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COMPETITIVE  EQUILIBRIUM WITH MARSHALLIAN EXTERNALITIES

HIROAKI OSANA

 In this paper, we present a set of sufficient conditions for the existence of a 
competitive equilibrium of a private ownership economy with a class of externalities. 
The presence of externalities themselves is not incompatible with pure competition 
insofar as it does not cause perverse increasing returns. Moreover, as was noted by 
Marshall [7], the increasing returns in the aggregate production processes (more 
specifically, in an industry) may still be compatible with pure competition, provided 
they arise as a result of externalities caused by producers (more specifically, the firms 
in the industry) each of which is subject to non-increasing returns. Once we may 
expect the compatibility of pure competition with such externalities, it will be 
natural to ask a question of whether or not there exists a competitive equilibrium for 
an economy with those externalities. 

 The problem has been studied by McKenzie [8], Arrow and Hahn [1], and 
Laffont and Laroque [6] among others. McKenzie [8] allowed for externalities in 

preference relations only, while Arrow and Hahn [1] allowed for externalities in 
preference relations and in production possibilities. Laffont and Laroque [6] 
considered an economy with externalities in preference relations, in consumption 

possibilities, and in production possibilities. However, the formulations by Arrow 
and Hahn [1] and by Laffont and Laroque [6], as well as the formulation by Osana 

[10], seem to have a common difficulty, as will be explained in the first section of this 
paper. The purpose of this paper is to remedy the difficulty.

I. NOTATION AND DEFINITIONS

 We consider an economy with 1 commodities, m consumers, and n producers . 

Denote by H = 11, 2, ... , l}, 1= { 1, 2, ... , m}, and J = { 1, 2, ... , n} the set of 
commodities, the set of consumers, and the set of producers, respectively. The l-dimensional

 Euclidean space R` will be regarded as the commodity space. For each 
consumer i, his consumption is denoted by a point xi of R`, where positive 
components stand for inputs and negative components for outputs, while, for each 
producer j, his production is denoted by a point yr of R`, where positive components 
stand for ouptuts and negative components for inputs. An m-tuple x = (xi, x2, ..., xm) 
of consumptions is called a consumption allocation, and an n-tuple y =(y y2, ... , y") 
of productions is called a production allocation. A state is a pair (x, y) of a 
consumption allocation and a production allocation. The l(m + n)-dimensional 
Euclidean space R"+") will be regarded as the state space. 

 The purely technological relations determine the set D of possible states as a subset 
of the state space em n). The shape of D may be very complicated in the presence of
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externalities, though, in the absence of externalities, 1) may be written as 11„X 
fli„ Yj, where Xi is a subset of RI called the consumption set of consumer i and Yr 

is a subset of R' called the production set of producer j. 
  Writing x,i( —(xi, x . . xi_ ,, x,), we call (x)4, y) a circumstance of 

consumer i. For each i e I, the set of possible circumstances of consumer i is defined by 

B i(x y) e "): ((xi, xo), y)e D for some xi e , 

where by (xi, x)i() is meant the consumption allocation x = (x „ . . 1, xi, xi. . 
xm). Utilizing similar notation, we can define the set of possible circumstances of 
producer j by 

        Cl={(x, y)j)  (x, (yr, yo))E D for some yie RI} 

for each j E J. For each i e I, let 

X i(x,o, {xi c RI: ((x-. y) e I)} for every (x)il, E 

and, for each je J, let 

(x, (vi, Y))) E D; for every (x, 3),)e 

The correspondence X, of 131 into R' will be called the consumption correspondence of 
consumer i and the correspondence Yr of Ci into RI will be called the production 
correspondence of producer j. These are generalizations of consumption sets and of 

production sets. 
 It should be noticed that our procedure adopted here to describe the technologi-

cal possibility is reverse to that adopted by Arrow and Hahn [1], La ffont and 
Laroque and Osana [10]. The latter uses as primitive notions the consumption 
correspondences and the production correspondences defined on the whole space 
R4"t 1'. This amounts to requiring that the set of possible circumstances of each 
agent should coincide with RI" ", a rather stringent requirement which is 
unlikely to be fulfilled. Furthermore, we may be unable to extend the cor-
respondences to the whole space in case they are defined on proper subsets of 
Rt("' ). This is the first point of the difficulties lying in the latter procedure. There 
is another aspect of the difficulties. To make it clear, let us introduce the 
consumption correspondences XI and the production correspondences which are 
defined on the whole space tem 1). According to the procedure used in [10], we 
define the set of possible states by 

D x, y) e RI"+: ILI X i(x)lo xliAx, von..

On the basis of the set D thus defined, we can define the consumption cor-

respondences X; and the production correspondences yr in the way adopted by the 
present paper. Then X does not necessarily coincide with X. In general, for each 

Bl, X i(x, v) is a subset of X",.(x),(, y). All points of XI(x)1(, y) not belonging to 

y) turn out to be impossible under the circumstance (x)1(, y). This implies that 
agents' knowledge is incomplete. So, if we assume complete knowledge on the part of
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agents, it seems better to  start from D than from consumption and production 

correspondences. 

 It will be useful to introduce the following notation: 

X = {x E R: (x, y) E D for some y E Rt"}, 
               Y= {y E Rt": (x, y) e D for some x e Rim} , 

X ̀ = U {Xi(xi, y): (x)1(, y) E Bi} for each i E I, 
G =1(x, y) E Rt(m+n): (x)lc, y) E Bi for every i E I and 

                            (x, y>;O E C; for every j E Jr. 

X may be called the set of possible consumption allocations, Y the set of possible 
production allocations, and Xi the set of possible consumptions of consumer i. G may 
be called the set of jointly possible circumstances, which evidently contains D. 

 For each i E I, a complete preordering >-i, called the preference relation of 
consumer i, is defined on D. (x, y) ›-i (x', y') is interpreted to mean that consumer i 
desires (x, y) at least as much as (x', y'). We write (x, y) i (x', y') if and only if 
(x, y) ? i (x', y') and (x', y') } i (x, y), and also write (x, y) > i (x', y') if and only if 
(x, y) i (x', y') and not (x', y') } i (x, y). 

  For each i E I and each (x, y) E D, let 

Mi(x, .0= {x' E X i(x)i(, y): ((xi, x)i), y) i (x, y)} 
M°(x, y) = {xi E X i(x)lc, y): ((4 x>lo, y) } i (x, y)} 
Li(x, y) = {x; E Xi(x)lc, y): ((xi, x)lo, Y), (x, y)} . 

  For each i e I, the resource endowment of consumer i is specified by a point wt of Rt 
and his claim to the share of the profit of each producer j is specified by a non-negative 
number O. All the profits of each producer are assumed to be distributed among 
consumers: EiEigi; =1 for every j E J. Let gr = (Oil, 0i2, ... , Oin) for each i E I. 

  The description of a private ownership economy has now been completed. 
Formally, we have 

  DEFINITION. E=(H, I, J, D, (›-i, wt, O )i€,) is called a private ownership economy 
if 

   (i) H=11,  2, ... , 11,1=11, 2, ... , m}, and J=11,  2, . , n}, 
(il) D is a subset of R"+n>, 

  (iii) ›-i  is a complete preordering on D for each i E I, 
  (iv) wt is a point of RI for each i e I, 

   (v) gr = (el ~, 8i2, ... , ©in) is a point of R", for each i E I and EiEiei; =1 for each 
jEJ. 

  We conclude this section by setting forth a formal definition of competitive 
equilibrium for the private ownership economy E. 

  DEFINITION. A pair (x*, y*, p*) of a state and of a point of Rt is called a 
competitive equilibrium for a private ownership economy E if
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  (i) (x*,  e  D, + p* 0, and p*.(x7 — — o),)— 0, 
  (il) for each tel, p*.4 �p*-tot+0,.(p*.y*) and (x*, y*)>-; ((xi, 4), y*) 

      for each x; e X;(x),, y*) such that p*.x„�p*.o),+0,.(p*.y*), and 
 (iii) for each _te.', p*.y7.�p*.yr for each yieYji(x*, 4i(), 

where x; wt=1,„col, and p*.y* =(p*-yf, p*.yt

II. STATEMENT OF THE THEOREM

  THEOREM. The private ownership economy E has a competitive equilibrium if: 
  (T.1) I) is connected and closed in R'), 

  (T.2) G is closed in RI(m+n) and star-shaped with some center J-2) c G; 
for every te 1, 

  (CA) Xi is lower semi-continuous on B„, 
  (C.2) XI(X)I(, y) is convex for every (x)„(, y)EB„, 

  (C.3) for every (X11(. B„ there is x(i) E X(x)1(, y) such that x < wt, 
  (C.4) X' is bounded from below, 

  (C.5) {(x', y') E D: (x', y') i(x, y)1. and {(x'. y') e (x', y') (x, y)} are closed in D 
for every (x, y) e D, 

  (C.6) (((1 — t)xil + tx, x„.(), y) X)i(), y)for every t E [, every (x)„(, y) E B„, 
and every x!, x E X i(x)„,, y) such that ((x7, ›- 1((4, xv,), y), 

  (C.7) .14(x, y) � 0 for every (x, y) e D; 
for every jE 

  (P.1) Yj is lower semi-continuous on Cl, 
  (P.2) l'";(x, )7),;() is convex for every (x, y)J()E Ci, 

  (P.3) 0 e Yjfx, yo) for every (x, 32,,;()E 
 (P.4) for every ye A( Y), if v,�O then y=0.2 

  Conditions (C.1), (P.1), and the second half of (T.1) correspond to the usual 
assumption of closedness of consumption sets and of production sets. In fact, our 
conditions are equivalent to the usual ones, in the absence of externalities, as can be 
readily seen. 

 Conditions (C.2) and (P.2) correspond to the usual assumption of convexity of 
consumption sets and of production sets. In conjunction with (P.3), (P.2) implies that 
each producer operates subject to non-increasing returns to scale from his 
individual point of view. It should be noticed, however, that these do not necessarily 
imply the convexity of D and hence that increasing returns to scale may prevail from 
a social viewpoint. The increasing returns to scale are due to external effects caused 
by individual agents. These external effects may be referred to as Marshallian

   Given two points a and b of , we write a h if and only if ah �bh for every h H; a h if and only if a b 
and a � b; a> h if and only if oh > hi, for every he H; moreover , we denote by orb the inner product of a and h: 
that is. al, --r--l,,Hahhh. 

   Given a subset S of R'", we denote by A(S) its asymptotic cone with vertex 0. For the definition of an 
asymptotic cone. see Debreu [3, 1.9.n] or Osana [10].
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externalities (cf. Osana [11]). In the absence of externalities, (C.2) and (P.2) imply the 
convexity and hence connectedness of D. But, in the presence of externalities, this 
may not be the case. So we stipulate the connectedness of D in  (T.1) without much 
loss of realism. 

 Condition (C.3) is a stringent assumption requiring that the resource endoment of 
each consumer should be rich enough to make him survive even if some positive 
amount of each commodity is subtracted from his endowment. The possibility of 
weakening (C.3) will be considered in Section IV. 

 Condition (C.4) corresponds to the lower boundedness of consumption sets. 
Conditions (C.5), (C.6), and (C.7) mean the continuity, convexity, and non-satiability 
of consumers' preference relations, respectively. Condition (P.4) says that no free 

production of indefinitely large scale is possible and that any aggregative production 
process of indefinitely large scale is irreversible (cf. Osana [10]). 

 Unlike the conditions discussed above, condition (T.2) may appear strange. The 
closedness of G is only a technical requirement. It should also be noticed that the 
star-shapedness of G is trivially satisfied if G is assumed to be the whole space, as in 
Arrow and Hahn [1], Laffont and Laroque [6], and Osana [10]. Even though G 
does not coincide with the whole space, it will not be so restrictive to assume that G is 
star-shaped. As we shall see below, G might be assumed to be even convex. Let (x, y) 
and (x', y') be any points of G. Let i E I. Then (x)il, y) and (x;lo y') are possible 
circumstances of consumer i. One may not be able to find any plausible reason why 

some weighted average of these two circumstances should be an impossible 

circumstance for him. These considerations will lead us to think G to be convex. But 

we do not need the convexity of G, so we simply assume that G is star-shaped with 

some center.

III. PROOF OF THE THEOREM

 By (C.4), for every i E I there is al e RI such that al < xi for every xi e XI. Let 

Si = {xi E Rt: al <xi <col} for each i E I. 

It follows from (C.4) that X is bounded from below, so that, by (C.4), the set of 
attainable states 

A={(x, y)ED: x,<yj+col} 

is bounded (cf. Osana [10, Theorem 1]). Hence there is a closed cube K of Rt with 
center 0 such that 

        A c int Km',  (5, y) e int K'n, and Si c int K for every i E I. 

Let 

T=G n K"`+" 

Then T is compact and star-shaped with center (z, 3).
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 LEMMA  I (i) For every i G /, 

_1) rTh K or ev(ty (x, y) 
convex for every (x, y)E T 

 (il) For every j e the cor re 
    KJOrevery(x,y)ETis 

fore very(x,)T 

 ProofWeshallprovethe,
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the correspondence X;of TintoR' defined by X;(x, y) 
ETis continuousonTandX.-(..x-; y) is non-empty and

 (it)Foreveryjethecorrespondence riT into R' defined byYi(x,y)Yijx, 
y,i()KJOrevery(x,y)ETiscontinuous on T and Yif(.,v, y) is non-empty and convex 
fore very(x,)T 

 Proa[Weshallprovethecontinuity of the correspondence X. only K is clearly 
upper semi-continuous on Tas a constant correspondence of Tin to R'. By (T.1), the 
graph D of the correspondence XI is closed in Rt("""1), so that Xi is closed on 8, 
Hence X is closed on when it is looked upon as a correspondence of Tin to R'. 
Therefore ;5( is upper semi-continuous on T as the intersection of a closed 
correspondence and an upper semi-continuous correspondence (cf. Beige [2, 
Theorem 7 of vi.1]). 

 To prove lower semi-continuity, let (x°, y°)E Tand let Z be any open subset °URI 
such that X;(x°, y°) n Z 0. Then there is x; .0) n K n Z. By (C.3) and 
(C.4), XI(4, y°) n Si 0 and hence there is x? e XI(4, v°) n Si. Let .00= (1 --- t)x: 

lx?. Then xi(t)E y()) for every I e [0, 1] by (C.2), xi(t)e Z for every t close 
enough to 0, and ,xi(t)c int K for every c]0, 1] because of xeSlc=int K. So 
xi(1)eXi(x,(,-;, y°) n (Z n int K) for every 1 EjO, 1] close enough to 0. Let C 
= n int K. Then X,(4, y`')n C 0 and C is an open subset of R'. Since Xi is 
lower semi-continuous, there is a neighborhood U of (4 , y°) such that v) U 
implies that 0 � v) n C. Let V= ;((xi, y)c ": xe R' and ( v,y) E U}. 
Then 0 � y) n C .,V(x,y)n Z for every (x, e V Therefore X is lower semi-
continuous at (x°, 10). This completes the proof of the lemma. 

 Let

P— Rt: p 0 and Y,,,e,iph= 1 ;- 

For each/ el. we define the supply correspondence and profit function of producer] 
by 

rjitx, y. p) Yj'(x, y): p y jryi for every be y) 

y, p)=maxp- Y'(x, y) 

for every (x, y, p).E. T P. respectively. 
  LEMMA 2. For every lei , the 'Unction al is continuous 017 Tx P. the car-

it SpOndt hee 17j is upper semi-continuous on Tx P, and hi(x, y, p) is non-empty and 
con uc x for every y, p) e Tx P. 

Proof Immediate from the maximum theorem of Beige [2, vi.3]. 
 For each let, we define the wealth constraint of consumer i by 

1)) i( E Vi(X- y): Ax, y. p)} 

for every (x, y, p)e: Tx P, where 

tr(x. y, p)—(7t p). 72(x, Y, P), p))
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 LEMMA 3. For every i  E I, the correspondence  ^h is continuous on Tx P and yr(x, y, 
p) is non-empty, compact, and convex for every (x, y, p) E Tx P. 

 Proof Let W(x, y, p) = {x'i E Rt: p-x; <_ p•cvi + ©i•it(x, y, p)} for each (x, y, p) E Tx P. 
Then the correspondence W is closed on Tx P, since the function n is continuous on 
Tx P by Lemma 2. On the other hand, by Lemma 1, X; is upper semi-continuous on 
Tx P, when it is looked upon as a correspondence defined on Tx P. Since yr(x, y, p) 
= W(x, y, p) n X;(x, y) for every (x, y, p) e Tx P, the correspondence yr is upper semi-
continuous on Tx P as the intersection of a closed correspondence and an upper 
semi-continuous correspondence. 

 To prove lower semi-continuity, let (x°, yo, p°) E Tx P and let Z be any open subset 
of R' such that Z n yr(x°, y°, p°) 0 Then there is xi e Z n W(x°, yo, po) n Xxx(, 
y°). On the other hand, by (C.3) and (C.4), there is x' E Xi(x°(, y°) such that al < x~ 
< wt. Since 7i (x°, y°, p°)� 0 by (P.3), it follows from the choice of K that x? e X,(x°, 
y°) n int W(x°, y°, p°). Let xi(t) = (1 — + Since X;(x°, y°) is convex by (C.2), 
xi(t) E X,(x°, y°) for every t E [0, 1]. Since W(x°, y°, p°) is clearly convex, 
Xi(t) E int W(x°, y°, p°) for every t E ]0, 1]. Furthermore, xi(t) E Z for every t close 
enough to 0. It follows that Z n int wt(x°, y°, p°) n X;(x°, y°) 0 0. Let C 
= Z n int W(x°, y°, p°). Then C n y°) 0 and C is an open subset of Rt. Let 
x3 E C n X,(x°, y°). Since C is open, there is 6> 0 such that U(x3; 6)c C, where U(x3; 
b) is the 6-neighborhood of 4. Hence U(x3; 6)c int 14'(x°, yo, p°) Let 

f(x;, x, y, p)= y, p)—p.x; 

Then f is continuous on RI x Tx P. Let M be a compact subset of U(x3; v) such that 
4 e int M. Then we can define 

                  g(x, y, p) = min f(M, x, y, p) . 

By the maximum theorem of Beige, the function g is continuous on Tx P. Since g(x°, 
y°, p) > 0, there is a neighborhood V, of (x°, y°, p°) such that (x, y, p) E V, implies g(x, 
y, p) > 0, i.e., M c int W (x, y, p). On the other hand, X ;(x°, y°) n int M 0 and, by 
Lemma 1, X is lower semi-continuous at (x°, y°), so that there is a neighborhood V2 
of (x°, y°) such that (x, y) e V, implies X;(x, y) n int M 0. Thus, if (x, y, p) e V, n (V2 
x Rt) then W(x, y, p) n X;(x, y) n int M 0 and therefore Z n yr(x, y, p) 0 0. Hence 
yr is lower semi-continuous at (x°, yo, po) 

  The non-emptiness, compactness, and convexity of the image sets of y are 
obvious. Thus the lemma has been established. 

  For each i E I, we define the demand correspondence of consumer i by 

      1(x, y, 19)= {x* e yr(x, y, p): ((xi, x>i(), y) }i ((xi, x)1), y) 
                                   for every xi e yr(x, y, p)} 

for every (x, y, p) E Tx P. 

  LEMMA 4. For every i e I, the correspondence is upper semi-continuous on T 
x P and i (x, y, p) is non-empty and convex for every (x, y, p) e Tx P.
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 Proof By (T.1) and (C.5), there is a continuous utility function ui on D (cf. Debreu [3
, (1) of 4.6]). Since Disclosed  in R" + '1) by (T.1), it follows from Tietze's extension 

theorem that there is a continuous extension of ui to Ram " (cf. Kuratowski [5, p. 
127]). Without causing any confusion, we may denote this extension by ui again. Let 

u(w, y, p, xi)=ui(x, y), 

where ti; is considered to be independent of the component x, in x. Then u; is 
continuous on R" " x P x R'. Since yr(x, y, p) is non-empty and compact for every 
(x, y, p) E Tx P, we can define a real-valued function vi on Tx P by 

v,(x, y, p) = max fi,f(x, y, p, x;): X; E y, p)} . 
Thenl(x, y, p)= {xi E yr(x, y, p): 1,4(x, y, p, vi(x, y, p)}. Hence use can be made of 
the maximum theorem of Beige to establish the upper semi-continuity of The 
non-emptiness of the image sets of follows from the non-emptiness and 
compactness of the image sets of y,. On the other hand , the convexity of the image 
sets of follows from (C.2), (C.5), and (C.6). 

  LEMMA 5. For every i e I and every (x, y, p)E Tx P, x; y, p) then p.x; 
= p.col + y, p). 

  Proof Let wt = p.wt+Ocir(x, y, p). Since x; E 1()C, y, p), it follows that w,. On 
the other hand, by the definition of x'i' E X;(x, y) and p.x;' �wt imply ((x;', x)1(), 

xli(), y), or equivalently, X;(x, y) and ((x;', x)), y)>.-i((x;, x)), y) imply 
p.x;'> wt. By (C.5), this implies that if E X;(x, y) then ((x;', x)1(), y) i((4 x)i(), y) 
implies p'x;' wt. Trivially, x;E ."Qx, y) and ((4 y) i((4 x)i(), y), so that p.x;�_ wt 
and therefore p.x; = wt. This completes the proof of the lemma. 

  We are now ready to go into the final step of our proof of the theorem . For each 
(x, y) E T, let 

y(x, y)= { p E P: Mx, — yj —Cg/)�. q.(xi — y, — col) for every qe P} . 

Then the correspondence p of Tin to P is upper semi-continuous on Tand p(x, y) is 
non-empty and convex for every (x, y)e T Let 

          F(x, Y, P)=(iliegi(x, y, x (R EA(X, y, x /4-x, .Y) 
for every (x, y, p)e Tx P. By Lemmas 2 and 4, the correspondence F of Tx P into 
itself is upper semi-continuous on Tx P (cf. Beige [2, Theorem 4' of VI.2]), and F(x , 
y, p) is non-empty and convex for every (x, y, p)c Tx P. Clearly Tx P is non-empty 
and compact. Furthermore , by (T.2), Tx P is star-shaped and therefore contractible . 
It follows from the fixed-point theorem of Eilenberg and Montgomery [4] that there 
is (x*, y*, p*) E Tx P such that (x*, y*, p*) E F(x*, y*, p*). 

 It remains to show that (x* , y*, p*) is a competitive equilibrium. Since x E 
y*, p*) for every i c I, it follows from Lemma 5 that p*.xi = p*.wt + 0,-(p*. y*) for every 

   and therefore p*.(xi — —(01)=0. Since p* E p(x*, y*), it follows that p*.(4 —31 
— p.(x7 — — wt) for every p E P . so that 1)-(4 — — co,) �. 0 for every p e P and
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therefore  xi  <_  y; + wt. On the other hand, since x* e 1(x*, y*, p*) for every i e I, it is 
obvious that (x*, y*) E D. Hence, condition (i) of competitive equilibrium is satisfied. 

 To prove that condition (il) holds, suppose to the contrary. Then, for some i E I, 
there would be x; E X;(x*(, y*) such that p*•x; < p*.wt + ©;•(p*• y*) and ((x, 4), 
y*) >- ;(x*, y*). Let x;(t) = (l — t)x* + tx,. Then, for every t E ]0, 1[, clearly p*•x;(t) 
< p*.wt + ©i.(p*• y*) and by (C.6), ((x;(t), 4), y*) >.; (x*, y*). But, since x* E int K, 
x;(t) e X;(x*, y*) for every t E ]O, 1 [ close enough to 0. This contradicts the fact that 
x* e y*, p*). Hence condition (il) is satisfied. 

 A reasoning similar to the last paragraph will verify condition (iii). Thus (x*, y*, 
p*) is a competitive equilibrium, and the proof is complete.

IV. REMARK

 In Section 2, we noticed that condition (C.3) is unsatisfactory. This section will be 
devoted to weakening (C.3) slightly. We make the following assumption: 

 (C.3') for every (x, y) E G there is x° E fl;EIX;(x);(, y) such that x° < wI and x? <_ cc); 
for every i e 1. 
In order to prove the existence of a competitive equilibrium under this assumption, 
we need the following assumption: 

  (C.7') for every (x);(, y) e B;, every x; E X;(x);(, y), and every he H, there is a positive 
real number A such that x;(),, h) e X;(x)„, y) and ((x;(A, h), x);O, y) >- ; ((x;, xv O, y), where 

h) = (x11, ... , x~n —1' Xjh + A, x;,h + 1' • .. , xj1)• 
  Condition (C.3') requires that the total amount of the endowment of each 

commodity should exceed the amount needed to make all consumers survive, but 
not that, for each consumer, his endowment of each commodity should exceed the 
amount needed to make him survive. For each consumer, it suffices to have initially 
the amount of each commodity at least as much as needed to make him survive and 
to have some commodity in excess of his subsistence level. This condition is clearly 
weaker than (C.3). 

  Condition (C.7'), in conjunction with (C.6), implies the monotonicity of preference 
relations, and hence is much stronger than (C.7). 

  With (C.3') and (C.7') substituted for (C.3) and (C.7), we can prove that the private 
ownership ecnomy has a competitive equilibrium. We follow the technique due to 
Nikaido [9, Theorem 16.2]. 

  Let 
P°={pep: p>0} 

and 

Q; = {(x, y, p) E Tx P: w;(x, y, p) > min p•X i(x, y)} for every i E I, 
where 

w;(x, Y, p) = P•w; + Y, p) 

As in the proof of Lemma 3, we can show that, by (C.3'), Tx P° c Q; for every i e I. By
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the proof of Lemma 4, for each i  e  I,  is upper semi-continuous on Qt and 1(x, y, p) is 
non-empty and convex for every (x, y, p) E Qt. Since Tx P° is dense in Tx P, it follows 
that Qt is dense in Tx P for every i E I. Hence, for every i e I, the correspondence of 
Qt into R` can be extended to an upper semi-continuous correspondence of Tx P 
into R` (cf. Nikaido [9, Lemma 4.4 and Theorem 4.7]). For each i e I and each (x, y, 
p) e Tx P, let 7(x, y, p) be the convex hull of ax, y, p). Then, for every i e I, the 
correspondence of Tx P into R` is upper semi-continuous on Tx P and ~'(x, y, p) 
is non-empty and convex for every (x, y, p) E Tx P (cf. Nikaido [9, Theorem 4.8]). For 
each (x, y, p)e Tx P, let 

F'(x, y, 14= Y, p)) x (HjEJ 1J(x, Y, p)) x t(x, y) . 
Then the correspondence F' of Tx P into itself is upper semi-continuous on Tx P 
and F'(x, y, p) is non-empty and convex for every (x, y, p) e Tx P. By the fixed-point 
theorem of Eilenberg and Montgomery, F' has a fixed-point (x*, y*, p*). 

 By (C.3'), there is x° E fliE,Xi(x*(, y*) such that EjlElwi(x*, y*, p*) = p*.wt 
+p*•EjEJirj(x*, y*, p*)_> p*.wt> p*•x°, and therefore wk(x*, y*, p*)> p*•xk for some 
k E I. It follows from the choice of K that wk(x*, y*, p*)> min p*•Xk'(x*, y*), i.e. (x*, 
y*, p*) E Qk. Since bk coincides with 4" on Qk, it follows that 4 e k(x*, y*, p*). 

 Suppose ph = 0 for some he H. By (C.7'), there is a positive real number /1 such that 
xk(.1, h) E Xk(x;k(, y*) and ((xk(A., h), x)k(), Y*)}k (x*, y*). Let xk(t)_ (1 — t)xk + txk(A,, h). 
Then, for every t e]0, 1 [, ((xk(t), x;';,(), y*) }k (x*, y*) by (C.6) and clearly p*.xk(t) 

p*•Wk + ©k•(p*•y*). Since 4 E int K, it follows that xk(t) E Xk(x*, y*) for every t e ]0, 
1[ close enough to 0. This contradicts the fact that xk e k(x*, y*, p*). Consequently 
p*>0. 
 Therefore (x*, y*, p*) E Tx P° c Qt for every i E I, so that x*E fliEji(x*,y*, p*). 

The remaining part of the proof is identical with that of Section III. Hence (x*, y*, p*) 
is a competitive equilibrium. 
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