can be expressed as

= IT6,0 v[t] op(t) ,

where bf is the Dirac measure at t, p is a Radon measure on T, and v : t H v[t] is a 
weak*-measurable mapping on T into the set of all Radon probability measures 
on X. If such a expression is possible, y is said to have a p-disintegration. 

 It may be convenient to collect here a few results on distintegration of measures 
which are useful in later discussions. 

  T and X are assumed to be compact throughout this section. 

 PROPOSITION 1 (Castaing [12]). Let be a measurable multi-valued 

mapping such that 1(t) c X is compact for all t E T. Then a Radon measure y on T x X 
has a disintegration of the form:

= 

T

supp

6,0 v[t] op

v[t] c T(t) a.e. (t)

if and only U.

for all f e C(T x X) 

  PROPOSITION 2

f(t, x) dy <sup f(t, x) d p 
TxXT xET(t) 

, the set of all continuous real-valued f unctions on 

(Maruyama [19]). Consider

yn = 

= T

6,0

6,0

vn[t] dpn;

v[t] op

n=1, 2, •• - 

T x X.

(1) If

a) w*-rim p„= p 
b) tp-4 t implies w*-rim v[t p] = v„[t] f or all n 

                       <continuity> 
c) t-+t implies w*-rim vn[t„] = v[t] for all t e T, 

                     <continuous convergence>
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then  w*-rim y„ = y. 

  (il) w*-rim y„ = y implies a). But b) and c) are not necessarily true . 

  Let Ms be the set of all those Radon measures on T which are absolutely 
continuous with respect to µ and the Radon-Nikodym derivatives belong to 

S-{heL'(µ)10_<h(t)<1 a.e.} . 

  Before we proceed to the next lemma, we should remind of the following fact : 

   If T is a compact metric space, then the set of all Radon measures p on T such 
   that 0 5 p(T)_< C endowed with the weak*-topology is metrizable . (cf. 
   Maruyama [21], Theorem 5.23.) 

  LEMMA 1. Ms is convex and weak*-compact. 

Proof: Since the convexity is almost obvious, it is enough to prove the weak*-
compactness. Since the set "JJ2 of all non-negative Radon measures p on T such that 
,u(T)_�.0 is weak*-compact, we have only to prove that 9311s is a closed subset of M. 
Let 

op„=h„dµ; fine 

be a sequence in Ms which converges, in the weak*-topology, to some Radon 
measure p on T; that is

          f dµ„ = f h„ dµ f d,u for every f E C(T) , (1) 
  T TT 

where C(T) is the set of all the continuous functions on T into R . Our aim is to 
show that p E gJ2S. 

 S is weakly relatively compact in Ll(µ) because it is L'-bounded and uniformly 
integrable. (cf. Maruyama [21], Theorem 5.18.) Hence , by Eberlein-Smulian's 
Theorem, {h„} has a weakly convergent subsequence {h„m} to some h E Ll(ll); that 
is

            gh„m d fi —÷ f gh dµ for every g E L'oil). 
   TT 

Since C(T) c L°°(µ) in this case, (1) and (2) jointly imply that

(2)

f h„indµ th dµ = f f op for every f E C(T) . (3) 
TTT 

Therefore we must have op = hoµ. Since S is strongly closed, it is also weakly 
closed. Consequently h is an element of S as it is a weak limit of a sequence in S. 
Thus we have completed the proof of the desired result: p E Ms . Q.E.D. 

 REMARK. In Lemma 1, the uniform boundedness of the Radon-Nikodym 
derivatives of the measures in Ms is crucial. We have to keep in mind the fact that 
the set of all those Radon measures p such that
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               (i)  1,1/71, (il) acµ(T)_C 
      (without any specification for the Radon-Nikodym derivatives) 

is not weak*-compact. For example, let T= [0, 1], p be the Lebesgue measure on T. 
Then we can find an approximating sequence {p} in this set, which converges to 
the Dirac measure bo at 0. But 60 is not absolutely continuous with respect to p. 
The condition of the uniform boundedness of the Radon-Nikodym derivatives 
excludes such possibilities. 

 We designate by A(p) the set of all Radon measures on T x X which have 

it-disintegrations, and put

A(ins) = U A(p) • 
µegUS 

 LEMMA 2. (Castaing [12]). Let p be a non-negative Radon measure on T. Then 
A(p) is convex and weak*-compact. 

 LEMMA 3. The multi-valued mapping 

A :11 I -.A(p) 

is compact-valued and upper hemi-continuous (u.h.c.) on ggns. 

 Proof The compact-valuedness of A is an immediate consequence of Lemma 
2. Hence it is sufficient to show the u.h.c. 

 Let {p„} be a sequence in Ms which converges to it, E Ms. Pick up any element

Yn = 6,0404,,;   

     T

n=1,2, •••

of A(p„). As is well-known, A is u.h.c. at po if and only if there exists a convergent 
subsequence {ynm} of {y„} whose limit belongs to A(po). (cf. Maruyama [21], 
Theorem 2.28.) 

 Since T x X is compact, the set of all non-negative Radon measures on Tx X 
where total variations are uniformly bounded by C is weak*-compact. Hence {y„} 
has a convergent subsequence {y„m}. Let 

w*- rim y„,,, = Yo 
m - a 

 We have to show that To E A(po). Since each y„ (n=1, 2, • • •) has pn-dis-
integration,

f(t, x) dyn [supt(t, x)] dpn (4) 
TxXT xeX 

for every/ e C(T x X) by Proposition 1. It can easily be seen, by Beige's Maximum 
Theorem (Maruyama [21], Thorem 2.32), the function 

                       t H supt(t, x) 
                                              xeX
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is continuous on T. Therefore  w*-rim µn = no implies that 

n-4oo 

rim [supt(t, x)] dµn =[supt(t,  x)] d po.(5) 
n+ooT xEXT xeX 

Furthermore it follows from (4) and (5) that 

                  f(t, x) dye [supt(t, x)] dpo 
TxXT xeX 

Hence, again by Proposition 1, yo e A(no). This proves the u.h.c. of A. Q.E.D. 

  PROPOSITION 3. A(SJJls) is convex and weak*-compact. 

  Proof By Lemma 1, `JJls is weak*-compact. Hence A(SJJIs) is weak*-compact 
as an image of a compact set by a compact-valued u.h.c. multi-valued mapping A 

(Maruyama [21], Theorem 2.27). Convexity is almost obvious. Q.E.D. 

         III. CARATHEODORY FUNCTIONS AND NORMAL INTEGRANDS 

 In this section, we are going to examine the continuity property of the mapping 
of the form: 

:y H f(t, x)dy, yEoMs) • 
                                   TxX 

If the function f : T x X-+R is continuous and supp f (support of f) is compact, 
then ill is obviously continuous. However the continuity or semi-continuity of tp is 
assured even for larger classes of functions. 

  DEFINITION. Let (T, ~, p) be a measure space and X be a topological space. A 
function f :T x X--44 is called a Caratheodory function if it satisfies the following 
two conditions: 

  (i) t ^--* f(t, x) is p-measurable for every x e X, 

 (il) x f--^ ,f (t, x) is continuous for almost every t e T, 

The following lemma is well-known as Scorza-Dragoni's Theorem. (cf: Berliocchi-
Lasry [8], pp. 132-133; Maruyama [21], Theorem 6.34.) 

  LEMMA 4. Assume that (T, p) is an exterior regular, Borer finite measure 
space, X is a second countable topological space, and f : Tx X—*R is a 
Caratheodory f unction. Then for any E>0,  there is a closed set Fc T such that 

u(T \F) < e 

f I F x X is continuous 

(where f I F x X means the restriction of f to F x X). 
  PROPOSITION 4. Assume that T and X are compact metric spaces. Then for any
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 Caratheodory's  f  icnction f ; the mapping : A(931/s)--41t defined by 

:y f-a f(t, x)dy 
TxX 

is continuous. 

 Proof: Let {y„} be a sequence in O(5731s) which converges to yo, where 

yn= f b,avn[t]dµn; n=1, 2, ... 

yo = 61®vo[t] dµo 

T

91

(1)

For any e> 0, choose 0 <6 <ollfll.  Then, by Lemma 4, there is a compact set 
K c T such that 

µo(T\K) <c~(2) 

I. ( K x X is continuous. 
Since w*- rim = yo implies w*- rim "in= µo by Proposition 2, there exists an n' e N 

n eon 

such that 

I µn(T) - µo(T) I <6. for all n >_ n' . (3) 

(cf: Maruyama [21], Theorem 5.20 or Parthasarathy [22], pp. 40-42.) Since 
µo(0K) = 0, there exists an n" e N such that 

,un(K)-µo(K)I <b for all n>_n" .(4) 

Therefore 

,un(T\K)=µn(T)-µn(K) 

(110(T)+6)-(µo(K)-6) (by (3)) 

�µo(T)-µo(K)+2b(5) 

=µo(T\K)+2b<36(by (2)) 

                                    for all n >= Max (n', n") . 

 Next, remark that/ is continuous on the closed set Kx X. Hence, by Tietze 
Extension Theorem, f I K x X has a continuous extension f to the whole space T x X 
such that 11,711= II f II (sup-norm). Since w*- rim yn = yo, there is an n"' E N such that 

               f dyn - Jdyo < e for all n >_n"' . (6) 
         TxXTxX 

Hence
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   J dyn  f4)
TxXTxX 

 5_ dynJ dyn 
   TxX TxX 

+ J dynJ dye 
     TxXTxX

    .dye — f dye 
TxX TxX

-2lIJ II Iyn(K x X)+ yo( x X)

Hence

    J dyn — J dye 
TxX TxX

�86llfll+E 

<2E

      (by (2), (4), (5), and (6)) 

for all n� Max (n', n", n"').

rim f dyn = f dye 
n--ooo TxX TxX 

                                                                            Q.E.D. 

 REMARK. Berliocchi-Lasry[8] proved a theorem corresponding to our 
Proposition 4 for the case 

: R 

where p is fixed and T and X are not necessarily compact. But when we regard it as 
a variable, the problem becomes somewhat harder as we have seen. 

 The following definition specifies a more general kind of functions. 

DEFINITION. Let (T, g, p) be a measure space and X be a topological space. A 
function f :T x X-dR is called a normal integrand if the multi-valued mapping 

            t Epi f(t)={(x, a)EXxRIf(t, x)<a} 

is measurable and closed-valued. 

 The following lemma, gives a characterization of positive normal integrands. 

(For the proof, see Berliocchi-Lasry [8], pp. 138-139 and Maruyama [21], 
Theorem 6.36, Theorem 6.38.) 

  LEMMA 5. Let T and X be a locally compact Polish space, and p be a finite Radon 
measure on T. Then the following three statements are equivalent for a function 

f': TxX—^ R+. 
(i) f is a positive normal integrand. 

 (il) There exists a Borer function g : T x X + such that
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                   1.  x  H g(t, x) is l.s.c., 

                2. f(t, x)=g(t, x) 

for almost every t e T. 
 (iii) There exists a sequence of Caratheodory functions {L : Tx X--*R+} such 

that 

f(t, x) = sup f n(t, x) for almost every t E T . 

n 

  Then we can get the following fact as an immediate corollary of Proposition 4. 

  COROLLARY 1. Assume that T and X are compact metric spaces. Then for any 

positive normal integrand f, the mapping 

tIJ:y i .f d y 

i'xX is lower semi-continuous on A(Dis). 

                       IV. ADMISSIBLE MEASURES 

  Let gr, g2, • • • , gr: X x Y--qo, + 00] be a positive normal integrands. In this 
section, we are interested in a sufficient condition which assures the compactness 
of A(wt : gr, g2, • • • , gr) defined as follows: 

A(s s ; g,, g2, • • . , gr)=y e A(` s)gr dy <wt for all i= I,  2, • • • , 1 
TxX 

 The following lemma is an easy consequence of Proposition 3 and Corollary 1. 

  LEMMA 6. If T and X are compact metric spaces, then A(iJIs ; gr, g2, • • • , gr) 
is convex and weak*-compact. 

 Once the above results is established, we can extend it, under some restriction, to 
the case where X is not necessarily compact. The idea of the proof is due to 
Berliocchi-Lasry [8], p. 150. 

  Let X be locally compact and X* = X u {x col be the one-point compactification 
of X. Then we say that a function h: X-+ R diverges to + co at xa, (symbolically 
h(x)—+ + co as x—+xc„) if there is, for each B> 0, a compact set KB= X such that 

                 h(x)>=B for any xeX\KB . 

  PROPOSITION 5. Let T be a compact metric space and X be a locally compact 
Polish space. If 

1 E gr(t, x)-4 + co a.e. as x—*x~ , 
i=1 

then A(gJtis ; gr, g2, • • • , gr) is convex and weak*-compact .
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 Proof: Since the convexity is obvious, we have only to show the compactness . 
 If we define the normal integrand 

91+1= E gr, 
i=1 

then 

91+1(t, x)->+ co a.e. as x->x,„ 

and 

A(s ; 91, g2, • • • , 91) = A(Ds ; gr, g2, • • • , gr, gr+1) • 

where the right hand side is the set of all those elements y of A(Tis ; gr, g2, • ' • , gr) 
which also satisfy the inequality 

91+1dy�Ewi• 
TxXi=1 

Hence we can assume, without loss of generality, that 

gr(t, x)-> + 00 a.e. as x-->xce .

If we extend gr to TxX* by 

91(t, x)- gr(t, x) for x�x +oofor x=x„,,, 

then gr is also a normal integrand on Tx X*. On the other hand, g2, g3, • 
be extended to normal integrands on T x X* by 

gr(t, x)={                         gr(t, x)for xx~ 
ofor x=xao. 

We designate by A*(gJls ; 91, 92, ' 'Jo the set of all non-negative Radon 

y* on T x X* such that 
 (i) y* E A*(9)2s) where A*(9Ns) is defined in the same manner as A(93/s. 

 (il) gr(t, x) dy* <= w ; i= I,  2, ...,1. 
TxX 

 Then by Lemma 6, A*(SJJ2s; 91, 92, • • • , 91) is compact and convex. 
 Let 0(y*) be the restriction of y* E A*(gJls; g 

continuous functions with compact supports in Tx X. Then clearly the 

0:y*  0(y*) 

is a continuous bijection of A* (Ms; gr, 92, • • , 91) onto A(SJJls; gr, g2, 
Therefore we get the desired result.

• 
, g, can

,Jr) the set of all non-negative Radon measures 

defined in the same manner as );

;et of all 

T x X. Then clearly the mapping

•• • , g,). 

Q.E.I.
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                        V. OPTIMAL SOLUTIONS 

 In this final section, we are going to formulate the problem exactly and find out 
a sufficient condition which assures the existence of optimal solutions. 

 Before we proceed to our main theorem, we need one more new concept. 

 DEFINITION.  Let  f and g be real-valued functions on T x X. We write/. -Gg if for 
any e>0,  there exists a  E .Ll (µ) such that 

f(t, x) >_ E(t)= f (t, x) < g(t, x) a.e. 

PROPOSITION 6. Assume the following three conditions for u: T x X-4 R. 

 (i) u is Borer measurable, 
 (il) u(t, x) is upper semi-continuous in x for almost every t, 

 (iii) u+ -<g; i.e. for any e>0,  there exists a ,e.1,1(P)  such that 

u+(1, x)>__ E(t)u+(t, x)< g(t, x) 

where 

u+(t, x)= Max {u(t, x), 0} . 

Then the mapping

y  u(t, x) dy 
       TxX

is upper semi-continuous on A(9ls; gr, g2, • • • , g). 

.Proof: Let X* =X v {x,,} be the one-point compactification of X. And we can 
assume without loss of generality, that gr(t, x)-* + 00 as x-*xc,. Define gr and g; 

(i=2, • • • , 1) exactly as in Proposition 5. Then A*(9s; gr, 42, • • • , gr) is 
homeomorphic to A(Tis; gr, g2, • • • , g) under the restriction mapping 0 (cf. 
Proposition 5). 

 Furthermore if we define 

u(t, x) for x x o, u(
t, x) = 

+co for x=xco, 

then u is u.s.c. on T x X*. If we put 

u+(t, x) = Max {u(t, x), 0} 

u-(t, x)=u+(t, x)—u(t, x) , 

then IF is a positive normal integrand. Then by Corollary 1, the mapping 

* Hu-(t , x)dy* 
TxX*

is l.s.c. on A* (9311s; gr, g2, • • , gr). Hence we can conclude that the mapping
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is 1.s.c. on  0(s  J1s; g2, 

0*(' s;91, 92,

0(ggIs; gr, g2,
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   YH udy 
                TxX 

... , gr). (cf. Fig. 1). 

                  1.s.c. 

TxX*

0

 gr)~Y

 Since u+ < g, it is clear that a+ -< = E -di; i.e. for any e> 0, there exists a fu 

tion E Ll(µ) (we can, and do, assume 

u+(t, x)�._ sup 

Therefore a+ E Ll(y*) for all y* E 0 

                  h(t, x) = 

then 

                h(t, x)<u+(t, x)<h(t, x)+Eg(t, x) . 

Hence 

0<_ hdy*<_hdy*+sEwi. 
TxX*TxX*i=1 

Since ",(t)—h(t, x) is a positive normal integrand on Tx X*, the mapping 

y*(E — h) dy* = ,(t)xx*(x) dY* — h(t, x) dy* 
     TxX*TxX*TxX* 

is 1.s.c. on A*(Ms; 91, g2, • • ' , gr) 
 Here the first integrand E(t)yx*(x) is a Caratheodory function. So, 

Proposition 4, the mapping 

y* f--> (t)Xx*(x) dY* 
TxX* 

is continuous. Therefore the mapping

* --------------u-(t , x)dy* 
TxX* 

 cont. 

              u-(t, x)dy 
                 TxX 

 Fig. 1. 

ne-

(1)

by
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 y* H — h(t, x) dy* 
TxX*

is l:s.c., and hence, by (1)

is u.s.c. on A* 

conclude that

(1    S,gr,-2,

y H I u+ 
TxX*

(t, x) dy*

• • • , g,). By the same method as in the case u- , we can

y tu+(t, x)dy 
        TxX

is u.s.c. on 0(931s; gr, g2, • • • , gr). 
 Thus we get the desired result. 

 By Propositions 5 and 6, the following problem (A) has a solution.

(A)

Maximize    u(t, x) dy 
 TxX

on /l'Ns;gr,g2, • ,gr)

Q.E.D.

Let

y* _

be a solution of (A). Then y*

6t0 v* [t] dµ*

is obviously a solution of the problem:

                  Maximize u(t, x) dy 
7 T 

(B) 
on d(µ* ; g i, g2, .. , g~) 

(Note that 0(R*; gr, g2, • • • , gr) is also weak*-compact and convex.) 
 In order to approach our final goal, we have to prepare a couple of results from 

convex analysis. Proposition 7 comes from Caratheodory's theorem, and 
Proposition 8 is an easy corollary of Ljapunov's convexity theorem. 

 PROPOSITION 7. Let X be a locally convex topological linear space and K be a 
compact convex subset of X. Let /i : X-> R (i= 1, 2, • • • , 1) be affine functions and 
define 

H={xe i(x)O;i=1,2, •••,l}. 

Then any extreme point of H can be expressed as a convex combination of at most 

(1+1) extreme points of K. 

 PROPOSITION 8. Let p be a finite non-atomic measure of T and consider the
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formulas:

 P 

j=  1   STf j(t)dµ; i=1,2, •••,n

j=1 

Then there exists a decomposition Tl, T2, • • •, TP of T such that 

  PP E fTf j(t) dµ =f i(t) dµ(i= 1, 2, • • , n) . j=1 j=1Tj 

(See Berliocchi-Lasry [8] or Maruyama [21], Theorem 6.6 for Proposition 7, 
Maruyama [21], Corollary 6.3 for Proposition 8.) 

 Since the mapping

and

y f-> u(t, x) dy 

T

is linear and O(µ*; gr, g2, • • • , g,) is convex, y* can be assumed to be an extreme 

point of A(µ*; gr, g2, • • • , gr) without loss of generality. 
 According to Proposition 7, the extreme points of A(SIJls; gr, g2, • • • , gr) can be 

expressed as a convex combination of those of O(gJls). Hence we are motivated to 
find out the concrete forms of the extreme points of O(T/s). Let

Y= 
T

v[t]h(t)dµ

be an extreme point of A(93 4). Then we can claim that 

         h must be a characteristic function of some measurable set. 

 Proof. Assume that h is not a characteristic function of any measurable subset 
of T. Then there exists a non-zero integrable function g: T-+[0, 1] such that 

0<_h(t)±g(t)<1. 

(cf. Castaing-Valadier [13], pp. 108-109 or Maruyama [21], Theorem 6.3.) If we 
define

then y + and y

+ _

Y-= 
T

6,0

of®

v[t](h + g) dµ

v[t](h - g) dµ ,

_ are distinct elements of L(9)Is) and clearly 

1 
Y=-2(Y+ +Y-) •



            VARIATIONAL PROBLEMgg 

This contradicts to our assumption that y is an extreme point of  A(Ti  ) . 

                                                                         Q.E.D. 

 Consequently, any extreme point of A( S) must be of the form 

Y=.1  di cox(t)xE(t) dµ 
where xE is the characteristic function of E. 

 Hence by Proposition 8, there exists measurable mappings x: T— X (1=1, 2, 
• • • , /+ 1) and measurable sets Ej (j= 1, 2, • • • , 1+ 1) such that 

                                 1+1 

y = E%j di®aXJ(t)XEJ(t)dµ 
j=1 T 

                                          1+1 

0, E %j=1 . 
j=1 

By Proposition 8, there exists a decomposition Ti, T2, • • • , Tl+, of T such that , 

                                      l+1 

                u(t, x) dy* = Eu(t, x j(t))xE j (t) dµ 
           T x X j=1Tj 

                                      1+1 

                      = E u(t, x;(0)41 
j= 1 TjnEj 

l+1 

91(t, x) dy* = E, gr(t, x.i(t))XEj(t) dµ 
          7 xi=1 Ti 

                                        1+1 

                       =gr(t , xi(t)) dl 
j= 1 TjnEj 

(i=1,2, •••,1). 

If we define 

                                    1+1 

x*(t) = xT(t)xJ`t) 
j= 1 

               µ*(E) = f xA dI1 
                                    E with 

                                   1+1 

A= U (TjnEj), 
j= 1 

then (p*, x*) is a solution of our original problem (I).
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 Summing up, we have the following final result. 

 THEOREM. Assume the followings: 
 a)  u:  T x X-* R satisfies the conditions (i), (il) and (iii) in Proposition 

 b) gr: T x X-II + (i= 1, 2, • • • , I) is a positive normal integrand such 

t 

             g(t, x)= 1 gr(t, x)--* + 00 (a.e. i) as x-->x,, . 
                               i=t 

Then our problem (I) has a solution.

6; 

that

Keio University
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