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OPTIMAL POLICY ADJUSTMENT RULES, POLICY LAGS 

      AND THE STABILITY OF THE SYSTEM 

          The Application of Classical Automatic 

        Control Theory to Stabilization Policy-----

 CHIOHIKO MINOTANI*

1 INTRODUCTION

 This paper has three purposes. The first is to discuss the three different policy 
adjustment rules, namely proportional, derivative and integral policies , in relation 
to the stability of the system. The second is to discuss both the length of policy lags 
and the strength of policy in relation to the stability of the system . The third is to 
obtain the optimal policy adjustment rules to acheive the system performance . 

 The model analysed in this paper is the dynamic multiplier-accelerator model and 
we assume the case where the deviation between current and desired level of the 
balance of international payments—measured by the balance on current 
account—is continually adjusted by the government expenditure . Let the desired 
level of the balance of international payments be R*(t), the current level of that be 
R(t) and (a part of) the government expenditure be g(t), then three types of policy 
adjustment rules are formulated as follows. 

    proportional policy : g(t) = al [R(t) — R*(t)] 

    derivative policy : g(t) = a2 D [R(t) — R*(t)] 

                                                 r 

    integral policy : g(t) = a3 [R(i) — R*(t)]di 

                                      0 where D is a differentiation operator d/di. 
 We further assume the existence of the policy lags, which are specified as the 

simple exponential lag with the time constant 1/8. Therefore each policy adjustment 
rule is written as follows.**

g(t) =
al

g(t) =

D+a 

a26

[R(t) — R*(t)]

D+o
D[R(t) — R*(t)]

 * This paper is the revised version of my paper "Optim
al policies and the stability of the system" 

published in The Economic Studies Quarterly, vol. 27 (1976) [in Japanese] 
 ** Shinkai[8] analyses the similar problem taken up in thi

s paper. However, the model analysed in his 
paper is quite different from this paper. Using final equation he discusses the magnitude of the 
proportional policy and the policy lags in connection with the stability of the system. Only the 
formulation of the adjustment rule for the balance of the international payments by government 
expenditure used in the present paper owes to Shinkai's paper . 

                        1
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         g(t) =D+[R(T)-R*(T)]dT . 
•o- 

 In this study we discuss the value of parameters al, a2, a3 and 8 in relation to the 
stability of the system. These parameters al, a2 and a3 show the strength of the 
policy action and b shows the policy lags. 

 In order to obtain the optimal policy adjustment rules, the target to be optimized 
must exist and further it is necessary for the transitory process to the target value to 
be optimal for some reasons. "For some reasons" means that the transient time is the 
minimum, for example, or the transient time path is steadily declining. 

 However it seems that so far the transient process or the transient properties have 
been treated as a little matter of concern in discussing the proportional, derivative 
and integral policy. Phillips [7] analysed the case where the deviation between the 
desired and the actual output level is adjusted by the government expenditure and 
discussed the policy that can stabilize the fluctuations of the output. But his studies 
did not analyse the merits and demerits of each policy adjustment rule from the 
point of some optimal transient properties, but relied heavily on trial-and-error 
procedures. Phillips stated that if we have any successful stabilisation policy it must 
be composed of a proper combinations of proportional, integral and derivative 
elements. The bases of his argument were as follows. First, the major policy is based 
on the strong proportional policy, thus integral policy should be used to correct the 
error. The deviation between desired and actual value does not disappear in proper 
time. Finally an element of derivative correction is necessary to overcome the 
oscillation which may be introduced by the former two policies. Therefore, 
according to Phillips, general stabilisation policies are given by 

           ft                   ape(t) + a; e(t)di + adDe(t) 

                                   0 where e(t) is the input signal (i.e. the deviation between desired and actual value) or 
the error above mentioned. 

  While Phillips gave the values of policy parameters a p, a; and ad by trial-and-error 
method, in the present paper we have tried such a proceduce that we determine the 
policy adjustment rules and the values of policy parmeters having optimal transient 
properties. Then in this paper optimal policy adjustment rules are not given a priori 
as the combination of three elements, but the optimal adjustment rule is determined 
by examining the transient properties. 

  The method which we used in this paper is the one that optimises the system 
indirectly by optimising the transient properties of the system to a step response. 
The method is "a classical" approach so to speak in the field of the control theory. 
The quadratic criterion function subject to linear constraints is minimized in 
modern control theory. The reason why we did not use this "modern" approach in 
this paper is that we thought the transient properties approach is superior to 
"modern" method in studying the properties of such simple model as analysed in the 

present paper. We shall make some reference to the criterion function approach in 
Section 3 where we prove the existence of the optimal control.
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 In Section 2 the approach from automatic control theory is stated bri
efly. In S

ection 3 the multiplier-accelerator model is presented
, dynamic properties of the 

model are analysed and the existence of the optimal control which minimi
zes a 

quadratic criterion function is discussed. In Section 4 some concept to analyse the 

properties of the system are given and propertional, derivative and integral policy 
are discussed in turn . In Section 5 it is shown that the derivative plus proportional 

policy is optimal if we are planning to make the unstable system stable
, to make the stead

y-state error zero and to obtain a fast response.

2 THE METHOD OF AUTOMATIC CONTROL THEORY

   The methods used in the present paper are the one used in the aut omatic control 
 theory, which is widely used in controlling the rocket

, the satelite, the petroleum 
 refining plants and the elevators , etc. The control theory which has been developed  i

n the field of engineering is also very useful to economic analysis that tr
eats the  f

eedback control. This feedback control consists of the target value (input 
signal)  and the controlled variable (output signal) and the deviation bet ween the two signals  i

s compared and the actual level is manipulated in order to red uce the deviation.   Th
e approach from automatic control theory can be divided into followi ng five 

 steps. 
 1. The observation of the controlled system —the building of the system .  2
. The determinants of the system performance . 

3. The analysis of the system (stability , transient properties) 4
. The improvement of the system 

5. The acheivement of optimal system performance 
  The first step—the observation of the controlled system —is not any special step 

in control theory, however , it is necessary to pay attention to the term of system 
rather model. The term of the system has a teleological m

eaning. It means that the 
model to be used must acheive a certain performance . 

  Now even when consensus to the observation of the system is obt ained, it is not 
easy to determine the system performance . Since we cannot regard the economic 
society as the simple system having a single objective

, it is difficult to obtain consensus to the following matters . What are controlled targets? What manipu -l
ations (policy measures) can be used to acheive that target s? Which transient 

process to the target value is good? What percents of the overshoot from the target 
value are allowed? On the other hand in the field of engineerin

g the matter is not serious a
s in case of economics. None will allow the overshoot from the targ et floor in the elevator control and we shall not have disagreement on th

e allowable range of th
e fluctuations of the target temperature in controlling the t

emperature of electric f
urnace. 
  Furthermore, there may be more than one"optimal" res

ponses. Here we specify optimal perform
ance for the required system as following properties . (1) There is a tendency to converge to the target value . (The system is required to be 

stable.) 

(2) The steady-state error stays in allowable range .
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(3) The time to reach the target value is not too long. 
(4) The time path to approach the target value does not have a strong oscillation. 

 In modern control theory the criterion function representing the system 

performance is minimized or maximized. 
 Steps 3 through 5 are explained in the following example.

3 A MULTIPLIER-ACCELERATOR MODEL

 3.1 Model 
 The model analysed in this paper is following multiplier-accelerator model (the 

time argument is abbreviated for ease of notation).

(3.1)

(3.2)

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7)

(3.8)

where  C 

 1 

G 

X 

M 

T 

Y

C=c(Y—T) 

2 I D+2vDY 
      µ 

G=G 

X=X 

M=mY 

T = t 

Y =C+I +G+X —M 

R = (X — M)di 

0

consumption expenditures 

investment expenditures 

government expenditures 
exports 

imports 

taxes 

GNP

0<c<1

µ>0, v>0

0<m<1 

0<t<1

       = foreign currency reserves (measured by cumulated balance on current 
          account). 

 Capital account is ignored in the foreign currency reserves R. D in equation (3.2) 
represents differentiation operator. The variables X and 6 are exogeneous. 

 In following analysis we call the actual world as the world of t function and the 
back world represented by the Laplace transforms of t functions as the world of s 
function. The notation Y(s) is used to denote the Laplace transforms of Y(t). 

 The signal flow graph for the model represented by equations (3.1) through (3.8) is 
shown by Fig. 3-1. The symbols C, X and Y etc. in Fig. 3-1 denote the s functions of 
C(t), X(t) and Y(t) respectively. 

 Since we are interested in the balance of international payments and we consider 
the adjustment of it by the government expenditures, the signal flow graph shows 
the input and output signal as G and R respectively. The system in which the output 
R has no effect on the input G is called open-loop control system.
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             Fig.  3-1. Signal flow graph for the model of Eqs. (3.1) to (3.8) 

 Let us see the dynamic properties of this model. The model can be solved for the 
variable Y, thus we obtain the following relation between the variable Y and G. 

 (3.9)Y(s) = H(s) G(s) 

where 

               H(s) =                        (s + 2µ)2  

k s2 + 4µ k kµvs + 4µ2 

k = 1 — c(1 — t) + m . 

 We shall determine the stability of the model by using Routh's criterion.* The 
roots of the characteristic equation are the values which make the denominator of 
H(s) equal to zero. The Routhian array is 

k4µ2k 

4µ(k — µv) 

4µ2k 

 Since k and p are positive, the system is stable if k — pv > 0 and unstable if 
k — µv <0. When the system is unstable, the real parts of the two roots are both 

positive. The system has the intrinsic oscillations if 2k > pv and stable (damped 
oscillations) if k > µv but unstable (explosive oscillations) if k <pv <2k. When k > µv, 
then 2k > µv always holds, the system is stable but has no steady decline. The results 
obtained are shown in Fig. 3-2. The system has damped oscillation in region I (k 
> µv), explosive oscillation in region II (k < pv <2k) and steady growth in region III 

(2k < pv). 
 Now suppose that the time unit of the system is measured is-monthth periods and 

the following hypothetical structural perameters are set (Table 3-1). 
 The value of parameter k is supposed to be 0.46 and p which represents the 

investment lags is supposed to be 0.25 (which means time constant of one year) in all 
cases of the structure I, II and III. The parameter 8 shows the policy lags as 
mentioned in the introduction. These values of parameters will be used later. 

 Thus in all cases of the structure I, II and III the system is stable (damped 
oscillation) if v < 1.84, oscillates explosively if 1.84 < v < 3.68 and grows steadily if 
v > 3.68. 

  * See Appendix A



6 CHIOHIKO MINOTANI

 Now we shall consider the response of Y to a unit-step input signal  G(s)  =1/s, 
which corresponds to a unit input u(t) =1(t > 0) in the world of t function, that is, we 
shall consider the financial multiplier. Substituting G(s) =1/s into equation (3.9), we 
have

(3.10) Y(s) = (1/k) (s + 2p)2
s(s — si)(s — s2)

where

SI ,2 

0),,

= —Cwn ± Jw„N/1 - y2 
=2p>0 

=1—µv/k <1

k

Fig. 3-2. The stability of the system

 µU

TABLE 3-1 THE HYPOTHETICAL STRUCTURAL PARAMETERS

C t m u µ b stability policy 
lags

invest-
ment 

lags

structure I 0.8 0.2 0.1 1.6 0.25 0.5 stable
 six-

months

one 

year

structure II 0.8 0.2 0.1 1.6 0.25 0.25 stable
one 

year

one 

year

structure III 0.8 0.2 0.1 3.0 0.25 0.5
un-

stable

 six-

months

one 

year
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and the  symbol  j shows the imaginary unit . Given initial conditions Y(0) = 0, D Y(0) 
= 0, we obtain

 (3.11)Y(t) =— 1
2e - Cu,ht                             k

\l— c 

                         x sin (con \/1— C2 + cos -1 C) . 
If C w, > 0, that is, k> µv, then the system gives a damped oscillation for output Y(t) 
and Y(t) approaches the equilibrium level 1/k = 1/{1 — c(1 — t) + m}. If ( con < 0, that 
is, k <µv, then the system gives an explosive oscillation for output Y(t). The 
multiplier effect is equal to 2.2 for the structural parameters I and II giving stable 
system. Since the period of the cycle is given by 2ic/con .\/1— C2 , it is equal to about 
three years for the structure I and II , about four years for the structure III. 

 Now let us consider the steady-state level Y* of Y. The variables G and X are 
assumed to be constant in this system , so we obtain the relation G = [1 — c(1 
— t)] Y*. This relation is obtained by using the equation 

 (3.12)[1 —c(1 —t)+m]Y*=G+X 

and using the fact that the relationship X = M* = m Y* must hold if there is no 
change in the foreign reserves . The relation G = [1 — c(1 — t)] Y* is not a steady-
state multiplier but represents the relation which should hold between given Y* and 
X.*

  3.2 Controllability 
  We have discussed the properties of the model which is shown by equations (3.1) 

to (3.7). Next we shall consider the case where the adjustment of R to the desired 
foreign reserves R* is made by the government expenditure . First we shall consider 
the controllability. The controllability explained here is the output controllabilit

y, which is defined as follows. A system is said to be completely output controllable if 
there exists an unconstrained piecewise continuous input g(t) (the government 
expenditure in this system) which will drive the output r(t) (the deviation between 
R(t) and R*(t) in this system) from t = to to any final output r(ti) for some finite time ti 
—to>_0. 

 Let the constant parts of G be G and g = G — G. If we let R*(t) = R (constant) , r = R — R* and X = constant , then from Eqs. (3.1) to (3.8), provided that all initial 
conditions are zero, we obtain

(3.12)Y(s) = (— m/k) (s +------------------------------2µ)2g(s) 

               s s2 + zip (k 41121µ2 
 To describe the system by a set of dynamic equations which includes th

e state 
equations and output equations , let us define the state variables as follows . 

 (3.13)xi (t) = r(t)

* See Shinkai[8] , p. 18
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 (3.14) x2 (t) = i(t) + —k 

                                      2vm 

 (3.15) x3 (t) =r'(t)+k4g(t) +-------kg(t) 
Using Eqs. (3.13) to (3.15) we obtain the following state equations. 

 (3.16) .z (t) = Ax(t) + bg(t) 

where

 (t) =

x (t) _

A=

b=

al=4p2

  xi (t) 
  X2 (t) 
  x3 (t) 

  Xi(t) 
  x2 (t) 

  X3 (t) 

01 
00 
 0 —al 

 bl 
 b2 
 b3

0 

1 
—a2

                  k—pv 
        a2 =4p -------k 

bl = — m/k 

b2 = — 4p2vm/k 

b3 = l6psvm(k — pv)/k3 

 The output equation is simply 

 (3.17)r(t) = Dx(t) + Eg(t) 

where 

D=(1 0 0) 
E _ (0 ) 

 The necessary and sufficient condition that the system is completely output 
controllable is that the p x (n + 1)m matrix T 

          T = [Db DAb DA2b • • • DA"- lb E] 
has a set of p linearly independent columns, where p= number of outputs, m= 
number of inputs and n = number of state variables and matrices D, A, b and E are 

given by Eq. (3.16) and Eq. (3.17).
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 Since we have  T  =(bl b2 b3 0) in this system, the rank of T is one and this system is 
completely output controllable. However even if we intend to control both R and Y 
by the government expenditure, we have the result rank T =1 < 2, therefore, we can 
similarly show that there does not exist an unconstrained piecewise continuous 

input g(t) which will drive the output(i)from t=toto any final outputR(ti) 
         (t)Y(ti)) 

for some finite time ti — to >_ 0.

  3.3 The existence of an optimal control 
 Now we shall show the existence and the uniqueness of an optimal control if the 

matrix which appears in quadratic loss function holds some certain conditions . 
 Suppose that the system performance is represented by the following loss 

function. (This assumption is used only to prove the existence of optimal control , 
therefore this loss function will not be used as criterion to discuss the system 

performance from the Section 4 on) 

                1 
 (3.18) L= 2 ar2(ti) + f [/3,r2(t) + $2g2(t)]di 

to 

 The first term in right-hand side in the cost function is called terminal cost, which 
evaluates the magnitude of the error r(ti) in terminal time ti, and a>0. 

 The meaning of the first term in the integrand is obvious and /31 > 0. The second 
term in the integrand denotes the cost of changing the government expenditures, 
that is adjustment costs, and the more the costs are, the greater the loss of the system 
is, and N2 > 0. 

 Using the state variables defined in Eqs. (3.14) to (3.15) the loss function (3.18) can 
be rewritten as follows. 

  (3.19) L=2x1(ti) F x (ti) +2f[x'(t)Qx(t) +ls2g2(t)]di 
to 

where

            a 00                  ria F=oooand Q=0 0 
    0 00 0 0 

 Since F and Q are positive semidefinite and /'2 0, then the optimal control 
uniquely exists and is given by* 

 (3.20)g(t) = — 3b' K(t) x (t) . 
                                        /'2 

The 3 x 3 symmetric matrix K(t) is the solution of the matrix Riccati equation 

 (3.21)k(t) = — K(t)A — A'K(t) +(~1K(t)bb'K(t) — Q 
                                                  /'2

* See Athans and Falb [3]
, Control Law 9-1, p. 762
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with the boundary condition 

                         K(t) = F.* 

  If we  let —(11112)b'  K(t) = [01(t), 02(t), 03(t)], then Eq. (3.20) can be rewritten as 
follows. 

 (3.22) g(t) = 01(t)r(t) + 02(t) [r(t) + mg(t)/k] 
                  + 03(t) [r'(t) + mg(t)/k + 4p2vmg(t)/k2] . 

  The important points obtained from Eq. (3.20) which represents the existence and 
uniqueness of an optimal control are as follows. 
(1) An optimal control is denoted by the linear function of the state variables x(t). 
(2) Even if both the system and the loss function are time-invariant, i.e., even if A, b, 
a, 131 and /32 are constant in time, the optimal control is time-varying as long as the 
control interval [to, ti] is finite. 

  It is difficult to control the time-varying system. If we let F =0 and ti—^ co, then we 
have a time-invariant optimal control for a time-invariant system and loss 
function.** Let us consider such a case. Given the time-invariant system, Eq. (3.16), 
and the loss function 

                  1  (3
.23) Ll = —

2 + $2g2(t)]di 

0 we have a unique optimal control, which is given by the equation . 

 (3.24)g(t) = — —ls2b'Kx(t) 

                              where K, 3 x 3 positive definite matrix, is the solution of the following quadratic 
equation. 

 (3.25) —KA—A'K+/11/~Kbb'K—Q=0. 
                                   r'2 

In this case 01, 02 and 03 become constant and given initial conditions 
R(0) = G(0) = 0, so we have the following optimal control. 

 (3.26)g(s) = (fi + f2s + f3  r(s) 
s — pt 

 This equation (3.26) shows that the optimal control becomes a mixture of three 
different policy adjustment rules, that is, a mixture of proportional, derivative and 
integral policy. 

 3.4 The introduction of the adjustment policy to the balance of international 

payments 
 As mentioned in the preceding section, if the linear time-invariant system and the 

  * See Athans and Falb [3], p. 767 
  ** See Athans and Falb [3], Control Law 9-2, p. 771
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quadratic criterion function satisfy certain conditions, then the optimal control 
exists for the adjustment of  R(t)  —  R* by g(t). However even if the structural 
parameters are known the values of policy parametersfl,f2,f3 and pl in Eq. (3.26) are 
not obtained unless the parameters fl and /12 of loss function are known. 

 Therefore we shall adopt the transient properties approach rather than the 
criterion function approach in the following analysis. First we shall discuss three 
different -policy adjustment rules in turn.

   A Proportional policy 
 Suppose that the proportional policy is introduced to adjust R(t) — R* by g(t) and 

policy lags is represented by simple exponential lag with time-constant 1/a. Then the 
system is written by

(3.27)

(3.28)

(3.29)

(3.30)

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35)

C = c(Y — T) 

-------)2vDY ID
+µ2           µ 

G = G + g 

6 
g= D+6a1(R—R*) 

R = Po (X — M)ox 
X = X 

M = mY 

T = t 

Y = C+I+G+X—M

0<c<1

p>0, v>0

8>0, a,>0

0<m<1 

0<t<1

 The signal flow graph of this system is shown in Fig . 3-3. In Fig. 3-3, E is given by 
the following equation

_2 F2'
s+21 vs       µ 

  _8a, FZ 
s+8

F3 =_ 
s

Fig. 3-3. Signal flow graph of Eqs . (3.27) to (3.35)
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 (3.35)E(s) = R*(s) — R(s) 

and this value operates as input. The system as shown in Fig. 3-3, i.e., the system 
which the controlled signal R(t) effects the actuating signal E(t) in order to maintain 
the output R(t) at the desired level  R*, is called a closed system. Thus, the output R(t) 
is controlled so as to approach the desired value in the system with the feedback 

path. 
 Using Mason's rule* the following equation is obtained from Fig. 3-3. 

           R(s) mF2 F3  
 (3.37)M(s) = R*(s) 1—c(1—t)—F1 +m+mF2Fs

or

(3.38) M(s) =
(m5a 1/k) (s + 211)2

s(s+(5) Is2+4µ kkiw4/42}
 Let 

Kl(s+2p)2 
 (3.39)GI(s) _   s(s+(5)s2+4iik-k/iv s+4p2 

then (3.38) can be written as 

                    M(s) = G 1(s)  (3.40)1 
+ G 1(s) 

where 

 (3.41)Kl = mbal/k 

Thus the block diagram of this feedback control system can be denoted as Fig. 3-4. 
Let us define some important terminology used in the block diagrams with reference 
to Fig. 3-4. 

R*(s) = input (target value or final value) 
        R(s) = output (controlled variable) 

        B(s) = R(s) = feedback signal 
         E(s) = actuating input 

GI(s) = R(s)/E(s) = forward transfer function or open loop transfer 
               function 

        M(s) = R(s)/R*(s) = closed loop transfer function. 

  Eq. (3.40) is obtained by using these relations. The closed loop transfer function 
M(s) is common to the three different policy adjustment rules except the forward 
transfer function GI. The forward transfer function of the proportional policy is 
given by Eq. (3.39). 

  * See D'Azzo J. J. and C. H. Houpis [4], p. 165
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             Fig. 3-4. Block diagram representation of Eqs. (3.27) to (3.35) 

   B Derivative policy 
 Derivative policy can be formulated by 

 (3.42)g =  D  S  a2D(R — R*) . 

Then in the signal flow graph shown in Fig. 3-3 all but F2 is common to the 

proportional policy. Since F2 for the derivative policy is given by 

(3.43)F2 =8a2s s+8 

the forward transfer function becomes as follows. 

 (3.44) G2(s) = Kc(s+2µ)2  (s + 6) 52+41 (I( s+4µ2 
where K is given by 

 (3.45)Kc = msa2/k . 

   C Integral policy 
 Integral policy is of the form 

                =-----8a3  (3.46)gD+60(R — R*)di 

Then substituting F2 given by Eq. (3.47) for F2 in Fig. 3-3 we obtain the forward 
transfer function G3 of the integral policy. 

6a3 
(3.47)F2=  s(s + 8) 

 (3.48) G3(s) _ K2 (s+2µ)2  s2(s+8) s2+44k kµv s+4p2 
where K2 is given by 

 (3.49)K2 = msas/k •
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 If we substitute each forward transfer function G,  (i = 1, 2, 3) into Eq. (3.40), then 
the closed-loop transfer function of each policy can be obtained. Thus we shall 
investigate the properties of this closed-loop transfer functions to know the 
feedback effect of each policy. 

 By introducing the adjustment policy as mentioned above for the balance of the 
international payments, the output R(s) has a feedback effect. This feedback effect 
would not only have an effect of reducing the deviation E between R and R*, but also 
have an effect on the properties of the system, such as the stability and the transient 
responses. 

 It may occur that the policy introduced to adjust the balance of international 

payments cannot acheive the original objective, i.e., the policy cannot make the error 
zero. Furthermore, the strength of the policy action and/or the length of the policy 
lags may make the stable system unstable or, on the contrary, may have an effect of 
making the unstable system stable. 

 And the transient process to the target value, i.e., the time path to the target value 
depends on the policy adjustment rules and the values of policy parameters. 

 The purpose of the following section is to discuss these matters.

4 THREE POLICY ADJUSTMENT RULES

 It can be seen from the forward transfer function given by Eqs. (3.44), (3.39) and 

(3.48) that the derivative, proportional and integral policy give the system order 0,1 
and 2 respectively. (See Appendix C) Since, in general, the higher the system order, 
the more the system tends to become unstable, we see that the derivative policy is the 
best policy of three policies in respect to the stability of the system analysed in this 

paper. But three policies are discussed in turn in this section.

 4.1 Proportional policy --- for the stable system 
 First we shall discuss the proportional policy in connection with the stability of 

the system, namely, given structural parameters c, v, m, t, p, and b, we shall consider 
the stability of the closed-loop system as a function of the policy parmeter al, which 
shows the strength of the proportional policy action. The root-locus method* is 
useful to analyse such a case. 

 We shall first discuss whether the stable system becomes unstable by the 
magnitude of the value of the policy parameter a,. Therefore we shall use the 
structure I in Table 3-1. 

 Given the parameters in the structure I, if we substitute these values into Eq. 
(3.39), then we obtain the following forward transfer function. 

             s__ K 1(s + 0.5)  (4.1)GI() 
s(s + 0.065 — j0.4gsXs + 0.065 + j0.495) 

 The characteristic equation of the closed-loop system, namely, 1 + GI(s) = 0, has 
three roots. The loci of these three roots when K, varies from 0 to co are given in Fig.

* See Appendix B
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Fig. 4-1. Root locus for Eq. (4-1)

 4-1. In Fig. 4-1 real component is represented in the horizontal axis , and imaginary 
component is measured on the vertical axis in the complex s-plane . Zero, the root 
which makes the numerator of GI equal to zero, is represented by the notation 0 
and poles, the roots which make the denominator of GI zero , are represented by the 
notation x in root locus diagrams. 

 Since Kl= meal/k and m, 8 and k are given, the variation of Kl equals to that of 
al. The bold solid lines in Fig. 4-1 denote all possible roots of the characteristic 
equation of this closed-loop system for all values of Kl , therefore for all values of a,, 
from zero to infinity. The necessary and sufficient condition for the system to be 
stable is that the real component of all roots of the characteristic equation is 
negative, that is, all roots of the equation 1 + GI(s) = 0, i.e., poles, are in the left-half s 
plane. However we see from Fig. 4-1 that there may be two imaginary roots with 
positive real component. Thus the system may well be unstable. Using the Routhian 
array for the characteristic equation 1 + GI(s) = 0, we can see what value of K, 
makes the system unstable. 

 The Routhian array for the denominator of M(s), which is equal to the 
characteristic equation of the system, is

S3 

S2

si

so

1 

0.13 

1 

1 17 

4— 6K1 
3.846K 1

0.25 + K, 

0.5K 1 

3.846K 1

Therefore, when 1/4 — (17/6)Kl < 0, i.e., Kl>  3/34, the system becomes unstable. 
Kl > 3/34 means al > 0.81, because we are discussing the parameters of the structure 
I. 

 Similarly the forward transfer function for a set of parameters of the structure II
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Fig. 4-2. Root locus for Eq. (4.2)

which gives a stable system is

 (4.2) G i (s) = s(s + 0.25)(s + 0.065 — j0.495)(s + 0.065 + j0.495) 

The root locus for the equation 1 + G 1(s) = 0 is given by the bold solid line in Fig. 4-2. 
In this case for values of K 1 >0.0474, i.e., al>  0.87 two of the four roots lie in the 
right half of the s plane, resulting in an unstable system. 

 Now we shall consider the case where all parameters except 6 equal to that of the 
structure I (or structure II) in Table 3-1 and 8 equals to unity. These parameters also 

give the stable system and it is the case where policy lag is short, that is, one quarter. 
Then G 1(s) is 

 (4.3)(;_(c) = K 1(s + 0.5)2

K,(s+0.5)2

sCs+1Xs + 0.065 — j0.495)(s +0.v6s-t-Jv.95) 

The root locus for Eq. (4.3) is shown in Fig. 4-3. Interestingly the system does not 
become unstable whatever the value of K 1, that is, a 1 is. 

 Three cases discussed so far, that is the case where 8 equals to 0.25, 0.5 and 1, and 
al equals to 0.85, are summarized in Table 4-1. 

 We can summarize the results obtained so far as follows. 

[1] The stable system may become unstable by strong proportional policy (for 
example, consider the case where al equals to unity in the structure I or II). 

[2] The stable system may become unstable unless the strength of the proportional 
policy becomes weaker as a policy lag becomes shorter (for example, if the 
proportional policy with fixed value of a 1 = 0.85 is introduced, the system is stable 
for one year policy lag (6 = 0.25) but the system becomes unstable for a half year 

policy lag (6 = 0.5)). 
 This second conclusion, however, exceedingly depends on the value of 8, so we 

cannot generalize this result. 
  Now let us consider the steady-state error.
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Fig. 4-3. Root locus for Eq. (4.3)

TABLE 4-1 THE STABILITY OF THE SYSTEM FOR THREE 

POSSIBLE VALUES OF 8 AND a, =0.85

6 a, system unstable region

0.25 0.85 stable a, > 0.87

0.5 0.85 unstable a, > 0.81

1.0 0.85 stable

• The error is 

                      e(t) = R* — R(t) 

and the steady-state error e(t)„ is defined by 

 (4.4)e(t)„ = lith e(t) = lirn s E(s) . 
I- cos-o 

Since the forward transfer function for the proportional policy is a Type 1 system
, th

ere is zero steady-state error for a unit-step input signal R*(t) = R*u(t) , where R* is 
constant and

                   u(t) _ lift>0* 0 
ift<-0 

It also can be stated that the proportional policy which gives a Type 1 system 
produces a constant output of value R identical with the constant input R* (of 
cource this is the case where the system is stable) . This means that in steady-state we 

  * See Apendix C
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have X = m  Y*, where Y* is the steady-state level of Y, that is, exports coincides with 
imports and the adjustment of the balance of international payments is completely 
finished and the variation of the foreign reserves does not occur.

 4.2 Proportional policy for the unstable system 
 Next, let us consider whether the proportional policy makes the unstable system 

stable. We shall use the values of the parameters of the structure III in Table 3-1 as 
an example. By substituting these values of parameters into Eq. (3.39), we obtain 

Kl(s+0.5)  (4
.5) G(s) = 

s(s — 0.315 — j0.388)(s — 0.315 + j0.388) 

The root locus for the forward transfer function given in Eq. (4.5) is shown in Fig. 
4-4. We see from this root locus that the proportional policy does not make the 
unstable system stable.

 4.3 Proportional policy — policy lags and the strength of the action 
 So far we have considered the case where the roots of the characteristic equation 

of the closed-loop system are represented as the function of the policy parmeter al 

given the value of 6, which denotes policy lags. Here we consider both 6 and al to see 
the effect of both policy lags and the strength of the action on the stability of the 
system. Thus we consider the case where the values of 8 and al are not specified but 
all other parameters are given the following values, c = 0.8, v = 1.6, m=0.1,  t = 0.2, 

 = 0.25. The characteristic equation 1 + GI(s) = 0 for these values is as follows. 

 (4.6) s4 + (0.1304 + 8)s3 + (0.25 + 0.1304 S + 0.2174(sal)s2 

+S(0.25+0.2li4al)s + 0.os4ssSal = 0 . 

 Considering the Routhian array for this equation we see that if 0<al <0.4, 
whatever the value of 8( > 0) is, then the system is stable. Therefore the strength of

 joJ
K-4 co

Kl=0 i

I

Kl—• Co Kl=0

—0.5 0
E

Kl=0

K—•001

 a

Fig. 4-4. Root locus for Eq. (4.5)
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the policy action has a limit to keep the system stable and a strong action may make 
the system unstable. Thus if we have no information about the policy lags, strong 

 proportional policy should not be introduced. 

 4.4 Derivative policy — the strength of the action and the stability 
 We mentioned at the beginning of this section that since the derivative policy 

gives the Type 0 system, it is the most favorable policy for stabilizing the system. Let 
us assure this fact by considering both the stable and the unstable system. 

 The derivative policy for the stable system, i.e. the structure I, gives the forward 
transfer function 

Kc(s+0.5)  (4.7) G2(s) = 
                 (s + 0.065 — j0.495)(s + 0.065 + j0.495) 

The root locus for Eq. (4.7) is shown in Fig. 4-5, it can be seen from this figure that 
the stable system does not become unstable. This conclusion is always true in the 
structure I, whatever the value of 6 takes. The Routhian array made by the 
following characteristic equation can make this clear. The characteristic equation in 
the case where the values of 8 and a2 are not specified is 

 (4.8) s3 + [0.1304 + 0.2li4a2)]s2 

        + [0.25 + 5(0.1304 + 0.2li4a2)]s + 6(0.25 + 0.os4ssa2)

 Next let us consider whether the unstable system may become stable or not by 
derivative policy. The forward transfer function for the structure III is 

(4.9) Gs__ Kc (s+0.5)                2() (
s-o.315+j0.388)(s-o.315—j0.388) 

                            s plane

 Kc—^co

Jw

Ko=OKo-

^oolib
.....4411  Q

Fig. 4-5. Root locus for Eq. (4.7)
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Fig. 4-6. Root locus for Eq. (4.9)

and the root locus for Eq. (4.9) is shown in Fig. 4-6. We can see from the figure that 
the unstable system may become stable, in this example the system becomes stable if 

 a2>5.8. 
 The derivative policy has such a desirable properties from the stability point of 

view, but the transfer function G2(s) given in Eq. (3.44) is a Type 0 system, so the 
steady-state error remains. The steady-state error for a unit-step input R* is given 
by* 
                             R* 

 (4.10)e(t)ss = 1 + ma2/k 

          R*  
m 
          1 + a2----------------- 1 — c(1 — t) + m 

                R*  
                       1 + 0.2li4a2 

Then the steady-state error will be the smaller: 
1. The larger the value of a2. 
2. The larger the multiplier effect. 
3. The larger the propensity to import. 
In the numerical example of the structure III, a2� 41.4 must be satisfied to make the 
steady-state error less than or equal to 10 per cent of R*. 

  The remaining of the steady-state error in the derivative policy means that the 
adjustment of R to R* is not completely finished and this can be seen from the fact 
that in steady state, we have 

 (4.11)k/a2 = X — mY* 

and X O mY*. We can see from Eq. (4.11) that the larger the value of a2 is, we shall 
have X x m Y*.

* See Appendix C
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  The remaining of the steady-state error, however, may not be quite fatal to the 
system. Since we are not controlling the rocket or the elevator but the economic 
system, it is all right that the system has a tendency to converge to the target value 
rather than the zero steady-state error, provided that the deviation between the 
target and the actual value does not exceed the allowable range (for example 5% or 
10%). 
  Suppose the case where using the derivative policy we can make the unstable 
system stable and the steady-state error of about 10 per cent of R* is allowable. Then 
the next problem is the time path of the adjustment. The policy which causes such 
results that the path approaching the target value has a violent oscillations or the 
settling time is too long will not be considered to be good. 

  Suppose that the derivative policy is introduced to the unstable system (i.e., the 
structure III) and the government expenditure making the steady-state error less 
than 10%, that is, a2 = 41.4  (Kc  = 4.5) is spended. Then the characteristic equation of 
the closed-loop system is 

  (4.12)s2 + 3.87s + 2.5 = (8 + 0.82)(s+ 3.05) 

therefore the closed-loop transfer function M(s) = R(s)/R*(s) is 

(4.13)R(s) - 4.5(s+0.5)  R*(
s) (s +0.82)(s + 3.05) 

Thus for the unit-step input R*(s)=1/s, R(s) is as follows. 

4.5(s + 0.5)   (4
.14)R(s) = 

s(s + 0.82)(s + 3.05) 

                     _0.9 0.79 1.69  
                          s + s+0.82 s+3.05 

Finally we have the following output equation using the inverse Laplace transfor-
mation. 

  (4.15) R(t) = 0.9+0.79 e-o.82t-l.69 a-3.°sr t>0 

 The time path obtained from Eq. (4.15) is shown in Fig. 4-7. R(t) does not reach a 
prescribed percentage of the final value, that is 0.9, until t = 0.34, and reach the 
maximum overshoot when t = 0.93, and the magnitude of this maximum overshoot 
is about 17 per cent of the final value. R(t)-40.9 if t— 00. 

  Let us summarize the main results on the derivative policy obtained so far. 
[1] The derivative policy gives a Type 0 system in this model. 
[2] The derivative policy can make the unstable system stable. In the numerical 
example of the structure III (marginal propensity to consume = 0.8, marginal 
propensity to import = 0.1, marginal tax rate = 0.2, accelerator coefficient = 3, 
investment lags = one year, policy lags = a half year), the system is unstable but the 
derivative policy to the balance of international payments makes this system stable. 
[3] The steady-state error remains, i.e. the actual output R does not converge to 
the desired level R* even if the target value R* is constant over time. It is because of 
Type 0 system. For example, if a2 equals 6, then the unstable system becomes stable
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Fig. 4-7. Time path of Eq. (4.15), the derivative policy (a2 =41.4)

but the steady-state error remains more than 40 per cent of the target value and the 
oscillation does not disappear. The value of a2 must be greater than 41.4 to keep the 
steady-state error remain within ten per cent of the target value. When a2 = 41.4 the 
unstable system becomes stable, the steady-state error remains about 10 per cent 
and the explosive oscillation disappears. 

[4] The time response of the system is very fast. The time path of R(t) is as follows. 
Time required for R(t) to reach 90 per cent of the target value is about one month 
and after about one and a half months R(t) first reaches the target value. The first 
overshoot occurs after about one and a half quarters and its magnitude is about 17 

per cent of the target value. After the first overshoot, R(t) declines and reaches the 
target value again after about two and a half quarters and thereafter converges 90 

per cent level of the target value.

 4.5 Derivative policy and policy lags 
 We shall consider how policy lags affect the stability of the system in the derivative 

policy. Let us first consider the stable system which all parameters but S are given by 
the structure I. And the case where the derivative policy parameter a2 is fixed at 41.4, 
which makes the steady-state error 10 per cent of the final value. Since the 
characteristic equation of the closed-loop system is given by 

       (s + 8) s2 + 4p k kµvs+ 4122+ (msa2/k) (s + 2p)2 = 0 ,
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dividing both sides of above equation by the terms which do not contain  8 gives 

        4(1 +k2s2+k-µv+ma2)s+4µ21+ k2
s s2 + 411(kk  µv

)S+42}
)} u

Therefore we let

                    1+ma2 s2+4µ(k— pi)+ma2)s+42          kk
+ma2µ H

2(s) = 

ii2} 
then the characteristic equation of the system can also be shown by 1 + H2(s) = 0. 
Substituting the parameters but 6 of the structure I into H2(s) we have 

106(s + 0.4565 —j 0.204)(s + 0.4565 + j0.204)   (4
.16) H2(s) = 

s(s + 0.065 — j0.495)(s + 0.065 + j0.495) 

 Therefore the roots of the characteristic equation of the system can be shown by 
the root locus as the function of 6. This is shown in Fig. 4-8. It can be seen from this 
figure that the derivative policy which makes the steady-state error 10 per cent of the 
final value does not make the system unstable whatever the length of policy lags. 

 Now let us consider the unstable system which all parameters but 8 are given by 
the structure III and the case where the value of a2 is 41.4, which makes the unstable 
system stable and the steady-state error 10 per cent. This case can be discussed in the 
same way as before. The root locus for 

106(s + 0.4185 — j0.2736)(s + 0.4185 +j0.2736)   (4
.17) 

s(s — 0.315 — j0.388)(s — 0.315 + j0.388)

 Jw

s plane

a=o

S—)c J,00 a=o

—0.5 6 _, cc -0.1

a=o

 a

Fig. 4-8. Root locus for Eq. (4.16)
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Fig. 4-9. Root locus for Eq. (4.17)

is shown in Fig.  4-9 and this gives the roots of the characteristic equation of the 
system. 
 We can see from Fig. 4-9 that the value of a2=41.4 makes the unstable system 
stable and makes the steady-state error 10 per cent if 6> 0.085, that is, if the policy 
lags are less than about three years. But the system remains unstable if the policy 
lags are longer than three years. 

 The results obtained so far show that the length of the policy lags in the derivative 

policy does not have much effect on the stability of the system.

 4.6 Integral policy 
 As we noted at the beginning of this section, the integral policy gives the Type 2 

system. Paying attention to this fact it will be possible to understand the following 
results. 

[1] There is a very strong possibility that the integral policy makes the stable 
system unstable. (The range of a3 which keeps the system stable is 0<a3< 0.22 for 
the structure I and 0 < a3 < 0.54 for the structure II). 

[2] It is impossible for the integral policy to make the unstable system stable. 
[3] If the policy lags becomes much longer, the range of the policy parameter a3 
which keeps the system stable becomes wider. 

 Let us summarize the results obtained so far on three policy adjustment rules. 

[1] If the system is stable and the length of the policy lags is given, then the integral 
policy has a strong possibility to make the system unstable. The proportional policy 
makes the system unstable when the value of the policy parameter exceeds a certain 
limit but on the other hand there are no cases where the derivative policy makes the 
stable system unstable. (Recall the system type of each policy). 

[2] For a unit-step input R*, the steady-state error is zero for both the 
proportional and the integral policy but it remains for the derivative policy, thus the 
adjustment is not finished in the derivative policy. Strong action is necessary to 
make the steady-state error small in the derivative policy. (These results also have 
relationship with the system order).
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[3] If the system is unstable and the length of the policy lags are given, then both 
the proportional and the integral policy do not have an effect of making the system 
stable. But the derivative policy has an effect of making the system stable when the 

policy parameter exceeds a certain value. Strong derivative policy makes the steady-
state error small and further lets the intrinsic oscillations of the system disappear .

 4.7 Policy lags 
 The relation between policy lags and the stability of the system has been discussed 

on various occasions. But let us give some supplementary explanation here . 
 The policy lags play a remarkably important role in the proportional policy . 

There occurs a possibility that the stable system becomes unstable because of the 
existence of the policy lags. Let us see this fact . The forward transfer function of the 
proportional policy without policy lags is give by 

 K'~  (s + 4)2  (4.18) GI(s) = 

s s2 + 4µ k  µv s + 4µ2 

where

 (4.19)K', = ma l /k . 

Therefore the root locus for Eq. (4.18) is shown in Fig . 4-10. It can be seen from Fig. 
4-10 that if there are no policy lags , then the stable system does not become unstable 
by any proportional policy. We have discussed the case where there was a half year 

policy lag. Thus the unstable effect according to the existence of the policy lags is 
quite obvious by comparing Fig. 4-10 with Fig. 4-1, which shows the root locus for 
the proportional policy with a half year policy lag. 

 Furthermore if there are no policy lags in the proportional policy , then the 
unstable system may become stable. This is shown in Fig . 4-11, which gives the root 
locus for the proportional policy with no policy lags and parameters of structure III 
bringing unstable system.

s plane

JW

 1-.00

al =oat

—^00

-O .5 ]2 U

a1=0

a  a

Fig. 4-10. Root locus for Eq .(4.18),the proportional policy (the structure I without policy lag)
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Fig. 4 11. Root locus for Eq. (4.18), proportional policy (the structure  III without policy lags)

 If the forward transfer function of the proportional policy without policy lags, 

given in Eq. (4.18), is compared with that of the original system with a half year 
policy lag, given in Eq. (3.39), then it is seen that policy lags add a pole to the transfer 
function shown in Eq. (4.18). The addition of a pole, in general, has the effect of 

pulling the locus to the right,* therefore yielding a less stable system. Comparing 
Fig. 4-4 with Fig. 4-11 clarifies this fact. 

 The effects of policy lags on the derivative and the integral policy can be analysed 
similarly. The results show that the existence of policy lags does not play an 
important role. The policy lags have a little effect on the stability of the system in the 
derivative and the integral policy.

                      5 OPTIMAL POLICY 

 As we discussed in the previous section, if there are no policy lags, then the 

proportional policy has the effect of stabilizing the unstable system and further 
makes the steady-state error zero. Therefore the main policy is based on the 

proportional policy and the policy having a desirable transient properties (mainly 
consisting of the magnitude of a peak overshoot and the time required for output 
R(t) first to reach and thereafter remain within allowable range—that is, settling 
time) should be added to the main policy. However we cannot ignore the policy 
lags,** therefore the existence of the policy lags is supposed as before. Then the 

proportional policy is not necessarily main policy in this case. 
 Furthermore the choice of optimal policy adjustment rules crucially depends on 

whether the system is stable or not. If the system is stable, then we may obtain the 
optimal adjustment rules which are mainly based on the proportional policy. 
However, here we suppose that the system is unstable,*** and then consider the 
choice of optimal adjustment rules under the assumption of the structure III.

* See Appendix B 

** See Shinkai[8] 
*** Almost all Japanese macro-model have the explosive oscillation.
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 The unstable system can be stabilized by the derivative policy. As we have 
discussed in the Section 4.4, the transient properties of the derivative policy with the 
value of policy parameter a2 = 41.4 is satisfactory except the remaining of the ten per 
cent's steady-state error. Therefore it will be natural to consider such a derivative 

plus proportional policy that the proportional policy which makes the steady-state 
error zero is added to the derivative policy. Thus we shall consider the following 

policy adjustment rules. 

 (5.1)g  = D------6(b 1  + b2D)(R — R*) 

 Substituting F2 =S(b, +b2s)/(s+6) for F2 in Eq. (3.37) we obtain the following 
forward transfer function for this combined policy. 

T, s+'(s+ 2p)2 

(5.2) Go(s) = 2                 s(s + 6) ts2 + 4µ k kµUs + 4p2 
where 

 (5.3)T, = m8b2/k . 

 The forward transfer function given by Eq. (5.2) has a Type 1 system , which 
should be compared with the derivative policy with the system type 0. Thus the 
steady-state error becomes zero for the unit step function R*(t) = R* (t� 0) in this 
derivative plus proportional policy. 

 This new trasfer function Go(s) is obtained by adding the compensator transfer 
function

 (5.3)G(s) =b,+ b2s=b2 s + (b,/b2) • 
                a2sa2 s 

to the following original forward transfer function (i.e., the forward transfer 
function for the derivative policy) 

 (5.4) G2(s) = (m6a2/k)(s + 2µ)2  

                (s + 6) s2 + 4p IC k µU s + 4p2 
That is, adding Ge(s) to the closed loop we obtain 

 (5.6)Go(s) = G2(s) • Ge(s) 

This is shown in Fig. 5-1. 
 The system having the forward transfer function G2(s) and the policy parameter 

a2 = 41.4 was stable and its transient response was satisfactory as discussed before 
except the remaining of the steady-state error . Therefore if we let b,/b2 z0, that is, 
we make the value of b2, the parameter of the derivative policy , larger than the value 
of b,, the parameter of the proportional policy , then the effect of adding a pole and a
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Fig. 5-1. Block diagram for the derivative plus the proportional policy

zero contained in  Ge(s) to the closed loop system is canceled out and the root locus 
for the derivative policy actually remains unchanged. 

 Suppose the case where a ratio bl/b2 =0.01 is selected. Then the forward transfer 
function for the parameters of the structure III is 

Tl (s + 0.01)(s + 0.5)  (5
.7)Go(s) = 

s(s2 — 0.6304s + 0.25)

The root locus for Eq. (5.7) is shown in Fig. 5-2. It will be seen that Fig. 5-2 and Fig. 
4-6 are almost the same. 

 Let the value of b2 be 41.4, which makes the steady-state error ten per cent of the 
target value in the derivative policy. This value was such that made the unstable 
system stable and damped the intrinsic oscillation of the system. Since bl/b2 is 
supposed to have a value 0.01, b2 = 41.4 means b, = 0.414. 

 Thus, if bl=0.414, b2 =41.4, then we have the following closed-loop transfer 
function.

(5.8)
R(s) 4.5(s + 0.01)(s + 0.5)

R*(s) (s + 0.009)(s + 3.0336)(s + 0.8274)

Therefore, for a unit-step input R*(s) = 1/s, output is

s plane
jw

T1-)cc Ti—^co T,—.co

—0 .5 —0.01

T, = 6.36 (b2 = 5.85)

Tl=0

T, =O

0
T, =O 

Tl=0 
0 
   —0.01 0 

T, = 6.36 (b2 = 5.85)

 6

Fig. 5-2. Root locus for Eq. (5.7)
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R(1)

1.5 

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0 1.0 2.0 

   I (a quarter)

3.0 40 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

Fig. 5-3. Time path of Eq. (5.9)

 (5.9) R(t) = 1.0 —  0.0992  e-o.oog' .+ 0.80612 e-o.82i4' 
                     — 1.70692 e- 3.0336/t >— 0 

 The graph for Eq. (5.9) is shown in Fig. 5-3. The output R(t) reaches the target 
value after about 1.5 months, then overshoot occurs and reaches the maximum 
overshoot of about 17 per cent after about 1 quarter, decreases to the target value 
once more after 2.5 quarter, reaches the trough (about 90.9 per cent of the target 
value) on about the second year, thereafter again increases and slowly converges to 
the target value. Thus this system has almost the same transient properties as the 
derivative policy. The main difference between the two systems is that this new 
system eliminates the steady-state error. This derivative plus proportional policy 
will be optimal for the system with the parameters of the structure III. If we do not 
adhere to the remaining of the steady-state error so much, then we can think that the 
adjustment rule consists of the derivative policy only as the optimal policy.

6 CONCLUSIONS

 The analyses as in the present paper have some limitations in the applicability to 

the real world. The first limitation is that the model analysed in this paper is very 

simple. The second is that the model is specified in linear form, thus the model only 

generates the linear cyclical behavior. The third is that the economic system does not 

pursue the single purpose of the improvement of the balance of international
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payments as supposed in this paper and further the government expenditure is not 
spent only for such a purpose. Our economic system pursues multiple purposes and 
has various policy instruments to acheive them. The fourth is that it has been 
assumed in this paper that the government expenditure can be adjusted as much as 
desired at zero costs. But the level of government expenditure will not be so freely 
adaptable. 
 Though there are  these limitations, considering that the feed-back effect will be 

built in the econometric system in near future,* even analysis using the simple model 
like this paper will give some suggestions to the feed-back effects, policy adjust-
ment rules and optimal policy and so on.

Keio University
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                          APPENDIX A 

 Routh's Stability Criterion 
 The stability criterion of the linear time-invariant systems stated in this Appendix 

A is that the roots of the characteristic equation must all have negative real parts. 
 Suppose that the characteristic equation of a linear system is 

 A(s)=ansn+ an_  lsn-l + an_ 2Sn-2+...+ars+ac=0 

where all a's are real numbers. 
 All powers of s from sh to s° present in the characteristic equation . If the following 

conditions (1) or (2) are not satisfied, then there are roots with positive real parts 

 (1) All the coefficients have the same sign. 
 (2) None of the coefficients other than a° vanish. 

 Now let us form the following Routhian array by using the coefficients of the 
characteristic equation. 

n 

   Sanan -2an-4an-6an -8 . • • 
            n-l    San-la

„-san-san-ian-g 

sn-2blb2bsb4• . • 

sn-sClC2Cs• • . 

sn-4dld2• • •

slkl 

s°11 

The constants bl, b2, b3, b4, etc., in the third row are made as follows. 

                          b_an - l an - 2 — anan - 3  
                         1 a„_ 1 

                         ban- Ian -4 — anan-s                         2— 

                 _ 

                                            an- 1 

                           b_an-lan-6 — anan-i                         3—                                                an-l 

               b—                                _an-lan-8 — anan-g                          4 
                                            an- 1 

The constants c 1, c2, c3, etc. are formed as follows by using the .0 -1 and SA - 2 row.                              

blan-s — an-ib2  

                 = 

       lb

, 

                          C=bran-s — an-lbs  
                      2 b,                                

blan-i — an-lb4  

                 _         Csbl 

 This Appendix A, B and C owe much to D'Azzo and Houpis [4] and Kuo [6]



32 CHIOHIKO MINOTANI

This is continued until no more c terms are present. Similarly d row is formed by 

using the  s"  -  2 and s" - 3 row.

d, =
c,b2 — b,c2

d2 =

c, 

c,b3 — b,c3

c,

 Routh's criterion notices the first column in the last tabulation. The criterion 

states: The roots of the characteristic equation have all the negative real parts if all 

the elements of the first column have the same sign. The number of changes of sign of 

the coefficients in the first column is equal to the nunber of roots with positive real 

parts.

APPENDIX B

 Root Locus 

 Let us consider the roots of the characteristic equation s2 + 4s + K = 0. The roots 

vary with the value of K. The two roots s, and s2 for a number of values of K are 

shown in Table A-l. The roots s, and s2 are given by

si .2=-2+ K-4

All possible roots when K varies from 0 to co are given as the points on the curves in 
Fig. A-l. These curves are defined as the root-locus plot of Eq. s2 + 4s + K = 0. The 

procedure for constructing the root-locus is stated in [41. 
 Consider a feedback control system whose closed-loop transfer function is

M(s) =
R(s) G(s)

R*(s) 1 + G(s)

TABLE A-l THE ROOTS FOR THE EQUATION S2 +4s+ K =0 

    FOR A NUMBER OF VALUES OF K

K s, S2

0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0

 0 +j0 
—0.268+j0 
—0.586+j0 
—1.0 +j0 
—2.0 +j0 
—2.0 +il.0 
—2.0 +il.414 
— 2.0 +j 1.732

—4 —Jo 
— 3.732 —Jo 
— 3.414 —Jo 
— 3.0 —Jo 
—4.0 —Jo 
— 2.0 — il.0 
—2.0 —il.414 
—2.0 —il.732
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 Jw
 I

 i
I

K

+j3.0

+12.0
• K =7 .0

• K=6.0

i K = 5.0 +il.0

K=0
Y_.>

K = 4.0 K=0

_

-4-2 0

• K=5.0 +-il.0

• K=6.0

^ K=7.0
+ - j2.0

+-j3.0

K

9

G(s) =

and where

Fig.  A-l. Root locus of the equation s2+4s+K=0

 Kc  (s + 2p)2  

(s + 5)(s2 + /is + 4p2) 

Kl(s+2p)2  

s(s + (5)(s2 + )6s + 4p2) 

K2 (s + 211)2  

s2(s + i)(s2 + )6s + 4p2) 

fi — 4u k — µv k 

Kc = mba2/k 

Kl = msal/k 

K2 = m8as/k .

for the derivative policy 

for the proportional policy 

for the integral policy

a

33
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The roots of the characteristic equation of the system is determined from

1 +  G(s) = 0

and these roots vary with K; if (5, fi, and µ are given. Thus the root-locus method is 
useful in this case. 

 Closed-loop transfer function can be rewritten with both numerator and 
denominator factored, 

K(s — z1)(s — z2) • • • (s — z,„)                   M(
s) (

s — pl)(s — P2) ... (s — P„) 

 The values pl, .2, • • ',Al that make the denominator equal to zero are called poles 
of M(s) and the values z1, z2, • • •, z,„ that make the numerator equal to zero are called 
zeros of M(s). 

 The following general conclusions can be drawn from the addition of poles or 
zeros to the original system (See [4] p. 204). 

(1) The addition of poles to G(s) has the effect of pulling the root locus to the right, 
tending to reduce the relative stability and making the system slower respondent. 
(2) The addition of zeros to G(s) has the effect of pulling the root locus to the left, 
tending to make the system more stable and making the system faster respondent. 

 Thus if we consider the forward transfer function G2(s) for the derivative policy as 
the original system, then the proportional and integral policy can be thought as the 
system adding zeros to the original system.

APPENDIX C

Types of Feedback Systems 
Generally the forward transfer function, is of the form 

G(s) = R(s) — K„ M(s)                        E(
s) s” N(s) 

where the denominator N(s) does not have the same factor as M(s) and does not 
include the factors of s. 

 When n = 0 the system having this forward transfer function is called a Type 0 
system; when n =1 it is called a Type 1 system; when n = 2 it is called a Type 2 system; 
etc. Thus we see that the derivative, the proportional and the integral policy give 
Type 0, Type 1, Type 2 systems respectively. 

 E(s) can be expressed in terms of the R*(s) as follows. 

                 R(s) _  1 G(s)•R*(s) R*(s)              E(s) = 
G(s) G(s) 1 + G(s) 1 + G(s) 

Then the steady-state error, using the final-value theorem, is given by 

e(t)SS = rim [sE(s)] 

s-'o
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R*(t)

Fig. A-2. Three basic types of input

                 = rim  s  R *(s) 
s- o  [1 + G(s) 

                                     .0+1 = lirn---------------R*(s) 
                  s~o 

sh + KM(s)                          n N
(s) 

which shows that whether the steady-state error vanishes or not will depend on the 
types of the system and the input R*(s). Three basic types of input are shown in Fig. 
A-2. Step, ramp and parabola inputs are denoted as follows. 

           Step : Re u(t) 

            Ramp : R i tu(t) 

            Parabola : R2 t2u(t) 

where R*, R2 and R3 are constant and u(t), unit step input function, is given by 

            u(t) =1 if t > 0 
              to if t50

 The steady-state response characteristics for stable feedback systems are shown 

in Table A-2. It can be seen from this table that for a Type 1 system , for exanple, the 
steady-state error becomes zero for a step input , remains for a ramp input and 
increases with time for a parabolic input . Furthermore we see that there is a trade-off
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TABLE A-2 STEADY-STATE RESPONSE CHARACTERISTICS 
       FOR STABLE SYSTEM

System 

type 
 n

Input R*(t)

Steady-state error 
 e(tL

0

Re u(t)
R*

R* tu(t) 
RZ t2u(t)

1 + Kc
M(0)

00 

00

N(0)

1

Re u(t)

R* tu(t)
R*

0

RZ t2u(t)

K,
M(0)

N(0)

2

Re u(t) 
R* tu(t)

RZ t2u(t)

0 
0 

2R2

K2
M(0)

N(0)

relation between the steady-state error and the stability of the system. Because the 

higher the system order, the less the steady-state error becomes but the more the 

system tends to become unstable.


