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CONVERGENT NON-TATONNEMENT RESOURCE ALLOCATION 

   PROCESSES FOR NON-CLASSICAL ENVIRONMENTS

Hiroaki OSANAl

1. INTRODUCTION

 The basic theorems of welfare economics assert that, in "classical economic 
environments," every equilibrium allocation of the perfectly competitive resource 
allocation process is a Pareto-optimum and every Pareto-optimum can be attained 
as an equilibrium allocation of that process with the aid of some redistribution of 
the initial resource endowments (cf. Arrow [1, Theorems 4 and 5] and Debreu [4, 
Theorem (1) of 6.3 and Theorem (1) of 6.4], for instance). According to the 
terminology introduced by Hurwicz [6], the perfectly competitive resource 
allocation process is non-wasteful and unbiased for classical economic environ-
ments, where by "classical economic environments" we mean economic 
environemnts free of externalities, non-convexities, and discontinuities. Since the 

perfectly competitive resource allocation process is neither non-wasteful nor 
unbiased for non-classical economic environments, it is natural to ask whether 
there exists a resource allocation process which is non-wasteful and unbiased for 
those environments. It is of particular interest to ask whether we can find such a 

process which is informationally decentralized in some sense. 
 The "greed process" developed by Hurwicz [6] is an example of such processes. 

This process is non-wasteful and unibiased for every economic environment free of 
externalities, but fails to be dynamically stable. By relaxing Hurwicz' definition of 
informational decentralization, Camacho [3] presented a process, called the "D 
process," which is non-wasteful and unbiased for every economic environment. 
Nor is this process dynamically stable. 

 Dynamically stable processes have been proposed by Kanemitsu [8 and 9], 
Ledyard [10], and Hurwicz, Radner, and Reiter [7]. The "inertia-greed process" of 
Kanemitsu [8] is of the tatonnement type, while the "A process" of Kanemitsu [9], 
the "P process" of Ledyard [10], and the "B process" of Hurwicz, Radner, and 
Reiter [7] are of the non-tatonnement type. The inertia-greed process and the A 

process are designed for economic environments free of externalities and 
indivisibilities, and the B process is designed for economic environments which 
are free of externalities and contain either indivisible commodities only or divisible

 1 The author is grateful to Professor L . Hurwicz for his valuable comments and suggestions, and to 

Professors H. Kanemitsu and S. Reiter for helpful discussions. Needless to say, the author is solely 

responsible for any errors. Financial support by the National Science Foundation is gratefully 

acknowledged.
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72 HIROAKI OSANA

commodities only. On the other hand, the P process is designed for economic 
environments which admit externalities but not  non-convexities. 

 In the present paper, we shall construct two classes of non-stochastic, non-
tatonnement resource allocation processes, one for economies without externa-
lities and the other for economies with externalities. The basic idea is quite simple 
and obtained by observing the following obvious fact: Any resource allocation 

process is non-wasteful and unbiased if (1) it finds a Pareto-superior allocation 
whenever such an allocation exists, (2) it generates a Pareto-superior allocation 
whenever such an allocation is founc, and (3) it keeps the predetermined allocation 
unchanged when no Pareto-superior allocation is found. Such a process will generate 
a sequence of allocations, and to each allocation in this sequence there corresponds 
the set of allocations Pareto-superior to it. By properties (2) and (3), the sequence 
of allocations is non-decreasing with respect to each agent's preference relation, 
and hence the corresponding sequence of Pareto-superior sets is non-increasing. 
This kind of monotonicity is likely to facilitate stability of the process, and, for this 
purpose, non-tatonnement processes seem to be more suitable than tatonnement 
ones (cf. Uzawa [12], Ledyard [10], Hurwicz, Radner, and Reiter [7], and 
Kanemitsu [9]; see also Hahn and Negishi [5]). Of course, the monotonicity by 
itself does not guarantee convergence to Pareto-optimal allocations. 

 In order to get properties (2) and (3), it suffices to specify an outcome rule which 
implements a Pareto-superior allocation if and only if such an allocation is found. 
This automatically guarantees the unbiasedness of the process (cf. Theorems 2 and 
5). Property (1) is essential for non-wastefulness. Note that if each agent proposes 
the whole set of allocations which he prefers to the status quo then the 
intersection of the proposals coincides with the set of Pareto-superior allocations, 
while if some agent proposes only a small set of allocations which he much prefers 
to the status quo then the intersection of the proposals may be empty. In order to 

get property (1), therefore, it suffices to specify a response rule which 
"discourages" the agents to be so unamibitious as to accept making proposals 

which require them to stay within arbitrarily small neighborhoods of the status 

quo. Such a response rule, together with an outcome rule satisfying properties (2) 
and (3), constitutes a non-wasteful resource allocation process (cf. Theorems 1 and 
4). In the present paper, we shall not give any specific device for guaranteeing 
convergence to Pareto-optimal allocations, but simply try to avoid convergence to 
non-optimal allocations (cf. Theorems 3 and 6). This can be done by 
"encouraging" the agents to be so ambitious as to reject making any proposals 

which require them to stay within arbitrarily small neighborhoods of the status 

quo. If the preference relations are re presentable by utility functions, then the 
monotonicity of the sequence of allocations would imply convergence of the 
corresponding sequence of utility allocations to some point on the utility frontier 

(cf. Corollaries to Theorems 3 and 6). Thus, the crucial step in constructing our 
processes will be to combine the "encouragement effect" and "discouragement 
effect" of the response rule.
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 The response rules of the inertia-greed process and the A process are weighted 
averages of the greed response and the stationary response. Hence the instability of 
the greed response is mitigated by the stabilizing effects of the stationary response, 
while the static properties of the greed process are preserved. The instability of the 

greed process seems to come from the way in which the opportunity sets are 
defined to which the greed response is made. That is, the opportunity sets are 
highly sensitive to the other agents' messages. The basic idea of Kanemitsu's 

processes is to modify the greed response, while retaining Hurwicz's way of 
defining the opportunity sets. In the present paper, we shall modify the definition 
of the "opportunity sets," while retaining the greed response. Many other 
intermediate variants of these two approaches might be conceivable. Therefore, it 
will be of great interest to axiomatize the properties of the response rule which will 
guarantee static optimality and dynamic stability, rather than to increase the 
number of examples of such response rules. 

 Although the intertia-greed process, the A process, the B process, and our 

processes use set-valued messages, the P process uses point-valued messages only. 
In the P process, the agents exchange messages concerning the directions of 
real location they prefer, a direction of real location is determined on the basis of 
the messages, and a Pareto-superior real location is carried out in this direction. 
The directions of real location can be expressed in terms of points of a finite 
dimensional Euclidean space. This yields a great gain in the simplicity of message 
processing. However, unless suitable convexity properties are assumed of the 
environment, a more complicated message space seems to be required, as is the 
case for the A process and the B process. The situation suggests a trade-off relation 
between environmental coverage and informational requirements (cf. Mount 
and Reiter  [11]). 

            The inertia-greed process, the A process, the B process, the P process, and our 
processes all have similar outcome rules. A real location is carried out only if it is 
toward a Pareto-superior allocation. The outcome rules are of the non-
tatonnement type in the sense that transactions are permitted to take place even if a 
message equilibrium has not yet been attained. It is assumed, however, that no 
consumptions (nor productions) are carried out until some equilibrium obtains. In 
the present paper, the term transaction can be best interpreted as that of contract 
notes but not actual movement of commodities. Until a new transaction is carried 
out, the contract notes issued at the preceding transaction time are valid; the latter 
becomes void when the new transaction is carried out. In particular, the claims to 
the initial resource endowments become void once the first transaction takes place. 
This is the essence of our non-tatonnement outcome rules. Therefore it is natural 
to interpret our resource allocation processes in the short-run context. 

 The present paper is organized as follows. In Section 2, the assumptions on the 
economic environment will be postulated, and some preliminary results on the 
environmental properties will be stated. In Section 3, a general definition of non-
tatonnement resource allocation process will be introduced, and two equilibrium
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concepts will be discussed; in the remaining part of the section, our resource 

allocation processes will be specified, and the main results on static and dynamic 

properties of the processes will be stated. All the proofs of the results are given in 

the Appendix.

2. ENVIRONMENTS

 We shall consider economies with m commodities and n agents. The set of 
commodities and the set of agents will be denoted by  H= { 1, • • • , m} and I= 
{ 1, • • • , n}, respectively. For each agent i, his consumption xi and production yr 
are points of R m. An n-tuple x = (x)i  I of individual consumptions and an n-
tuple y = (yr)i E I of individual productions are called a consumption allocation 
and a production allocation, respectively. The ordered pair a = (x, y) of a con-
sumption allocation x and a production allocation y is called an allocation. 
To each agent i, there corresponds (1) the set Di of i-possible allocations which is a 
subset of R2', (2) his preference relation }i which is a complete, reflexive, and 
transitive binary relation on Di, and (3) his initial resource endowment wt which 
is a point of R m. The n-tuple (Di,  wt)i el of the ordered triples (Di, i, co) is 
called an environment. 

 The set of possible allocations and the set of attainable allocations are defined by 
D= hi E 1D1 and A= {(x, y) E D: e 1(xi —yr — wt) = 0}, respectively. An attainable 
allocation a is said to be Pareto-optimal if there exists no a' E A such that a' >i a 
for every i E I, where a' >-i a means that not a ›-i a'. This definition of Pareto-
optimality is slightly broader than the usual one (cf. Arrow and Hahn [2, p. 91]). 

 An environment (Di, i, wt)i E I is said to be decomposable if (1) there exists an n-
tuple (Di), E I of subsets of R 2m such that D = {(x, y): (xi, y) e Di for every i E I} and 

(2) for every i E I there exists a binary relation >-i on Di such that ›-i = {((x, y), 
(x', y')) E D x D: (xi, yr)>-i (xi, y)}. It is easy to see that, for every i E I, i is 
complete, reflexive, and transitive. In case (Di, }i, wt)i E I is a decomposable 
environment, we shall denote it by (Di, >-i, wt)i E I• Note that decomposability does 
not imply that, for each agent, his preference relation is independent of his 

production activities or his consumption (resp. production) possibility is 
independent of his production (resp. consumption) activities. 

 For a decomposable environment (Di, i, w)i E I, it will be convenient to 
introduce some other definitions. The set of trades is defined by F= {z E R inn: 
Li E Izi = 0}. A point z of R" is called a redistribution if z — w e F, where ow = (wt)i el. 
The set of attainable redistributions is defined by B= {z E R m": z — w e F and there 
exists a production allocation y such that (zi +yr, y) e Di for every i E I}. For each 
agent i, his production set is defined by Yr = { yr e R m: (xi, y) e Di for some xi E R m}. 
An attainable redistribution z is said to be Pareto-optimal if there exists y E Hi E I Yr 
such that (1) (zi +yr, yr) E Di for every i E I and (2) there exists no 
(z', y') e B x hi E I Yr such that (zj +yt, yi7 E Di and (zi +yr, y3>-1(zi +yr, y) for 
every i E I. The following proposition is an immediate consequence of the 
definitions.
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  PROPOSITION 1. If  (Di, ›-i,  wt)iE1 is a decomposable environment, then, 
for every z E B, z is a Pareto-optimal redistribution if and only if there exists 
y E III E r Yr such that (z + y, y) is a Pareto-optimal allocation. 

  The class of non-decomposable environments to be considered in this paper is 
assumed to have the following four properties. 

  ASSUMPTION 1. For every i E I, Di is closed in R2"". 

  ASSUMPTION 2. For every id, the set {a' E Di: a' i a} is closed in Di for 
every a E Di. 

  ASSUMPTION 3. For every id, every a E Di, and every positive real number E, 
there exists a' E Di such that a'> i a and d(a, a')<.2 

  ASSUMPTION 4.(CO, 0) E D. 

  The class of decomposable environments to be considered is assumed to have the 
following four properties. We need two more definitions. For each id, his 
consumption set is defined by Xi = {xi e R"1: (xi; yr) e Di for some yr e R'"}. For each 
id I and each b E R "', let Yr(b) = {yr E Yr: yr>_ b}, where the inequality should be 
understood componentwise. 

 ASSUMPTION 1*. For every i E I, (a) Di is closed in R2', (b) Xi is bounded from 
below, and (c) Yr(b) is bounded for every b E R'". 

Part (a) of Assumption 1* is equivalent to Assumption 1. The following is 
equivalent to Assumption 2. 

  ASSUMPTION 2*. For every i E I, the set {a; E Di: al } `al} is closed in Di for every 
al E D`. 

Assumption 3 can be rewritten as follows. 

  ASSUMPTION 3*. For every i E I, every al E D`, and every positive real number E, 
there exists a; E Di such that a~ ̀r jai and d (al, ai'} <E. 

Assumption 4 can be weakened so as to admit the possibility that some agents may 
not survive with their initial resource endowments. 

  ASSUMPTION 4*. Either (a) there exists ye III E I Yr such that (wt + yr, yr) E Di 
for every i E I or (b) there exists (x', y') E A, (x", y") E D, and Se R" such that, 
for every i E I, d (xi' — yi', col) < Si and (xi, y[) i(xi, yr)for every (xi, yr) e Di such that 
d (xi — yr, w)<5.

 2 Throughout this paper
, d stands for the distance function in some Euclidean space Rk, defined by 

d(c, c') = max {1 cl — cl , • • • , I ck — ck 1 }. The dimension k may be either 2mn, 2m, or m; in each case, the 
same symbol d will be used. The only place in which the reader should be careful is the proof of part (b) 
of Proposition 3, where the distance in R"' and that in R2" appear in the same series of inequalities.
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The meaning of this assumption will be more easily seen by rewriting the 
assumption in a simplified form (cf. Proposition 4). 

  Under our assumptions, the decomposable environment  (Di, >-i,  w)i E I can be 
regarded as a "pure-exchange" economy, by defining, for each agent i, his 
"consumption set" by 

Zr = {zi E R'": (zi +yr, y) E Di for some yr E R'"} 

and his "preference relation" on Zr by 

      } * = {(zi, z) e Zr x Zr: There exists yr E Yr such that (zi +yr, y) E D i 

                        and (zi +yr, yr) `(Zr+y , y) for every yr E Yr 

                     such that (zi+yr, y) E Di} . 

Then clearly B = {z E III E IZi: z — co E F}. We shall call (Zr, >1, w)i E I the pure-
exchange economy induced by the decomposable environment (Di, }i, w)i el. This 
has the following properties. 

  PROPOSITION 2. Under Assumption 1*, for every i E I, Zr is closed in R m. 

  PROPOSITION 3. Under Assumptions 1*, 2*, and 3*, for every id, >1 is a 

complete, reflexive, and transitive binary relation on Zr such that (a) the set 
{zie Zr: zi} * zi} is closed in Zr for every zi E Zr and (b) for every zi E Zr and every 
positive real number s there exists zi e Zr such that zi>- *zi and d (zi, z) <E. E. 

 PROPOSITION 4. Under Assumption 4*, either (a) we III E IZi or (b) there exists 
z' E B, z" E III E IZi, and S E IV such that, for every i E I, d (zi', co) < bl and zi> *zi for 
every zi E Zr such that d (zi, w) < c . 

Proposition 4 is a restatement of Assumption 4* for the induced pure-exchange 
economy, and part (b) of it asserts that there is . an attainable redistribution z' 
which is Pareto-superior to some sufficiently small neighborhood in Hi E IZi of the 
initial endowment co (cf. Fig. 1). This last property enables our resource allocation 

processes to realize attainable redistributions even if the initial endowment is not a 
possible redistribution (cf. Lemma 8). 

  In terms of the notation introduced for the induced pure-exchange economy, we 
can express the conditions for a Pareto-optimal redistribution in a more familiar 
way. 

  PROPOSITION 5. Under Assumption 1*, for every z* e B, z* is a Pareto-optimal 
redistribution if and only if there exists no z E B such that zi } *z* for every i E I. 

  Before concluding this section, we note that, among the assumptions made, the 
only one which has something to do with divisibility of commodities is that of local 
non-satiation of preference relations, i.e., Assumption 3 or Assumption 3*. Local 
non-satiation rules out the purely indivisible case, but it is compatible with the 
indivisibility of all but one commodity.
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3. RESOURCE ALLOCATION PROCESSES

 Given two sets L and C, a non-tatonnement resource allocation process (or 
simply, a process) with message space L and outcome space C is the ordered pair 
(T, h) of a function (called a response function) T from  L"  x C to L" and a func-
tion (called an outcome function) h from L" x C to C. For each (M, c) E L" x C, let 
P(M, c) = (T (M, c), h(M, c)). Then P is a function from L" x C to itself. A fixed 
point (M, c) of P is a natural candidate for the equilibrium concepts of the process. 
For, once the fixed point has been attained, both of the message complex M and 
the outcome c remain constant. This fixed point (M, c) may be called a full equi-
librium of the process (T, h), provided c satisfies certain attainability conditions. 
Furthermore, an attainable outcome c may be called a full equilibrium outcome 
if (M, c) is a full equilibrium for some ME L ". On the other hand, concentrating 
our attention on outcomes only, we may also think of the following equilibrium 
concept. Given an outcome c, we define a function Ge: L"—>L"  by Ge(M) = 
T (M, c). Given an outcome c and a positive integer t, we define a function 
Gtc: L'l-+L'1 by Get(M) = Ge(Get-l(M )), where G°(M) = M. An attainable out-
come c is called a weak equilibrium outcome if there exists ME L" such that 
c = h (Get -1(M ), c) for every positive integer t. In this case, if the initial message 
complex M° is chosen equal to M, then Mt = T (Mt-l, c) and c = h (M t -1, c) for 
every positive integer t, so that the outcome c actually remains constant. Clearly, 

every full equilibrium outcome is a weak equilibrium outcome. The equilibrium 
concept of Ledyard [ 10, Definition 5] is similar to that of weak equilibrium, in 
the sense that messages need not remain constant. 

 Let 

Ll= { U: U is a non-empty subset of R'"} , 

Cl={zER"'": z—cWEF} . 

The elements of Ll are regarded as sets of individual trades, and the elements of Cl 
as redistributions. For the class of decomposable environments satisfying 
Assumptions 1* through 4*, we shall construct a process with message space Ll 
and outcome space Cl. 

 A message complex M E (L 1)" is said to be consistent if F n Hi E 1Mi is non-
empty, and M is said to be inconsistent if it is not consistent. We shall say that Mi is 
ambitious if 0 0 Mi, and that Mi is unambitious if 0 E Mi. The distance d (Mi, 0) of 
the message Mi from 0 can be regarded as representing the intensity of agent i's 
ambition.' 
  For each agent i and each point z;, of R'", let 

X,(zi) = {xi E R'": xi + zi e Zr} . 

3 Given a subset U of Rm and a point v of K", the distance of U from v is defined by 
d(U, v) = inf" E ud(u, v). The same definition will be used for the distance between a subset and a point 
of R2mn
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This set stands for the individual trades of agent i that are possible for him when 
his present resource holdings are given by  zi. Given an agent i, a non-negative real 
number r, and a real number q in the open unit interval 10, 1 [, we define a function 
f rq: (L 1)" x R m--R and a function Tirq: (L 1)" x R m—>L 1 u {0} by 

       _max {d (Xi(zi), 0), r} if M is consistent or Mi is unambitious, frq(M' z`) max {(d (Xi(zi), 0), qd (Mi, 0)} otherwise,

Trq(M, zi) = e Xi(zi): 4 + zi>- xi + zi for every xi e Xi(zi) n K (0, f rq(M, zi))},

where K
((0,firq(M, z.)) is the cube~with center 0 and edge 2frq(M, z), i.e., K(0,J irq(M, zi)) = {xi E R"1: d(x0)<Jirq(M, z)}. 

. 

  Given a non-negative real number r and a number q in 10, 1[, we define a 
function Trq: (L 1)" x Cl--4L tu {O})" by 

                     Trq(M, z) = (Tirq(M, z))i E I 

Actually, under our assumptions on the environmental properties , Trq will turn out 
to be a function from (L 1)" x Cl to (L 1)" (cf. Lemma 2), so that it can be regarded 
as the response function of the process being constructed. To simplify the notation , 
the subscripts r and q will be suppressed in what follows, unless special reference to 
the numbers r and q is needed. 

  The set Ti(M, z) consists of those individual trades which are preferred to any 
individual trades in the set Xi(z) n K(0, f (M, z)). To use the terminology of 
Hurwicz [6], Ti(M, z) may be said to represent the "greed" response to 
Xi(z) n K(0, f (M, z)). Note that the latter set is always non-empty and compact 
since, by Proposition 2, Xi(z) is closed in Rm. The function f determines how 
ambitious the agent i may be. He is always permitted to be so ambitious as to 
exclude from his next proposal Ti(M, z) any individual trades which are impossible 
for him; therefore, the distance d (Ti(M, z), 0) of his next proposal from 0 may be at 
least as large as d (Xi(z), 0). On the other hand, if either M is consistent or Mi is 
unambitious then d (Ti(M, z), 0) may be at least as large as the fixed number r; 
while if M is inconsistent and Mi is ambitious then d (Ti(M, z), 0) is required to be 
a fraction of the distance d (Mi, 0) of the previous proposal Mi from 0 (cf. Lemma 2 
and Fig. 2). In this way, the function f encourages agent i if the previous message 
complex is consistent or his previous proposal is unamibitious; while it discourages 
him otherwise. The encouragement effect (r > 0) helps the process approach 
Pareto-optimal redistributions (cf. Theorem 3 and its proof (Proof of Theorem 6)), 
and the discouragement effect (0 <q < 1) helps the process find Pareto-superior 
redistributions (cf. Lemma 6). 

 Given a non-negative real number r and a number q in 10, 1[, we define a 
correspondence Hrq: (L i )" x Cl-~ Cl by 

    Hrq(M, z) ={(FEITrq(M,zi)) + {z} ifTrq(M,  z) is consistent, 
       {z}otherwise.
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 d(T,(M, z1), 0) 
I I d(M„ 0)

agent I

 t:1„- T2(M,Zz)+{z2} 
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agent 2
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Fig. 2c. M and T(M, z) are inconsistent.

Since any (not necessarily continuous) selection h of Hrq can be regarded as 
an outcome function of the process being constructed, we may call Al the out-
come correspondence. Take any selection h of H,q. According to this outcome 
function, no transactions are performed when the message complex T(M, z) is 
inconsistent, while some Pareto-superior redistribution is selected from the set 
(F n TILE ITT(M, zi)) + {z} when T(M, z) is consistent. Hence the sequences of 
redistributions generated by the process are non-decreasing with respect to the pre-
ference relation of each agent. 

 Let 

pl(L 1, Cl) = {(T, h): There exists a positive real number r and a number q 
                 in ]0, 1[ such that T =Trq and h (M, z) E z) for 

every (M, z) E (L 1)" x C,}, 
Pi (L 1, Cl) = {(T, h): There exists a non-negative real number r and a 

number q __in ]0, 1[ such that T= Trq and 
h(M, z) E Hrq(M, z) for every (M, z) E (L 1)" x Cl}. 

Then pl(L 1, Cl) c PAL 1, CO, and any process (T, h) in Pi(L 1, CO is a non-
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tatonnement resource allocation process. Since, for every agent i, his response 
function  Ti is independent of the environmental characteristics (Di,}~,w~)~El—{i} 
of the other agents, the response function T is privacy-preserving. T is also 
anonymous in the sense that, for every agent i, Ti is in variant under any 

permutation of the other agents. 
 The set of attainable outcomes of any process in Pi(L 1, Cl) will always be chosen 
equal to B, the set of attainable redistributions. 

  THEOREM 1 (Non-wastefulness). Under Assumptions 1*, 2*, and 3*, for every 

process (T, h) in PAL 1, CO, every weak equilibrium outcome of (T, h) is a Pareto-
optimal redistribution. 

  THEOREM 2 (Unbiasedness). Under Assumptions 1*, 2*, and 3*, for every 

process (T, h) in PAL 1, Cl), every Pareto-optimal redistribution is a full equilibrium 
outcome of (T, h). 

It follows that, for any process in Pi(L 1, Cl), the weak equilibrium outocmes and 
the full equilibrium outcomes happen to coincide with each other. Note that the 
"encouragement" effect of the process is irrelevant to these two static properties. 

  THEOREM 3. Suppose that Assumptions 1*, 2*, 3*, and 4* hold. For every 
process (T, h) in Pl(L 1, Cl) and every sequence {z`V° ° in R'"", if z° = CO and there 
exists a sequence {M T ° ° in (1.1)n such that M t =T(M t -1, z` —1) and z` _ 
h (Mt-l, z`-1) for every positive integer t, then every cluster point of {z`}i° ° is a 
Pareto-optimal redistribution. 

This theorem asserts that if the sequence of redistributions converges to some 
redistribution then the limit redistribution is necessarily Pareto-optimal. However, 
the sequence is not necessarily convergent. Nor is it obvious, under our 
assumptions on the environmental properties, that the sequence has a cluster 
point, though this will be guaranteed if the set B of attainable redistributions is 
assumed to be compact. 

  COROLLARY TO THEOREM 3 (Convergence to a Pareto-optimal utility allocation). 
Suppose, in addition to Assumptions 1 *, 2*, 3*, and 4*, that B is compact and, for 
each i E I, the preference relation >-i can be represented by a utility function ui. Let 
{z`}' ° ° be as in Theorem 3. For each non-negative integer t, let wt = (uXzi))i E I. Then 
the sequence {wt}11 ° in R" is convergent. If furthermore, ui is lower semi-continuous 
for every i E I, then rim t~ wt =(14(4))i (zl))i E 1 for some Pareto-optimal redistribution z*. 

The B process of Hurwicz, Radner, and Reiter [7] has this kind of stability 
properties (cf. [7, Theorem 5.2]). Theorem 3 is also related to the "global value 
stability" of Ledyard [10]. Kanemitsu [9] obtains convergence in the allocation 
space, by specifying an appropriate transaction rule. 

  We can construct similar processes for the class of non-decomposable 
environments satisfying Assumptions 1, 2, 3, and 4. Let
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 L  2 = { U: U is a non-empty subset of R 2mn} , 
                       C2=—                         R 2mn 

The elements of the message space L 2 are regarded as sets of allocations , and the 
elements of the outcome space C2 as allocations . Non-decomposability requires 
the message space L2 much larger than Ll . A message complex M is said to be 
consistent if A n (hi E IMi)is non-empty, and M is said to be inconsistent if it is not 
consistent. We shall say that Mi is ambitious at a if alt Mi and that Mi is 
unambitious at a if a e Mi. 

 Given an agent 1, a non-negative real number r, and a number q in 10, 1 [, we 
define a function fLq: (L 2)" x C2 —*R and a function T q: (L 2)n x C2 —>L2 v {0} 
by 

 *max {d (Di, a), r} if M is consistent or Mi is unambitious at a, f`rq(M' a)_max {d (D a),qd(Ma)}               ~>~~otherwise,

T i*rq(M, a) _ {a* E Di: a* } i a' for every a' E Di n K *(a, f irq(M, a))} , 
where K*(a, f irq(M, a)) is the cube with center a and edge 2 f irq(M, a), i.e., 
K *(a, f irq(M, a))= {a' E R 2mn: d (a', a) < f irq(M, a)}.  Gi

ven a non-negative real number r and a number q in ]0, 1 [, we define a 
function T;q: (L 2)" x C2 -qL 2 v {Q})" by 

                     T.q(M, a) _ (T irq(M, a))i e r 

Actually, T;q is a function from (L 2)n x C2 to (L 2)n (cf. Lemma 3), so that it may be 
regarded as a response function of the process being constructed . This response 
function can be interpreted in the same way as before . Given a non-negative real 
number r and a number q in ]0, 1[, we define an outcome correspondence H;q: (L

2)" x C2—>C2 by 

      Hq(M, a) = A n (hie I T irq(M, a))if T;q(M, a) is consistent,           {
a}otherwise. 

 Let

P2(L 2, C2)= {(T, h): There exists a positive real number r and a number q 
                in ]0, 1[ such that T= T and h (M, a) E Hq(M, a) for 

                  every (M, a) e (L 2)" x C2}, 
P`2(L 2, C2)= {(T, h): There exists a non-negative real number r and a 

                 number q in ]0, 1[ such that T= T;q and 
h(M, a) E H;q(M, a) for every (M, a) E (L 2)" x C2}. 

Then P2(L2, C2) c P 2(L 2, C2), and any process (T, h) in P 2(L 2, C2) is a non-
tatonnement resource allocation process. For every agent i, Ti is independent of 

(Di, j); e I -to but depends on consumptions and productions of other agents. At 
each stage of the process, all agents are assumed to be informed of the current
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allocation. In particular, they have to know the initial allocation at the first stage of 
the process, which usually implies that each agent has to know the initial resource 
endowments of other agents. In this sense, the response function T is not privacy-

preserving. It may be emphasized again, however, that the preference fields (Di, 
 }.) need not be communicated. These are much more difficult to communicate 

than the initial resource endowments. The response function T is anonymous, so 
that the process (T, h) may still be qualified as an informationally decentralized 

process in a very weak sense. 
 The set of attainable outcomes of any process in P 2(L2, C2) will always be chosen 
equal to A, the set of attainable allocations. 

  THEOREM 4 (Non-wastefulness). Under Assumptions 1, 2, and 3, for every 
process (T, h) in P 2(L 2, C2), every weak equilibrium outcome of (T, h) is a Pareto-
optimal allocation. 

  THEOREM 5 (Unbiasedness). Under Assumptions 1, 2, and 3, for every process 
(T, h) in P 2(L 2, C2), every Pareto-optimal allocation is a full equilibrium outcome of 
(T, h). 

  THEOREM 6. Suppose that Assumptions 1, 2, 3, and 4 hold. For every process 
(T, h) in P2(L 2, C2) and every sequence {av_ ° in R 2in", if a° _ (w,0) and there exists 
a sequence {MV_ ° in (L2)" such that Mt=T(Mt-l, at-l) and at=h(Mt-l, ar-l) 
for every positive integer t, then every cluster point of {at}r° ° is a Pareto-optimal 
allocation. 

 COROLLARY TO THEOREM 6 (Convergence to a Pareto-optimal utility allocation). 
Suppose, in addition to Assumptions 1, 2, 3, and 4, that A is compact and, for each 
i E I, the preference relation }i can be represented byla utility function ui. Let {at}i° o 
be as in Theorem 6. For each non-negative integer t, let wt = (ui(at))i E I. Then the 
sequence {wt};° ° in R" is convergent. If furthermore, ui is lower semi-continuous for 
every i E I, then rim , co wt = (ui(a*))i E I for some Pareto-optimal allocation a*.

APPENDIX: PROOF OF THE RESULTS

 Proof of Proposition 1. Straightforward. 

 Proof of Proposition 2. Let {4};),°__ 1 be any sequence in Zr converging to some 
zi E R m. For each positive integer v there is yt e R m such that (fi' + )i , y1') E Di .  Since, 
by Assumption 1(b), Xi is bounded from below, we may assume, without loss of 
generality, that there is b E Rm such that yr >_ b, i.e., y; E Yr(b) for every v. By 
Assumption 1(c), Yr(b) is bounded, so that we may assume, without loss of 
generality, that {y}1 converges to some yr E Ir.  Since, by Assumption 1(a), Di is 
closed in R 2m, it follows that (zi +yr, yr) E Di so that zi e Zr. 

 For each i E I and each zi E Zr, define Y i(z) = {yr E R m: (zi +yr, yr) E Di}.
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 LEMMA 1. Under Assumptions  1* and 2*, for every i E I and every zi E Zr, there is 
ye Y i(z) such that (zi +Yr, Yr) `(Zr +Yr, y) for every Yr E Y i(z) 

 Proof By the definition of Zr, Y i(z) is non-empty. By Assumption 1(b), Xi is 
bounded from below, so that Y'(z) is also bounded from below. Hence there is 
be R"` such that yr >_ b for every yr e Y'(z), i.e., Y'(z) c Yr(b) so that, by 
Assumption 1(c), Y'(z) is bounded. It is clearly closed in Rm since, by Assumption 
1(a), Di is closed in R 2m. Thus Y i(z) is non-empty and compact. 

 Define a binary relation Qt on YXzi) by Q. = {(yr, y) E Yr(zi) x YL(z): 
(z1+yr, y)>-i(z1+yr, y)}. Clearly, Qt is complete, reflexive, and transitive, and 
the set {yj e Y'(z): y'Qiyi} is closed in Yr(z) for every yr E Yr(z). Since Yr(z) is 
non-empty and compact, it follows that there is yr E Yi'(z) such that y.Qt yr, i.e., 
(zi +Yr, Y) } `(zi +Yr, y) for every yj E Y '(z).4 

 Proof of Proposition 3. Suppose that zi, z' E Zr but not Let yr E Y '(z). 
Then (4+ y) > i(zi +Yr, y) for some yr E Y'(z). By Lemma 1, (zj + yj ', 
(z~ + y~, y) for some yj ' E Y i(z), so that (z(+ y(', yr ') i(z; + y y). Since yr is arbi-
trary in Yr(zi), this implies that zi}izi. Thus >-L is complete and reflexive. Transi-
tivity is obvious. 

 Let zi E Zr and let {z}1 be any sequence in the set {zi E Zr: z1' zi} converging 
to some z° e Zr. For each positive integer v there is Y'(zi) such that 
(z~ + y~ , y~) } i(Zr +yr, y) for every yr E Y i(z). Since {4};,°=,  converges to z? and 
(z~ + yr , yD e D i for every v, we may assume, as in the proof of Proposition 2, 
that the sequence {y'}1 converges to some y° e Rm. By Assumption 1*, y? E 
Y'(z?). Let yiE Yr(z). Then (4 +y;', yr) i(Zr+Yr y) for every v, so that, by As-
sumption 2*, (z? + y°, y°) >- i (zi +yr, y). Since yr is arbitrary in Y' (z,), this implies 
that z? } izi, i.e., z° E {zi E Zr: z:>-*„z,} . Thus, part (a) of the proposition is proved. 

 Let zi E Zr and 8> 0. By Lemma 1, there is yr E Y i(z) such that 

(1) (zi +yr, y) `(z1 +Yj, yi') for every Yii e Y'(z) 

By Assumption 3*, for each positive integer v there is (x4, yD E Di such that 
(4, y)>'-(zi +yr, y) and d((4, y;'), (zi +yr, yr)) < 1 /v. There is a positive integer v 
such that l /v < E/2. Let zi = 4 — yr . Then (4+y,', y;) E Di so that y` e Y i(z) and 
zj E Zr. Furthermore, d (z;, z) �_d (4 — yr , z)= 
d (xi , zi + yr)+d (Yr , yr) < d ((xi, Yr ), (zi +Yr, Yr)) + d ((xi , Yr ), (zi + y , .0<g. g. Sup-
posez}*z'.Then there would bey'E Y'(z)suchthat (zi+y'y›-i(z'+y'y") for                     i~rii,it..Li,i 

every Yi' E Y'(z), so that (zi +Yr, Yi7 } `(z~ +Yr, t,'). Since (4, Y~) `r ̀ (z +Y y) and 
xi = zi + y;' , it follows that (zi + yr, y) > i(zi +yr, yr), contradicting (1). Thus 
z'}: zi and part (b) of the proposition is proved.

4 The assertion follows from the proposition that a non -empty compact space endowed with a 

reflexive, transitive binary relation has a maximal element if the upper contour sets are closed. In the 

present context, the relation is complete, so that the maximal element is a greatest element. See Ward 
[13, Theorem 1].
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 Proof of Propostion 4. Straightforward. 

 Proof of Proposition 5. Necessity is obvious. To prove sufficiency, note that, 
by Lemma 1, for each  i  E  I  there is yr e Y;(zi) such that (4+ y;!, yD >i(z:- yr, y) for 
every yr E Yr(zi). If z* were not a Pareto-optimal redistribution, then there would 
be (z, y) E B x Hi '€ Yt such that yr E Yr(zi) and (zt +yr, y + y:, yr) for every 
i E I, so that, for every i E I, (zi + yt, yt) > t(z + yr, y) for every yr E Y i(zi), i.e., z>-z, 
a contradiction. 

 LEMMA 2. Under Assumptions 1*, 2*, and 3*, if( h) is a process in P2(L 1, Cl) 
then, for every i E I, every ME (L 1)", and every zt E R'", Ti(M, zi) is non-empty and 
d (TT(M, zi), 0) =.f (M, zi)• 

 Proof Similar to the proof of Lemma 3 below. 

 LEMMA 3. Under Assumptions 1, 2, and 3, if (T, h) is a process in P?(L 2, C2) 
then, for every i E I, every Me (L2)", and every a e R 2mn, Ti(M, a) is non-empty and 
d (Tl(M, a), a)= .f:(M, a). 

 Proof Since, by Assumption 1, Di is closed in R21", Di n K *(a, f :(M, a)) is 
non-empty and compact, so that, by Assumption 2, there is a* e Di n 

K*(a, f 7(M, a)) such that a* } ta' for every a' E Di n K *(a, f i (M, a)). By As-
sumption 3, a**> a* for some a** e Di; therefore a** e T'(M, a). Thus Ti(M, a) 
is non-empty. Note that Ti(M, a)= {a' ED,: a' } la* } . Let 8> O. By Assumption 3, 
there is a' E Di such that a' `ita* and d(a', a*) < e. Hence d(T,(M, a), a)� 
d(a', a) <— d (a', a*) + d (a*, a) < 8 +f i(M, a). Since s can be arbitrarily small, 
d (Ti(M, a), a) <--f i(M, a). Suppose d (Ti(M, a), a) <f i(M, a). Then d(a', a) < 
ft(M, a) for some a' E Ti(M, a). By Assumption 3, there is a" E Di such that 
a">-ta' and d(a', a")<f*(M, a)—d(a', a). Hence d(a", a)<d(a", a')+d(a', a)< 
f i(M, a) so that a" E Di n K *(a, f *i(M, a)), implying that a'>-, a", a contradiction. 

  LEMMA 4. Under Assumptions 1*, 2*, and 3*, for every (T, h) E Pi(L 1, CO and 
every sequence {MT° 1 in (Li)", if there exists a sequence {zT° 1 in IIt E IZi such 
that Mt+ 1= T (M t, zt) and z'= h (M t, zt) for every positive integer t, and if there 
exists a positive integer t* such that Mt*+t is inconsistent for every positive integer 
t, then limt d (M, 0)=0 for every i E I. 

  Proof Similar to the proof of Lemma 5 below. 

  LEMMA 5. Under Assumptions 1, 2, and 3, for every (T, h) E P 2(L 2, C2), every 
sequence {(Mt, at)W° 1 in (L 2)" x D, and every positive integer t*, if Mt +1= T (Mt, at), 
at+1=h(Mt, at), and Mt*+t is inconsistent for every positive integer t, then limt,. 
d (M', a')= 0 for every i e I. 

  Proof Note that a'' =at* for every positive integer t. If at* 0 Mr' for every 
positive integer t, then, by Lemma 3, d(Ml*+t+1, at*, )=  at*), at*)=     t*+ti*+ti+It* at*) , at*) = qd (Mi, at*) _ • • • = qd (Mi, a) for every positive integer
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t, so that  rim, d (Ml, a')= limt d (M~* + t + 1, at*) = limt -. qt + 1 d (111;*, at*) = O. It 
remains to consider the case in which at* E Mr' for some positive integer t'. If 
r> 0 then at* Mr" +t for every positive integer t so that the argument for the 
previous case applies; while if r= 0 then d (Mi + 1, a')= f i (Mt, at*) = 0 for every 
t �t* +t' so that limt. ac d(Mi, a")= O. 

 LEMMA 6. Under Assumptions I*, 2*, and 3*, for every (T, h) E Pi(Ll, Cl) and 
every sequence {MT° 1 in (Ll)", if there exists a sequence {zt}° 1 in B such that 
M t + 1= T (M t, zt) and zt + 1= h (M t, zt) for every positive integer t, then, for every 
positive integer t* such that zt* is not a Pareto-optimal redistribution, there exists a 
positive integer t' such that t'>_ t* and Mt' is consistent. 

 Proof Similar to the proof of Lemma 7 below. 

 LEMMA 7. Under Assumptions 1, 2, and 3, for every (T, h) E P 2(L 2, C2) and 
every sequence {MtV° 1 in (L2)", if there exists a sequence {aVL 1 in A such that 
M t + 1= T (M t, at) and at' 1= h (Mt, at) for every positive integer t, then, for every 
positive integer t* such that at* is not a Pareto-optimal allocation, there exists a 
positive integer t' such that t'>_ t* and Mt' is consistent. 

  Proof Suppose Mt is inconsistent for every t >_ t*. Then at =a' for every t >_ t*. 
Since at* is not Pareto-optimal, there is a E A such that a>- at* for every i E I. By 
Assumption 2, there is c> 0 such that, for every i E I, a> a' for every a' E Di such 
that d(a', at*) < E (the number E can be chosen so that E < r if r> 0). By Lemma 5, 
there is t' > t* such that d (M;, at*) < E for every i e I and every t >_ t' —1. 
Suppose a Ti(M r -1, at*) for some i E I. Then a' is for some a' E 
Di n K *(at*, (M r -1, at*)).If at* M -1 then d(a', at*) < ti (M t- -1, at*)_ 
qd (M i' -1, at*) < d (M -1, at*) < E so that a>- a', a contradiction. Hence 
at* E M -1. If r>0  then E < r = f (M t -1, at) = d(M at*) < E, a contradiction; while 
if r= 0 then d(a', at*) < f ̀ (M t -1, at*) = r = 0, i.e., a' =a' so that at* >-- i a, a 
contradiction. Thus a E Ti(M t' -1, at*) = M for every i E I, so that Mt' is consistent, 
a contradiction.

 Proof of Theorem 1. Similar to the proof of Theorem 4 below. 

 Proof of Theorem 4. Let a be a weak equilibrium outcome. Then there is 
ME (L 2)" such that a= h (Gat-l(M), a) for every positive integert t. For each t, let 
Mt = T (Mt-l , a) with M° = M. Then a = h (M t- 1  a) for every t, so that M t is 
inconsistent for every t; therefore, by Lemma 5, a is a Pareto-optimal allocation. 

 Proof of Theorem 2. Similar to the proof of Theorem 5 below. 

 Proof of Theorem 5. Let a be a Pareto-optimal allocation. For each i E I, let 
Mi = {a' e Di: a' } i a} . Let i E I. Then Mi is ambitious at a and, by Assumption 3, 
d (Mi, a)=0, so that f i (M, a) = qd (Mi, a) = O. Let a' e Mi. If a" E Di n 
K*(a, f i (M, a)) then d(a",  a) <_ f i (M, a) = 0, i.e., a" =a so that a' } i a = a"; 
therefore a' E Ti(M, a). Hence Mi c Ti(M, a). If a' e Ti(M, a) then a' e Di and
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 a'>-  i a" for every a" E Di n K*(a, f i (M, a)) so that a' >-; a; therefore a' E Mi. 
Hence Ti(M, a) c Mi. Thus Mi = Ti(M, a). Since i is arbitrary in I, M= T (M, a). 
Hence T(M, a) is inconsistent, so that a = h (M, a). 

 LEMMA 8. Under Asssumptions 1*, 2*, 3*, and 4*, for every (T, h) E Pl(L 1, Cl) 
and every sequence {2}:"10 in IV", if z° = co and there exists a sequence {M ̀}r ° ° in 
(L 1)" such that Mt= TOW', -1, z` -1) and z` = h (Mt-l, 2-1) for every positive integer t, 
then there exists a positive integer t such that z` E B. 

 Proof. If we Hi a IZi then the lemma is trivial. We shall, therefore, assume that 
0)0  III E IZi. Suppose z` =z° = co for every positive integer t. Then Mt is inconsistent 
for every t. Let i E I. If 00 Mf for every t then 

d(Mf, 0)= fi(Mt-l, col)=max {d(Xi(wt), 0), qd(Ml-l, 0)} 

           =max {d (Xi(col), 0), q max {d (Xi(wt), 0), qd (M - 2, 0)) } 

            =max {d(Xi(wt), 0), g2d(Mi-2, 0)}= .. • 

           =max {d (Xi(wt), 0), (Id (M°, 0) } 

for every t>0,  so that 

limt d (g, 0) = d (Xi(wt), 0); 

while if 0 e tiff for some t' > 0 then 

d(M +1, 0)=f(M`, wt)=max {d(Xi(wt), 0), r}>0 

so that 

d(M`'+t, 0)= f(Mt +t-l~ wt)=max {d(Xi(wt), 0), go(M'+t-l, 0)} 

            =max {d (Xi(wt), 0), q` - l d (M + 1, 0)}

for every t>0;  therefore rim„ d (M;, 0) = d (Xi(wt), 0). Thus rim, d (Mi, 0)= 
d (Xi(wt), 0) for every i E I. By Proposition 4, there is z' E B and Se R" such that, 
for every id, d (Xi(wt), 0) < Si and zi>-zi for every zi E Zr such that d (zi, w)<5. 
Hence there is a positive integer t such that d (M 0) < Si for every i E I. For 
every i E I there is xi e M i = Ti(M ̀-1, col) such that d (xi, 0) < Si. Hence, for every 
i E I, xi + wt E Zr and d (xi + wt, wt) < Si, implying that zi };xi + wt; therefore 
zi — col e M Thus z' — w E F n Hi e A, contradicting the fact that Mt is inconsis-
tent. Hence z` z° for some t> 0. Without loss of generality, we may assume that 

                                                           =z° for every t' < t. Then z` # 2-1 so that z` e (F n Hi e IMi) + {2-1}; }; therefore 
z`=x+zt-l for some xEFn II•eIlM•iFor every idxi                                         LIM`=T•L(Mt-lzt-l) 

 ` c Xi(4 -1) so that 4 = xi +4-1  E Zr. Thus z` E B. 

 Proof of Theorem 3. Similar to the proof of Theorem 6 below, in view of 
Lemma 8. 

 Proof of Theorem 6. Let a be a cluster point of {aT° °. Then there is a
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subsequence  {a`"}  1 converging to a. Suppose a is not a Pareto-optimal 
allocation. Then there is a' E A such that a' } is for every i E I . By Assumption 2, 
there is e> 0 such that, for every i E I, a' } i a" for every a" E Di such that 
d (a", a) < E. There is a positive integer t' such that 3rq`• < E. Without loss of general-
ity, we may assume that t" -1 + t'+ 1 < t" for every v. Since {a`"} 1 is convergent 
and hence Cauchy-convergent, there is a positive integer µ such that 

(2) d (a`", a) < rq`• and d (a`", at" +') < rq` for every v >_ µ . 

Without loss of generality, we may assume that at � at"-1 and hence that M `" is 
consistent, which, by Lemma 3, implies that d (Mi"+ 1, a`") = r for every i E I. Since 
for every positive integer t if M'' is inconsistent for every s E { 1, • • • , t} then 
at" _ at"+s for every s E { 1, • • • , t}, it follows from Lemma 3 that 

   for every positive integer t, if M`" +s is inconsistent for every se { 1, • • • , t} 
(3) then d (Mr +s, a') = rqs -1 for every s E { 1, • • • , t + 1} and every i E I. 

  Suppose M`" +t is consistent for some t E { 1, • • • , t' + 11. Without loss of 
generality, we may assume that M`" +s is inconsistent for every s E { 1, • • • , t— 1 }. By 
(3), d (Mr + t, a`") = rqt -1 > re for every i E I, so that, by (2), a' + 1 0 for every 
i E I. Since M`"+t is consistent, a'+t E Mr+t for every i E I. If a`µ+1}i a`"+t for some 
i E I then at" + 1 E M +t, a contradiction. Hence a`" + t } i a`" +' for every i E I. Since 
t" + t < t" +t' + 1 5 0+1, 1, this contradicts the fact that, for every i E 1, the sequence 
{a`};° 1 is non-decreasing with respect to ›-i. Then M`"+t is inconsistent for every 
tE {1, • • •, e+11. 

 Therefore, by (3), d (Mr +t' + 1, a`") = rq`• for every i E 1. Let i E I. Then 
d (a", at") <2rq`' for some a" E Mr+t•+1, so that, by (2), d(a", a) <_ d (a", a`")+ 
d (a", a) < 3rq`• <e, implying that a' } i a". Since a" E Ac + r +1, it follows 
that a' E Mi"+r+1 Since i is arbitrary in I, a' E A n (f i e 1Mr+r al), which con-
tradicts the fact that M`" +t is inconsistent for every t e { 1, • • • , t' + 1 }. 

 Proof of the Corollary to Theorem 3. Similar to the proof of the corollary to 
Theorem 6. 

 Proof of the Corollary to Theorem 6. Since A is compact, the sequence {a`}r° o 
has a cluster point a*, which is, by Theorem 6, a Pareto-optimal allocation. Hence 
there is a subsequence {a`"} 1 converging to a*. Since the sequence {a`}' ° 1 is 
non-decreasing with respect to } i for every te I, it follows that, for every i E I, 
at"' }i a`" whenever v'� v. By Assumption 2, a* i at" for every i e land every positive 
integer v. If ui(a`) > ui(a*) for some i E I and some positive integer t, then 
ui(a`") >_ ui(a`) > ui(a*), i.e., at"} i a* for some positive integer v such that t" > t, a 
contradiction. Hence (ui(a*))i E r ? u` for every positive integer t. Thus, for every 
i E I, the sequence {ui}r° 1 is non-decreasing and bounded from above, so that 
lim~ . of exists. Therefore, the sequence {WW1 0 is convergent. Now assume that, 
for every i E 1, ui is lower semi-continuous. Suppose ui(a*) > limt. caul for some i E 1. 
Since ui is lower semi-continuous and {a`v} T converges to a*, ui(a`") > limt u;
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for some positive integer 
integer t' such that  t'  >_  t", 
limt u` _ (ui(a*))i el.

v, so that ui(d)>_ui(at") > rim, co ui for some positive 
a contradiction. Thus ui(a*) =limr . ,,, u for evry i E I, i.e.,

Keio University
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