EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title A NOTE ON THE DISINTEGRATION OF MEASURES A CONVERGENCE THEOREM
Sub Title
Author MARUYAMA, TORU
Publisher Keio Economic Society, Keio University
Publication year |1979
Jtitle Keio economic studies Vol.16, No.1/2 (1979. ) ,p.57- 64
JaLC DOI
Abstract
Notes
Genre Journal Article
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=AA00260492-19790001-0
057

BREZBAEZMERRD NJ(KOARA)ICEBREATVA IV TV OEFIER., ThThOEEE, FRFTLRERLRTECREL. TOEMNGEHEEECLST
REENTVET, 5|ALCHLE> TR, BEELZEETLTIRALEEL,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.



http://www.tcpdf.org

A NOTE ON THE DISINTEGRATION OF MEASURES
A CONVERGENCE THEOREM

TORU MARUYAMA

1. INTRODUCTION

Aumann and Perles[2] rigorously examined a kind of variational problem
arising in mathematical economics. Berliocchi and Lasry [3] as well as Artstein [1]
generalized the formulation of this problem and gave interesting existence proofs
of optimal solutions. Maruyama [8] presented a further generalization as follows.

Let X be a compact metric space and i be a non-negative, non-atomic Borel
measure on X such that i(X)=C< 4 . We denote by M, the set of all non-
negative Borel measures y on X which satisfy the following two conditions:

() w<ip,
(i) WX =C.
Let Y be a locally compact Polish space and consider the functions:

u: XxY->R,
gi: XxY-[0, +oo]; i=1,2, -, n.

The problem is to

Maximize J u(x, f(x))du
X

subject to
peMa
fi X-Y is Borel-measurable
J\gl(x’f(x))dﬂéal; i:lazyn.,n
X
where
(g, 0y, =*+, o) is a fixed vector.

Under what conditions on u and g,’s, does an optimal solution (u*, /*) exist? An

The author is grateful to Professor Akio Koyama for his invaluable comments on both of this paper
and [8].
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58 TORU MARUYAMA

answer to this question is given in Maruyama [8] and the present paper supplies a
necessary stepping-stone to the solution of the problem.
Let

y,,=J 0, v, [x]du,; n=1,2,
X

be a sequence of disintegrations of measures, the definition of which will be given
at the begining of §3. We are going to investigate a sufficient condition of the
weak*-convergence of {y,} in relation to the weak*-convergences of {v,[x]} and

{1}

2. THE SPACE I
Let (X, p) be a metric space and IN be the set of all non-negative Borel measures
on X which satisfy the condition:

uX)sC<+w.

The topology of M is defined by the weak*-convergence: i.e. a net {u,} in M
converges to u, € M (symbolically w*-lim u,= p.,) iff

lim j fdua=J fduy,
@ X X

for any bounded, continuous real-valued function f defined on X. The Banach
space of those functions endowed with the sup-norm is denoted by %°(X).

The topological and analytical properties of the space of all the probability
measures on X have been systematically elucidated recently by Billingsley [4],
Maruyama [7] or Parthasarathy[9]. Most of the corresponding statements in the
more general space I can be proved analogously, out of which the following two
theorems are useful in this paper.

THEOREM A. IR is separably metrizable iff X is a separable metric space.

THEOREM B. Let X be a separable metric space, {u,} a sequence in M and
U, €. Then the following two statements are equivalent.

() w*lhim p,=p, -

(i) For any equi-continuous, uniformly bounded subfamily o < €"(X),

Lfdﬂn—j fdu‘=0-

The following basic result seems to have been obtained independently by several

lim sup
n—o© fed
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authors (for example, Grandmont [6]). A self-contained proof of this theorem (for
the space of probability measures) can be found in Maruyama [7]. For the sake of
the readers’ convenience, I will repeat it again in this paper for the space . We
must prepare a lemma.

LEMMA 1. Let {f,} be a sequence of real-valued functions defined on a metric
space X such that

(1) f, is continuous at xe X for all n;

(1) {f,} is continuously convergent to f at x. (i.e. x,—x implies f,(x,)—f(x).)
Then {f,} is equi-continuous at x.

Proof. Assume that {f,} is not equi-continuous at x. Then for some & >0, we
can find a sub-sequence {f.,} of {f,} such that

I nyGe) = fr, ()] 2 ¢ for some x, € B,(x)

.......................... (1)

where

1
Bl/,,(x}={yeX|p(x, y)<7} :

Then, by construction,

Xp > X as p — 0.

Hence, by (ii), we must have
lim f,,(6,)= /(). @)
However
| S5 = SO 21 £y, 05,) = i, ()] = 1, () —f ().
Since
Uy 09—f@] =0 as porco,
lim 11,,(x,) = f()| 2¢

which contradicts to (2). ' Q.E.D.
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THEOREM 1. Let X be a separable metric space and {y,} be a sequence in M
such that

(1) w*lim p,=p, M.
Furthermore assume that a sequence {f,} in €° (X) satisfy:
(i) {f,} is uniformly bounded;

(i) {f,} is continuously convergent to f at any x€ X.

Then we have

lim J f,.dun=J fdug, -
n— o X X

Proof. ByLemma 1, {f,} is equi-continuous at any x € X. Hence by Theorem B,

J fp d:un - J fp d:u'oo
X X
Next consider

X X X X X X

The first term on the right hand side of (4) tends to 0 by (ii), (iii) and the Bounded
Convergence Theorem. And the second term tends to 0 by (3).
Thus we get the desired result. Q.E.D.

lim sup

n—ow p

=0. 3)

= + 4)

3. WEAK*-CONVERGENCE OF DISINTEGRATIONS

Let X and Y be compact metric spaces and pue IR throughout this section.

Then we can define the crucial concept of u-disintegration of a measure as
follows.

DEFINITION. A Borel positive measure y on X x Y is said to have a u-
disintegration if there is a weak*-measurable mapping
x — v[x]

of X into the space of Borel probability measures on Y such that

V= j 8. @vlx]dpu, ()
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where 0, 1s the Dirac measure concentrating at x. (cf. Bourbaki [5] pp. 39-42 for

detailed discussions.)

We denote by D(u) the set of all Borel measures on X x Y which have u-
disintegrations and put

D)= U {D(W) | ueM}.

Since X and Y are compact metric space, so is X x Y. Hence D(IN) is separably
metrizable by Theorem A.

THEOREM 2. Let {y,} be a sequence in D(M) such that
ynzj 0, ®v,[x]du,; n=1,2,--.
X

Assume that
@i w*-lim p,=up, M,

(i) if x,—x, then

w* ',,lifg ValX,]=Vv,[x]  (continuous convergence

w* -klim va[x ]=v,[x]; n=1,2,--- <continuity)

for any xe X.
Then

w*-lim y"=J 0, ®v, [x]du,, .

n— o X
Proof. Let fe €°(X x Y). Then by definition of y,,
J fx, J’)d%.=J dp, J S(x, y)dv,[x].
XxY X Y
If we define ¥/,: X— R by
l//n(x)=j SO, y)dv[x]; n=1,2,-, (6)

Y

then we can claim:

Claim (I). ,(x) is continuous.
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For the sake of simplicity, we omit the index n. What we have to show is: x;—x
implies

J S y)dvLx]— f S(x, y)dvlx]. (7

If we denote f,(y)=f(x,, »), then {f,} is uniformly bounded and continuously
convergent to f(x, y) at any ye Y. And by assumption (ii),

w*-klim vix, ] =v[x]
Hence by Theorem 1, we get the desired result.

Claim (11).

J !pn(x)d“nm’J\ t//oo(x)d:um'
X X

We have already checked the continuity of ¥,(x) (n=1, 2, -+ ) in Claim (I). And
the uniform boundedness of {y,} is clear because

Wl S I fll<+o0;  n=1,2 . ®)

Next we have to show that y, is continuously convergent to ¥ at any x€ X.

Assume x,— x (as n— o0). If we denote f,(y)=f(x,, y) asin Claim (1), then {f,} is
uniformly bounded and continuously convergent to f(x, y) at any yeY.
Furthermore, by assumption (ii),

w*-lim v,[x,]=v,[x].

Hence, again by Theorem 1,

j f;l(y)dvn[xn]_—_’J f(x’ y)de[x:] as n— 0.
e, Y,(x,) — ¥ (x) as n— 0. )

(8), (9), (i) and Theorem 1 imply Claim (1I).
By the above discussions, we have seen that

J f(x, yydy,— J dps, f S(x, y)dv[x]
XxY X Y

for every fe €°(X x Y) ; that is
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w*-lim y,=v_.
Q.E.D.
REMARK. Define y,, y,, € D(M) by

Y"ZJ‘ 5x®vn[x]dlun; n= 1, 2, e
X

Yo = J\ 5x®voo[x]d#oo
X

and assume w*-lim y,=7,.
n— o0
Then we can easily verify that

w*- lim p,=pu, .

n—=o

In fact, if ge €°(X), then

j g(x)du, =J g(x)dy,—— J g(x)dy = J glx)du,, as n—oo.
X XxY XxY X

j g(x)d#n—’J g(x)du,, as n— 0.
X X

However y, -7, does not necessarily imply the condition (ii) in Theorem 2.

COUNTER EXAMPLE. Let us define

Vn=f 0, ®@v,[x]du,
X

as follows:

P = Yy = 6’60 forall n

Voo [ Xo]=Va[x0] forall n (no other specification)

where x, is any fixed point of X. Then for any f e #°(X x Y),

f S(x, y)dy, =J S(x0, Y)v,[x4]
XxY Y

= f J(x0, V)V [ X0]
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=J‘ f(X, y)d’yco
XxY

w*-lim y,=v, .
n— o

But the condition (ii) in the above theorem is not necessarily satisfied.
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