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ON THE REVENUE MAXIMISING RATE OF INFLATION 

  WHEN THERE IS UNANTICIPATED INFLATION*

D. CHAPPELL and D. A. PEEL

INTRODUCTION

  In a recent paper  Caihcart [3] derived the formula for the inflation rate which 
will maximise the present value of government revenue from inflation as a fraction 
of income for economies in which there is exogenous growth of real output and 
unanticipated inflation along the transition path. Cathcart's analysis would seem 
to represent an important extension of Bailey's original static analysis [1] in which 
inflationary expectations are always realized, which in a deterministic setting is 
equivalent to rational expectations. 

  Cathcart's formula was obtained in the following manner. The government 
revenue from inflation as a fraction of income (g) is given by 

g=(icF2—ant*)•k(1)' 

where 7r is the actual rate of inflation, A* is the change in the expected rate of 
inflation, A is the exogenously given growth rate of real income, k equals the ratio 
of real balances to real income and is assumed equal to 

k = koe-an*(2) 

  * The authors are grateful for the comments of an anonymous referee on an earlier version of this 

paper. 
 1 The simplest intuitive meth od of understanding why (1) yields the government's revenue from 

inflation is to suppose that the government finances nominal expenditure pG where p is the price level, G 
is real government expenditure by monetary expansion . Consequently 

pG = M(a) 

where M is the change in monetary expansion . 
 It follows that 

G Mm 
--(b) 
Y PY 

where y is the level of real income and m - M/M. 
 Consequently 

G 
—=(n+2—an*)k(c) 

Y 
where the symbols are defined in the text and the semi-logarithmic demand function for money is 
assumed. 
 More generally real government receipts are equal to real balances held by the public times the rate of 
monetary expansion (the tax). 
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18 D. CHAPPELL and D. A. PEEL

a,  kc are constants, e is the exponential. 
Inflationary expectations are formed adaptively so that 

n*=b(it—n*); b>0

where b is the constant coefficient of adaptive expectations; 

(2) into (1) gives 

                g=[n*+n*lb—a+ikoe-A"*

(3)

substitution of (3) and

Assuming a rate of discount 4), Cathcart employs calculus 
maximise the present value of g. Thus, he maximises:— 

             Z=n*+n*b—a+A koe-°"*•e-d'tdt 
and obtains the maximising condition. 

    1                     Tr*(t)_a—A—~(l--lab

(4)

of variations to

(5)

(6)

(6) is a constant and implies a it in equilibrium equal to n*. 
 Unfortunately, (6) does not, in general, yield a maximum.2 This may be 

demonstrated quite simply by employing the more modern technique of the 
Maximum Principle of optimal control theory. 

 We commence by noting that since 

it+A—an*=m(7)

(where m is the proportional rate of change of the money stock) we may eliminate 
it from the equations and recast the problem as:—

max mkoe-(°"*+et)di 
 (m) 0

(8)

 2 We might note that the same type of results are obtained if output is not fixed, but responds to 

inflation. There are two competing hypotheses. First the deviation of the level of output from trend is a 
function of the level of unanticipated prices. (See e.g. Lucas [7]). Second, deviations of the level of 
output from trend respond to unanticipated inflation, via an augmented Phillips curve (see e.g. Frenkel 
and Rodriguez [5]). For the former case we note that Burmeister and Turnovsky [2] show that the 
assumption of adaptive expectations concerning the rate of inflation is only derivable in a consistent 
manner if it is assumed that the level of prices is equal to that expected and consequently we can 
interpret Cathcart's analysis as being consistent with a Lucas supply response with the level of prices 
equal to that expected so that output is changing at the trend rate. In the latter case, with adaptive 
expectations, 

A=A*+jii* 

where A,* is the trend rate of change of output and j is a constant. Consequently the points made in the 
text are still valid here.
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s.t.*c*=------- 
                  1—bab(m -~c* -~);*(0)  = no(9) 

 Clearly, for this expectations formation mechanism to make economic sense, we 
require  ab  S 1. In what follows we shall assume that the strict inequality holds . 

 Introducing a co-state variable, µ(t), we define the (current valued) Hamiltonian; 

                                                                              * 

             H(m, n*,µ, t)-e-op` mkoe-°"+µb(m-n*-~)                                         (10) 
1- ab

and let:—

                 t/i(it*, µ, t) = sup H (m, n*, µ, t)(11) 
(m) 

We remark at once that since the Hamiltonian is linear in m (the control variable) 
the problem as it stands is not well posed since no restriction is imposed on the 
control set, i.e. Maximising (10) with respect to m implies that we set:—

          m= + as koe-alt*+bµ/(l-ab) 0(12) 

It is appropriate in such cases to restrict the control variable to belong to some 
closed set and adopt the relevant impulse (bang-bang) control. What Cathcart has 
done in employing calculus of variations is analyse the singular arc which may be 
derived by setting aH/am = 0; clearly, this in general will not constitute a maximum 
at every point in time over the infinite horizon. For a discussion of the optimality 
of singular arcs the reader is referred to Lewis [6]. 

  The following implications are suggested by these results. In a world in which 

price expectations are formed as a weighted sum of previous actual inflation rates 
and if the government's objective function is to maximise revenue from inflation 
then the optimal policy is to instantaneously adjust the money supply so as to effect 
an immediate jump in the rate of inflation to some particular level (infinite in 
Cathcart's framework). This offers one potential explanation of the stylized facts 
of hyper-inflations. In particular the observed rates of inflation are substantially in 
excess of those required to maximise government revenue in the steady state . (See, 
for example, the tables in Cathcart [3]). The analysis suggests that on the 
transitional path the government can exploit the lag of the expected on the actual 
rate of inflation, implicit in the adaptive expectations mechanism, to generate 
substantially higher revenues. One problem with this interpretation is that jumps in 
inflation rates, particularly to infinite rates, are not observed in practice. 

 Within the spirit of the type of model under consideration , an alternative 
suggestion is that the government maximises revenue net of a cost of adjusting its 
instrument, i.e. the money supply. 

 Consequently our new objective becomes: 

        f.                  max(mkoe -°"* - yrii2/2)e - d)`di (13)3 

0 3 It should be noted that similar results are obtained if the authorities maximise g — pt2/2 where 
changes in the inflation rate are a surrogate for "social strife."
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where y is a positive constant, subject to: 

 A*=b(m—n*—.1)/(1—ab); n*(0)= no(9) 

The notion that costs are incurred in changing the rate of monetary expansion can 
be rationalized on the basis of `insititutional factors' and is a feature of the optimal 
stabilization literature. (See for example, Turnovsky [8], chapter 14.) 

 As it stands this problem is not amenable to solution by the Maximum Principle. 
First we must define a new variable, x, such that: 

m = x; m(0) = mo(14) 

Now the problem is to: 

fGo                 max(mkoe-a"*—yx2/2)e-d'tdt(15) 
                        (x) o 

subject to (9) and (14). 
 We proceed by introducing a pair of co-state variables, pl(t) and p2(t), and 

defining the Hamiltonian: 

   H(m, x, pi, P2, t)=e-I't[mkoe-a"*_yx2/2+pib(m—n*-4(1—ab)+P2x] 
                                       (16) 

and, 

4/(m, pi, µ2, t) = sup H(m, x, pig P2, t) (17)                                    (x) 
The optimality conditions are then as follows: 

H(m, x, pi, P2' t)-=-111(m, Pi' P2' t) 

OH ~t                       µ
i =4421—en*e 

                                       (18) aH 
                               0                         P2=4P2—am'e 

{µv P2} 0 Vt 
Maximisation of H(• •) with respect to x yields x- p2/y. Substituting this as 
appropriate we see that the following set of differential equations must be satisfied: 

                 0(1—ab)+b                                            +amka-°"*            it —
1— abµlo 

                   *bit,p
2=4µ2—koe—a"—1—ab(19) 

P2             m =— 
                 Y 

                 n*=b(m— Tr* -A)/(1—ab)
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The associated boundary and transversality conditions are as follows:

 Tc*(0)_7r 

m(0) = mo 

Lim, „,,e-d`,ul(t)• it*(t)=0 

Lim, coe-ttµ2(t) • m(t) = 0 

 Clearly; because of the non-linearities involved, 
only be solved numerically. Consequently our 
examination of the steady state and its stability.

21
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Li early; because of the non-linearities involved, it is likely that (19), (20) can 
only be solved numerically. Consequently our analysis is confined to an 
examination of the steady state and its stability. Setting the right hand side of 
equations (19) equal to zero the steady state is as follows:

m=
4(1—ab)+b

It*=
4(1—ab)+b—ab A

µi=

ab

— (1— ab)ka exp —

     ab 

4(1—ab)+b—abA 
b

µ2=0

(21)

b

 It is interesting to note that the steady state values of m and  it are precisely 
those derived (erroneously) by Cathcart in the absence of costs of adjustment. 

 Let us now examine the stability characteristics of (21). Expanding (19) in a 
Taylor series around the stationary point and ignoring terms of higher than the 
first order we obtain.'

µi

µ2

fn

Ac*

 0+A  O

-A 0

0

0

B - B(1 + 4/A)

0

1/y 0

0 A

B

0

-A

 µ1

µz

m

It*

+

 Cl

C2

0

—AA

(22)

where the bars over variables denote their steady state values and: 

A-b/(1—ab)<0 

             B=akex_q5(1—ab)+b—ab),~0       °pb 

C1- —(0+A)µl — Brit +B(1+0/A)i* 

C2=AUI -Bn* 

If Z is a characteristic root of the Jacobian in (22) then the characteristic equation 
is: 

F(Z)=Z¢-24)Z3—(A2+AO-42)Z2+Aq(A+q5)Z+A2B/y=0 (23) 
4 Note that the ,i* equation is writt

en exactly since it is already linear.
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Analysis of the function F(Z) (in particular, its first and second derivatives) shows 
that the characteristic roots conform to one of the following  patterns': 

 (i) All roots are real with two negative and two positive. 
 (il) The roots are two complex conjugate pairs, one with negative real parts 

and one with positive real parts. 
Thus we always have two stable roots which are real if the following inequality 
holds and complex otherwise: 

                   (A + q)2B 

                    > 

                 4 — 

For example, if the ratio of real balances to real income is high and/or the `cost' of 
adjusting the money supply is low the roots are likely to be complex, giving rise to 
cyclical behaviour along the optimal path. 

 We may ensure convergence to the stationary point given in (21) by restricting 
our attention to the plane spanned by the characteristic vectors associated with the 
two stable roots.6 In this way we synthesize a locally optimal feedback rule for the 
control variable x = x(m, n*). The two relevant differential equations describing 
motion in this plane are: 

M = x(m, n*) 
                                        (24) 

7i*=b(m—n*—/1)/(1—ab)

5 This may be seen from the following arguments. (See Mathematical Appendix for details). 

 (i) LimZ F(Z) = LimZ _ co F(Z) = 00 
 (il) F(Z) had a local maximum at z = 412 and F(4)/2) >0 

1 
 (iii) F (Z) has equal global minima at Z = 2+2(4)+2A (A +4)))112 and for each of these values: 

         (B (A + 4))2 
      (Z)= A2 j--. Clearly, 

Y 4 
                      z 

     ifB>(A + 0) all roots are real; otherwise, all roots are complex. 
y — 4 

 (iv) F(0) > 0 and F'(0) > 0. Thus if all roots are real then two are positive and two are negative. 
 (v) If all roots are complex then from the fact that the sum of the roots is positive:— 

                  (E Zr=24>0), 
     at least two must have positive real parts. Thus there are three possible cases to consider but it is 

     relatively easy to show that the only pattern of roots compatible with the signs of the coefficients 

     of F(Z) (particularly the coefficient on Z) is two with positive real parts and two with negative 
      real parts. 

 Thus there are always two stable roots as asserted in the text. 
 6 This is a standard procedure in the stability analysis of non-linear ordinary differential equations. 

The interested reader is referred to Coddington and Levinson [4]. For another application of the 

technique in economic analysis see Ryder and Heal [9].
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Taking a linear approximation around the stationary point gives: 

 m  x,„ x„* m _[C3(25) 
         ti*A — An*A). 

where C3 =Xmm+ xi, n* 
The characteristic equation associated with (25) is: 

Z2 — (x — A)Z — A(x„, + x*) = 0(26) 

However, since we `know' the relevant characteristic roots, Zr and Z2 say, we may 
solve for the partial derivatives of the feedback rule, xm and xi,* 

xm=Zr+Z2+A<0 

                  x~* _— (Z 1 + A)(Z2 + A)< 0(27)                           A

The signs of these partial derivatives accord with a priori logic and are obviously 
self-stabilizing.7 

 It remains to examine the (local) nature of convergence to the stationary point. 
Clearly, from (25), 

                                      xen* x„*It* 
m~0 as m-m ------+------(28) 

                               x,„ x,„ 

and 

It as m-.1+~t*

From (21) we know that m > 0 and that it* = m —A,. In what follows we will assume, 
without loss of generality, that A is `small' so that n* is positive. Under this 
assumption behaviour in the (n*, m) plane is illustrated in the following phase 
diagrams (Figs. I and II below). These illustrate several interesting features of the 
model. Firstly, if Zr and Z2 are complex conjugates then any deviation from 
equilibrium will result in damped cyclical behaviour (Fig. II). Secondly, as Fig. I 
shows, even if Zr and Z2 are real, `overshooting' of (m, ft*) is a strong possibility. 
However, we should note that both cases are, of course, asymptotically stable.

CONCLUSIONS

 The purpose of Cathcart's analysis was to derive the path for the expected 

inflation rate which will maximise the government revenue from inflation when 

price expectations are formed adaptively. Cathcart's suggested optimal solution is

   The signs may be ascertained by applying the formula for the roots of a quartic equation and 

showing that A lies within a certain range.
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/

Fig.

Fig. I. Zr i Z2 real and negative (stable improper node)

 0 

II.  Z„

7r*

m=0

   *> Tr*              if 

Z2 complex conjugates with negative real parts (stable focus).
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that the expected and hence actual inflation rates are constant at a certain value. 
Unfortunately, Cathcart's solution is in general not optimal. We showed that when 
expectations are adaptive the optimal policy to maximise government revenue calls 
for an infinite jump in the rate of inflation in order to exploit the lagged response of 
the expected to actual inflation rate. Such a result seems to offer one possible 
explanation of why the actual rates of inflation in hyper-inflations are greatly in 
excess of those required to maximise the government revenue from inflation in the 
steady state. However, in practice we do not observe massive jumps in the inflation 
rate. Given the assumption that the authorities are attempting to maximise 
revenues this suggests two possibilities. Either, first expectations are not formed 
adaptively or second, there are costs in adjusting either the instrument, namely 
changes in the rate of monetary expansion or the rate of inflation, (a possible 
surrogate for  `social strife'). Both of these latter possibilities seem to preclude 

jumps in the inflation rate as policies to maximise the government revenue from 
inflation and can lead to higher inflation rates along the transition path than the 
actual steady state maximising rate of inflation.

University of Sheffield University of Liverpool
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MATHEMATICAL APPENDIX

PROPOSITION. 
 The roots of the quartic equation: 

F(Z)-Z4-2qsZs—(A2+A4)— 

(where 4, A, B and y are positive constants)

 )Z2 + Aq5(A + q5)Z+ A2B/y 

conform to one of the following patterns:
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 (i) all roots are real with two negative and two positive, or 
 (il) the roots are two complex conjugate pairs, one with negative real parts and 

one with positive real parts.

 Proof of the assertion may be established by the following steps: 

 (i)  Lim,  co F(Z) = Limz+ _ ~ F(Z) = 00 
 (il) F'(Z) = 4Z3 — 6oZ2-2(A2 + A4 — 4)2)Z+ Aq(A + 4) and F'(Z) = 0 when: 

    (a) Z=21=4/2>0 
    (b) Z=22=4/2+1/2(42+2A2+2A4)1/2>0 
    (c) Z=23=4/2-1/2(4)2+2A2+2A4)112<0 

(iii) F"(Z) =l2Z2 —124 Z — 2(A2 + A4 — 42) 
= —42-2A(A+ab)<0 when 2=21 
=4A(A+4)+202>0 when Z=22 or 23 

 Therefore F(21) is a local maximum and F(22) and F(23) are (equal) global 
minima. 

            A~2(A+4)) A2BA2B  
 (iv) F(21)=-16+ 4+ >0; F(0)=>0 

                 B (A + 0)2B(A + 0)2 
      F (Z2) = F (Z3) = A2— —  40 as4 

v 

 The three possible graphs of F(Z) are depicted in Figs. 1, 2 and 3 below.

I
 r\

F(z

 as

     B 
Fig. 1. -< 

 y

 (A+4)2

Z

 F(Z)

0 0/2

     B 
Fig. 2.  -= 

Y

(A+4)2

2

 f\z)

1

0 0/2

     B 
Fig. 3. —> 

 Y

 (A+ob)2

Z

4 4 4

 In Figs. 1 and 2 all roots are real and in Fig. 3 all roots are complex. Thus, if the 
roots are real there must be two negative (distinct in Fig. 1 and co-incident in Fig. 
2) and two positive. 

 (v) Suppose, however, that all roots are complex (Fig. 3). Then from the fact 
that the sum of the roots is positive:-

                               4 Zr=24>0 (il) 
at least one complex conjugate pair must have positive real parts. Thus, we must 
consider, for arbritary roots, the following three possibilities:
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(A) Zr,  Z2  =  a+  bl 
    Z3, Z4=C±di 

(B) Zr, Z2=a±bl 
Z3, Z4= ±di 

(C) Zr, Z2 = a+ bl 
    Z3, Z4= —C±di

a, b, c, d>0 in all cases.

 The quartic equations associated with these three cases are as follows: 

 (A) F1(Z)=Z4-2(a+c)Z3+(a2+b2+c2+d2+4ac)Z2 
— 2[c(a2 +b2) +a(c2 +d2)]Z+ (a2 +b2)(c2 +d2) 

 (B) F2(Z)=Z4-2aZs+(a2+b2+d2)Z2-2ad2Z+d2(a2+b2) 
 (C) F3(Z)=Z4-2(a—c)Z3+(a2+b2+c2+d2-4ac)Z2 
            +2[c(a2 +b2) — a(c2 +d2)]Z+ (a2 +b2)(c2 +d2) 

 Comparison with the equation under consideration, F(Z), shows that only in 
case (C) are the signs of the co-efficients correct; in particular, the sign of the co-
efficient on Z must be positive and this is violated in cases (A) and (B) above. Thus, 
if all roots are complex there must be one pair with negative real parts and one with 

positive real parts. 
 Thus we always have two stable roots which may be real or complex, as asserted 

in the text.


