慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	COMPETITIVE EQUILIBRIUM WITH MARSHALLIAN EXTERNALITIES
Sub Title	
Author	長名，寛明（OSANA，HIROAKI）
Publisher	Keio Economic Society，Keio University
Publication year	1977
Jtitle	Keio economic studies Vol．14，No．1（1977．），p．31－40
JaLC DOI	
Abstract	
Notes	
Genre	Journal Article
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝AA00260492－19770001－0 031

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

COMPETITIVE EQUILIBRIUM WITH MARSHALLIAN EXTERNALITIES

Hiroaki Osana

In this paper, we present a set of sufficient conditions for the existence of a competitive equilibrium of a private ownership economy with a class of externalities. The presence of externalities themselves is not incompatible with pure competition insofar as it does not cause perverse increasing returns. Moreover, as was noted by Marshall [7], the increasing returns in the aggregate production processes (more specifically, in an industry) may still be compatible with pure competition, provided they arise as a result of externalities caused by producers (more specifically, the firms in the industry) each of which is subject to non-increasing returns. Once we may expect the compatibility of pure competition with such externalities, it will be natural to ask a question of whether or not there exists a competitive equilibrium for an economy with those externalities.

The problem has been studied by McKenzie [8], Arrow and Hahn [1], and Laffont and Laroque [6] among others. McKenzie [8] allowed for externalities in preference relations only, while Arrow and Hahn [1] allowed for externalities in preference relations and in production possibilities. Laffont and Laroque [6] considered an economy with externalities in preference relations, in consumption possibilities, and in production possibilities. However, the formulations by Arrow and Hahn [1] and by Laffont and Laroque [6], as well as the formulation by Osana [10], seem to have a common difficulty, as will be explained in the first section of this paper. The purpose of this paper is to remedy the difficulty.

I. NOTATION AND DEFINITIONS

We consider an economy with l commodities, m consumers, and n producers. Denote by $H=\{1,2, \ldots, l\}, I=\{1,2, \ldots, m\}$, and $J=\{1,2, \ldots, n\}$ the set of commodities, the set of consumers, and the set of producers, respectively. The l dimensional Euclidean space R^{l} will be regarded as the commodity space. For each consumer i, his consumption is denoted by a point x_{i} of R^{l}, where positive components stand for inputs and negative components for outputs, while, for each producer j, his production is denoted by a point y_{j} of R^{l}, where positive components stand for ouptuts and negative components for inputs. An m-tuple $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ of consumptions is called a consumption allocation, and an n-tuple $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ of productions is called a production allocation. A state is a pair (x, y) of a consumption allocation and a production allocation. The $l(m+n)$-dimensional Euclidean space $R^{l(m+n)}$ will be regarded as the state space.

The purely technological relations determine the set D of possible states as a subset of the state space $R^{l(m+n)}$. The shape of D may be very complicated in the presence of
externalities, though, in the absence of externalities, D may be written as $\prod_{i \in I} X^{i}$ $\times \prod_{j \in S} Y^{j}$, where X^{i} is a subset of R^{l} called the consumption set of consumer i and Y^{j} is a subset of $R^{!}$called the production set of producer j.

Writing $x_{i i}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m}\right)$, we call $\left(x_{i, i} y\right)$ a circumstance of consumer i. For each $i \in I$, the set of possible circumstances of consumer i is defined by

$$
\left.B_{i}=\left\{\left(x_{j i l}, y\right) \in R^{l(m-1} \quad n\right):\left(\left(x_{i}, x_{j i}\right), y\right) \in D \text { for some } x_{i} \in R^{l}\right\},
$$

where by $\left(x_{i}, x_{i j}\right)$ is meant the consumption allocation $x=\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i}, \ldots\right.$, x_{m}). Utilizing similar notation, we can define the set of possible circumstances of producer j by

$$
C_{j}=\left\{\left(x, y_{j j}\right) \in R^{i m+n-1)}:\left(x,\left(y_{j}, y_{j j}\right)\right) \in D \text { for some } y_{j} \in R^{l}\right\}
$$

for each $j \in J$. For each $i \in I$, let

$$
X_{i}\left(x_{i j}, y\right)=\left\{x_{i} \in R^{l}:\left(\left(x, x_{i j}\right), y\right) \in D\right\} \text { for every }\left(x_{j i,}, y\right) \in B_{i}
$$

and, for each $j \in J$, let

$$
Y_{j}\left(x, y_{u}\right)=\left\{y_{j} \in R^{i}:\left(x,\left(y_{j}, y_{j j}\right)\right) \in D\right\} \text { for every }\left(x, y_{j j}\right) \in C_{j} .
$$

The correspondence X_{i} of B_{i} into R^{\prime} will be called the consumption correspondence of consumer i and the correspondence Y_{j} of C_{j} into R^{i} will be called the production correspondence of producer j. These are generalizations of consumption sets and of production sets.

It should be noticed that our procedure adopted here to describe the technological possibility is reverse to that adopted by Arrow and Hahn [1], Laffont and Laroque [6], and Osana [10]. The latter uses as primitive notions the consumption correspondences and the production correspondences defined on the whole space $R^{l(m+n-1)}$. This amounts to requiring that the set of possible circumstances of each agent should coincide with $R^{l(n+n-1)}$, a rather stringent requirement which is unlikely to be fulfilled. Furthermore, we may be unable to extend the correspondences to the whole space in case they are defined on proper subsets of $R^{i(m+n-1)}$. This is the first point of the difficulties lying in the latter procedure. There is another aspect of the difficulties. To make it clear, let us introduce the consumption correspondences \bar{X}_{i} and the production correspondences \bar{Y}_{j} which are defined on the whole space $R^{l(m+n-1)}$. According to the procedure used in [10], we define the set of possible states by

$$
D=\left\{(x, y) \in R^{(m+m)}:(x, y) \in \prod_{i \epsilon I} \bar{X}_{i}\left(x_{j i}, y\right) \times \prod_{j \in J} \bar{Y}_{j}\left(x, y_{j i j}\right)\right\} .
$$

On the basis of the set D thus defined, we can define the consumption correspondences X_{i} and the production correspondences Y_{j} in the way adopted by the present paper. Then X_{i} does not necessarily coincide with \bar{X}_{i}. In general, for each $\left(x_{i t}, y\right) \in B_{i}, X_{i}\left(x_{i, i}, y\right)$ is a subset of $\bar{X}_{i}\left(x_{i i}, y\right)$. All points of $\bar{X}_{i}\left(x_{i i}, y\right)$ not belonging to $X_{i}\left(x_{j i}, y\right)$ turn out to be impossible under the circumstance $\left(x_{i t}, y\right)$. This implies that agents' knowledge is incomplete. So, if we assume complete knowledge on the part of
agents, it seems better to start from D than from consumption and production correspondences.

It will be useful to introduce the following notation:

$$
\begin{gathered}
X=\left\{x \in R^{l m}:(x, y) \in D \text { for some } y \in R^{l n}\right\}, \\
Y=\left\{y \in R^{l n}:(x, y) \in D \text { for some } x \in R^{l m}\right\}, \\
X^{i}=\bigcup\left\{X_{i}\left(x_{j i}, y\right):\left(x_{i i}, y\right) \in B_{i}\right\} \text { for each } i \in I, \\
G=\left\{(x, y) \in R^{l(m+n)}:\left(x_{i i}, y\right) \in B_{i} \text { for every } i \in I\right. \text { and } \\
\left.\quad\left(x, y_{j j j}\right) \in C_{j} \text { for every } j \in J\right\} .
\end{gathered}
$$

X may be called the set of possible consumption allocations, Y the set of possible production allocations, and X^{i} the set of possible consumptions of consumer i. G may be called the set of jointly possible circumstances, which evidently contains D.

For each $i \in I$, a complete preordering \succsim_{i}, called the preference relation of consumer i, is defined on $D .(x, y) \gtrsim_{i}\left(x^{\prime}, y^{\prime}\right)$ is interpreted to mean that consumer i desires (x, y) at least as much as $\left(x^{\prime}, y^{\prime}\right)$. We write $(x, y) \sim_{i}\left(x^{\prime}, y^{\prime}\right)$ if and only if $(x, y) \succsim_{i}\left(x^{\prime}, y^{\prime}\right)$ and $\left(x^{\prime}, y^{\prime}\right) \succsim_{i}(x, y)$, and also write $(x, y) \succ_{i}\left(x^{\prime}, y^{\prime}\right)$ if and only if $(x, y) \gtrsim_{i}\left(x^{\prime}, y^{\prime}\right)$ and not $\left(x^{\prime}, y^{\prime}\right) \gtrsim_{i}(x, y)$.

For each $i \in I$ and each $(x, y) \in D$, let

$$
\begin{gathered}
M_{i}(x, y)=\left\{x_{i}^{\prime} \in X_{i}\left(x_{j i}, y\right):\left(\left(x_{i}^{\prime}, x_{i i}\right), y\right) \succsim_{i}(x, y)\right\}, \\
M_{i}^{0}(x, y)=\left\{x_{i}^{\prime} \in X_{i}\left(x_{i i}, y\right):\left(\left(x_{i}^{\prime}, x_{j i}\right), y\right) \succ_{i}(x, y)\right\}, \\
L_{i}(x, y)=\left\{x_{i}^{\prime} \in X_{i}\left(x_{j i}, y\right):\left(\left(x_{i}^{\prime}, x_{j i}\right), y\right) \lesssim_{i}(x, y)\right\} .
\end{gathered}
$$

For each $i \in I$, the resource endowment of consumer i is specified by a point ω_{i} of R^{l} and his claim to the share of the profit of each producer j is specified by a non-negative number $\theta_{i j}$. All the profits of each producer are assumed to be distributed among consumers: $\sum_{i \in I} \theta_{i j}=1$ for every $j \in J$. Let $\theta_{i}=\left(\theta_{i 1}, \theta_{i 2}, \ldots, \theta_{i n}\right)$ for each $i \in I$.
The description of a private ownership economy has now been completed. Formally, we have

DEFINITION. $E=\left(H, I, J, D,\left(\succsim_{i}, \omega_{i}, \theta_{i}\right)_{i_{\epsilon I}}\right)$ is called a private ownership economy if
(i) $H=\{1,2, \ldots, l\}, I=\{1,2, \ldots, m\}$, and $J=\{1,2, \ldots, n\}$,
(ii) D is a subset of $R^{l(m+n)}$,
(iii) \succsim_{i} is a complete preordering on D for each $i \in I$,
(iv) ω_{i} is a point of R^{l} for each $i \in I$,
(v) $\theta_{i}=\left(\theta_{i 1}, \theta_{i 2}, \ldots, \theta_{i n}\right)$ is a point of R_{+}^{n} for each $i \in I$ and $\sum_{i \in I} \theta_{i j}=1$ for each $j \in J$.

We conclude this section by setting forth a formal definition of competitive equilibrium for the private ownership economy E.
Definition. A pair (x^{*}, y^{*}, p^{*}) of a state and of a point of R^{l} is called a competitive equilibrium for a private ownership economy E if
(i) $\left(x^{*}, y^{*}\right) \in D, x_{I}^{*} \leqq y_{j}^{*}+\omega_{I}, p^{*} \geqq 0$, and $p^{*} \cdot\left(x_{i}^{*}-y_{J}^{*}-\omega_{I}\right)=0$,
(ii) for each $i \in I, p^{*} \cdot x_{i}^{*} \leqq p^{*} \cdot \omega_{i}+\theta_{i}\left(p^{*} \cdot y^{*}\right)$ and $\left(x^{*}, y^{*}\right) \gtrsim_{i}\left(\left(x_{i}, x_{i i}^{*}\right), y^{*}\right)$
for each $x_{i} \in X_{i}\left(x_{i,}^{*}, y^{*}\right)$ such that $p^{*} \cdot x_{i} \leqq p^{*} \cdot \omega_{i}+\theta_{i}\left(p^{*} \cdot y^{*}\right)$, and
(iii) for each $j \in J, p^{*} \cdot y_{j}^{*} \geqq p^{*} \cdot y_{j}$ for each $y_{j} \in Y_{j}\left(x^{*}, y_{j j}^{*}\right)$,
where $x_{I}^{*}=\sum_{i \in I} x_{i}^{*}, y_{J}^{*}=\sum_{j \epsilon J} y_{j}^{*}, \omega_{I}=\sum_{i \epsilon I} \omega_{i}$, and $p^{*} \cdot y^{*}=\left(p^{*} \cdot y_{i}^{*}, p^{*} \cdot y_{2}^{*}, \ldots, p^{*} \cdot y_{n}^{*}\right)^{1}$

II. STATEMENT OF THE THEOREM

THEOREM. The private ownership economy E has a competitive equilibrium if:
(T.1) D is connected and closed in $R^{(l m+n)}$,
(T.2) G is closed in $R^{l(m+n)}$ and star-shaped with some center $(\bar{x}, \vec{y}) \in G$; for every $i \in I$,
(C.1) X_{i} is lower semi-continuous on B_{i},
(C.2) $X_{i}\left(x_{i i}, y\right)$ is convex for every $\left(x_{i i}, y\right) \in B_{i}$,
(C.3) for every $\left(x_{i i}, y\right) \in B_{i}$ there is $x_{i}^{0} \in X_{i}\left(x_{i i}, y\right)$ such that $x_{i}^{0}<\omega_{i}$,
(C.4) X^{i} is bounded from below,
(C.5) $\left\{\left(x^{\prime}, y^{\prime}\right) \in D:\left(x^{\prime}, y^{\prime}\right) \searrow_{i}(x, y)\right\}$ and $\left\{\left(x^{\prime}, y^{\prime}\right) \in D:\left(x^{\prime}, y^{\prime}\right) \varliminf_{i}(x, y)\right\}$ are closed in D for every $(x, y) \in D$,
(C.6) $\quad\left(\left((1-t) x_{i}^{1}+t x_{i}^{2}, x_{i i}\right), y\right) \succ_{i}\left(\left(x_{i}^{1}, x_{i i}\right), y\right)$ for every $\left.t \in\right] 0,1\left[\right.$, every $\left(x_{i i}, y\right) \in B_{i}$, and every $x_{i}^{1}, x_{i}^{2} \in X_{i}\left(x_{j i,}, y\right)$ such that $\left(\left(x_{i}^{2}, x_{i i}\right), y\right)>_{i}\left(\left(x_{i}^{1}, x_{i i}\right), y\right)$,
(C.7) $\quad M_{i}^{0}(x, y) \neq \varnothing$ for every $(x, y) \in D$;
for every $j \in J$,
(P.1) Y_{j} is lower semi-continuous on C_{j},
(P.2) $Y_{j}\left(x, y_{j d}\right)$ is convex for every $\left(x, y_{j j}\right) \in C_{j}$,
(P.3) $0 \in Y_{j}\left(x, y_{j j}\right)$ for every $\left(x, y_{j j}\right) \in C_{j}$,
(P.4) for every $y \in A(Y)$, if $y_{J} \geqq 0$ then $y=0 .{ }^{2}$

Conditions (C.1), (P.1), and the second half of (T.1) correspond to the usual assumption of closedness of consumption sets and of production sets. In fact, our conditions are equivalent to the usual ones, in the absence of externalities, as can be readily seen.

Conditions (C.2) and (P.2) correspond to the usual assumption of convexity of consumption sets and of production sets. In conjunction with (P.3), (P.2) implies that each producer operates subject to non-increasing returns to scale from his individual point of view. It should be noticed, however, that these do not necessarily imply the convexity of D and hence that increasing returns to scale may prevail from a social viewpoint. The increasing returns to scale are due to external effects caused by individual agents. These external effects may be referred to as Marshallian

[^0]externalities (cf. Osana [11]). In the absence of externalities, (C.2) and (P.2) imply the convexity and hence connectedness of D. But, in the presence of externalities, this may not be the case. So we stipulate the connectedness of D in (T.1) without much loss of realism.

Condition (C.3) is a stringent assumption requiring that the resource endoment of each consumer should be rich enough to make him survive even if some positive amount of each commodity is subtracted from his endowment. The possibility of weakening (C.3) will be considered in Section IV.
Condition (C.4) corresponds to the lower boundedness of consumption sets. Conditions (C.5), (C.6), and (C.7) mean the continuity, convexity, and non-satiability of consumers' preference relations, respectively. Condition (P.4) says that no free production of indefinitely large scale is possible and that any aggregative production process of indefinitely large scale is irreversible (cf. Osana [10]).

Unlike the conditions discussed above, condition (T.2) may appear strange. The closedness of G is only a technical requirement. It should also be noticed that the star-shapedness of G is trivially satisfied if G is assumed to be the whole space, as in Arrow and Hahn [1], Laffont and Laroque [6], and Osana [10]. Even though G does not coincide with the whole space, it will not be so restrictive to assume that G is star-shaped. As we shall see below, G might be assumed to be even convex. Let (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ be any points of G. Let $i \in I$. Then ($x_{1 i}, y$) and ($x_{i i}^{\prime}, y^{\prime}$) are possible circumstances of consumer i. One may not be able to find any plausible reason why some weighted average of these two circumstances should be an impossible circumstance for him. These considerations will lead us to think G to be convex. But we do not need the convexity of G, so we simply assume that G is star-shaped with some center.

III. PROOF OF THE THEOREM

By (C.4), for every $i \in I$ there is $a_{i} \in R^{l}$ such that $a_{i}<x_{i}$ for every $x_{i} \in X^{i}$. Let

$$
S_{i}=\left\{x_{i} \in R^{l}: a_{i}<x_{i}<\omega_{i}\right\} \text { for each } i \in I .
$$

It follows from (C.4) that X is bounded from below, so that, by (C.4), the set of attainable states

$$
A=\left\{(x, y) \in D: \quad x_{I} \leqq y_{J}+\omega_{I}\right\}
$$

is bounded (cf. Osana [10, Theorem 1]). Hence there is a closed cube K of R^{l} with center 0 such that

$$
A \subset \operatorname{int} K^{m+n},(\bar{x}, \vec{y}) \in \operatorname{int} K^{m+n}, \text { and } S_{i} \subset \operatorname{int} K \text { for every } i \in I .
$$

Let

$$
T=G \cap K^{m+n} .
$$

Then T is compact and star-shaped with center (\bar{x}, \vec{y}).

LEmmA 1. (i) For every $i \in I$, the correspondence X_{i}^{\prime} of Tinto R^{\prime} defined by $X_{i}^{\prime}(x, y)$ $=X_{i}\left(x_{i i}, 1\right) \cap K$ for ectry $(x, y) \in T$ is continuous on T and $X_{i}^{\prime}(x, y)$ is non-emply and convex for every $(x, y) \in T$.
(ii) For every $j \in J$, the correspondence Y_{j}^{\prime} of T into R^{\prime} defined $b_{y} Y_{j}^{\prime}(x, y)=Y_{j}(x$, $\left.y_{j i}\right) \cap K$ for every $(x, y) \in T$ is continuous on T and $Y_{j}^{\prime}(x, y)$ is non-empty and comex for every $(x, y) \in T$.

Proof. We shall prove the continuity of the correspondence X_{i}^{\prime} only, K is clearly upper semi-continuous on T as a constant correspondence of Tinto $R^{?}$. By (T.1), the graph D of the correspondence X_{i} is ciosed in $R^{l(m+n)}$, so that X_{i} is closed on B_{i} Hence X_{i} is closed on T, when it is looked upon as a correspondence of T into $R^{!}$. Therefore X_{i}^{\prime} is upper semi-continuous on T as the intersection of a closed correspondence and an upper semi-continuous correspondence (cf. Berge [2, Theorem 7 of VI.1]).

To prove lower semi-continuity, let $\left(x^{0}, y^{0}\right) \in T$ and let Z be any open subset of R^{\prime} such that $X_{i}^{\prime}\left(x^{0}, y^{0}\right) \cap Z \neq \varnothing$. Then there is $x_{i}^{1} \in X_{i}\left(x_{i,}^{0}, y^{0}\right) \cap K \cap Z$. By $(\mathrm{C} .3)$ and (C.4), $X_{i}\left(x_{i,}^{0}, y^{0}\right) \cap S_{i} \neq \varnothing$ and hence there is $x_{i}^{2} \in X_{i}\left(x_{i i}^{0}, y^{0}\right) \cap S_{i}$. Let $x_{i}(t)=(1-t) x_{i}^{1}$ $+t x_{i}^{2}$. Then $x_{i}(t) \in X_{i}\left(x_{i t}^{0}, y^{0}\right)$ for every $t \in[0,1]$ by (C.2), $x_{i}(t) \in Z$ for every t close enough to 0 , and $x_{i}(t) \in \operatorname{int} K$ for every $\left.\left.t \in\right] 0,1\right]$ because of $x_{i}^{2} \in S_{i} \subset$ int K. So $x_{i}(t) \in X_{i}\left(x_{1 i}^{0} y^{9}\right) \cap(Z \cap \operatorname{int} K)$ for every $\left.\left.t \in\right\rfloor 0,1\right]$ close enough to 0 . Let C $=Z \cap$ int K. Then $X_{i}\left(x_{1,}^{0}, y^{0}\right) \cap C \neq \varnothing$ and C is an open subset of R^{i}. Since X_{i} is lower semi-continuous, there is a neighborhood U of $\left(x_{i i t}^{0}, y^{0}\right)$ such that $\left(x_{i i}, y\right) \in U$ implies that $\varnothing \neq X_{i}\left(x_{1 i}, y\right) \cap C$. Let $V=\left\{\left(\left(x_{i}, x_{i i}\right), y\right) \in R^{(m+n)}: x_{i} \in R^{\prime}\right.$ and $\left.\left(x_{1 i i}, y\right) \in U\right\}$. Then $\varnothing \neq X_{i}\left(x_{i,}, y\right) \cap\left(\subset X_{i}^{\prime}(x, y) \cap Z\right.$ for every $(x, y) \in V$. Therefore X_{i}^{\prime} is lower semicontinuous at $\left(x^{0}, y^{9}\right)$. This completes the proof of the lemma.

Let

$$
P=\left\{p \in R^{l}: p \geqq 0 \text { and } \sum_{n \in H} p^{n}=1\right\}
$$

For each $j \in J$, we define the supply correspondence and profit function of producer j by

$$
\begin{gathered}
\eta_{j}(x, y, p)=\left\{v_{j}^{*} \in Y_{j}^{\prime}(x, y): p \cdot y_{j}^{*} \geqq p \cdot y_{j} \text { for every } y_{j} \in Y_{j}^{\prime}(x, y)\right\}, \\
\pi_{j}(x, y, p)=\max p \cdot Y_{j}^{\prime}(x, y)
\end{gathered}
$$

for every $(x, y, p) \in T \times P$, respectively.
Lemma 2. For every $j \in J$, the function π_{j} is continuous on $T \times P$, the correspondence η_{j} is upper semi-continuous on $T \times P$, and $\eta_{j}(x, y, p)$ is non-empty and contex for every $(x, y, p) \in T \times P$.

Proof. Immediate from the maximum theorem of Berge [2, VI.3].
For each $i \in I$, we define the wealth constraint of consumer i by

$$
p(x, y, p)=\left\{x_{i}^{\prime} \in X_{i}^{\prime}(x, y): p x_{i}^{\prime} \leqq p w_{i}+\theta_{i} \pi(x, y, p)\right\}
$$

for every $(x, y, p) \in T \times P$, where

$$
\pi(x, y, p)=\left(\pi,(x, y p), \pi_{2}(x, y, p), \ldots, \pi_{n}(x, y, p)\right)
$$

LEMMA 3. For every $i \in I$, the correspondence γ_{i} is continuous on $T \times P$ and $\gamma_{i}(x, y$, p) is non-empty, compact, and convex for every $(x, y, p) \in T \times P$.

Proof. Let $W_{i}(x, y, p)=\left\{x_{i}^{\prime} \in R^{l}: p \cdot x_{i}^{\prime} \leqq p \cdot \omega_{i}+\theta_{i} \cdot \pi(x, y, p)\right\}$ for each $(x, y, p) \in T \times P$. Then the correspondence W_{i} is closed on $T \times P$, since the function π is continuous on $T \times P$ by Lemma 2. On the other hand, by Lemma 1, X_{i}^{\prime} is upper semi-continuous on $T \times P$, when it is looked upon as a correspondence defined on $T \times P$. Since $\gamma_{i}(x, y, p)$ $=W_{i}(x, y, p) \cap X_{i}^{\prime}(x, y)$ for every $(x, y, p) \in T \times P$, the correspondence γ_{i} is upper semicontinuous on $T \times P$ as the intersection of a closed correspondence and an upper semi-continuous correspondence.
To prove lower semi-continuity, let $\left(x^{0}, y^{0}, p^{0}\right) \in T \times P$ and let Z be any open subset of R^{l} such that $Z \cap \gamma_{i}\left(x^{0}, y^{0}, p^{0}\right) \neq \varnothing$. Then there is $x_{i}^{1} \in Z \cap W_{i}\left(x^{0}, y^{0}, p^{0}\right) \cap X_{i}^{\prime}\left(x^{0}\right.$, y^{0}). On the other hand, by (C.3) and (C.4), there is $x_{i}^{2} \in X_{i}\left(x_{i i}^{0}, y^{0}\right)$ such that $a_{i} \leqq x_{i}^{2}$ $<\omega_{i}$. Since $\pi\left(x^{0}, y^{0}, p^{0}\right) \geqq 0$ by (P.3), it follows from the choice of K that $x_{i}^{2} \in X_{i}^{\prime}\left(x^{0}\right.$, $\left.y^{0}\right) \cap$ int $W_{i}\left(x^{0}, y^{0}, p^{0}\right)$. Let $x_{i}(t)=(1-t) x_{i}^{1}+t x_{i}^{2}$. Since $X_{i}^{\prime}\left(x^{0}, y^{0}\right)$ is convex by (C.2), $x_{i}(t) \in X_{i}^{\prime}\left(x^{0}, y^{0}\right)$ for every $t \in[0,1]$. Since $W_{i}\left(x^{0}, y^{0}, p^{0}\right)$ is clearly convex, $x_{i}(t) \in \operatorname{int} W_{i}\left(x^{0}, y^{0}, p^{0}\right)$ for every $\left.\left.t \in\right] 0,1\right]$. Furthermore, $x_{i}(t) \in Z$ for every t close enough to 0 . It follows that $Z \cap \operatorname{int} W_{i}\left(x^{0}, y^{0}, p^{0}\right) \cap X_{i}^{\prime}\left(x^{0}, y^{0}\right) \neq \varnothing$. Let C $=Z \cap$ int $W_{i}\left(x^{0}, y^{0}, p^{0}\right)$. Then $C \cap X_{i}^{\prime}\left(x^{0}, y^{0}\right) \neq \varnothing$ and C is an open subset of R^{l}. Let $x_{i}^{3} \in C \cap X_{i}^{\prime}\left(x^{0}, y^{0}\right)$. Since C is open, there is $\delta>0$ such that $U\left(x_{i}^{3} ; \delta\right) \subset C$, where $U\left(x_{i}^{3}\right.$; $\delta)$ is the δ-neighborhood of x_{i}^{3}. Hence $U\left(x_{i}^{3} ; \delta\right) \subset \operatorname{int} W_{i}\left(x^{0}, y^{0}, p^{0}\right)$. Let

$$
f\left(x_{i}^{\prime}, x, y, p\right)=p \cdot \omega_{i}+\theta_{i} \cdot \pi(x, y, p)-p \cdot x_{i}^{\prime}
$$

Then f is continuous on $R^{l} \times T \times P$. Let M be a compact subset of $U\left(x_{i}^{3} ; \delta\right)$ such that $x_{i}^{3} \in \operatorname{int} M$. Then we can define

$$
g(x, y, p)=\min f(M, x, y, p) .
$$

By the maximum theorem of Berge, the function g is continuous on $T \times P$. Since $g\left(x^{0}\right.$, $\left.y^{0}, p\right)>0$, there is a neighborhood V_{1} of $\left(x^{0}, y^{0}, p^{0}\right)$ such that $(x, y, p) \in V_{1}$ implies $g(x$, $y, p)>0$, i.e., $M \subset \operatorname{int} W_{i}(x, y, p)$. On the other hand, $X_{i}^{\prime}\left(x^{0}, y^{0}\right) \cap \operatorname{int} M \neq \varnothing$ and, by Lemma $1, X_{i}^{\prime}$ is lower semi-continuous at $\left(x^{0}, y^{0}\right)$, so that there is a neighborhood V_{2} of $\left(x^{0}, y^{0}\right)$ such that $(x, y) \in V_{2}^{\prime}$ implies $X_{i}^{\prime}(x, y) \cap$ int $M \neq \varnothing$. Thus, if $(x, y, p) \in V_{1} \cap\left(V_{2}\right.$ $\left.\times R^{l}\right)$ then $W_{i}(x, y, p) \cap X_{i}^{\prime}(x, y) \cap \operatorname{int} M \neq \varnothing$ and therefore $Z \cap \gamma_{i}(x, y, p) \neq \varnothing$. Hence γ_{i} is lower semi-continuous at $\left(x^{0}, y^{0}, p^{0}\right)$.
The non-emptiness, compactness, and convexity of the image sets of γ_{i} are obvious. Thus the lemma has been established.
For each $i \in I$, we define the demand correspondence of consumer i by

$$
\begin{aligned}
\xi_{i}(x, y, p)=\left\{x_{i}^{*} \in \gamma_{i}(x, y, p):\left(\left(x_{i}^{*}, x_{i i}\right), y\right)\right. & \gtrsim_{i}\left(\left(x_{i}, \mathbf{x}_{y i}\right), \mathrm{y}\right) \\
& \text { for every } \left.x_{i} \in \gamma_{i}(x, y, p)\right\}
\end{aligned}
$$

for every $(x, y, p) \in T \times P$.
Lemma 4. For every $i \in I$, the correspondence ξ_{i} is upper semi-continuous on T $\times P$ and $\xi_{i}(x, y, p)$ is non-empty and convex for every $(x, y, p) \in T \times P$.

Proof. By (T.1) and (C.5), there is a continuous utility function u_{i} on D (cf. Debreu [3, (1) of 4.6]). Since D is closed in $R^{l(m+n)}$ by (T.1), it follows from Tietze's extension theorem that there is a continuous extension of u_{i} to $R^{l(m+n)}$ (cf. Kuratowski [5, p. 127]). Without causing any confusion, we may denote this extension by u_{i} again. Let

$$
u_{i}^{\prime}\left(w, y, p, x_{i}\right)=u_{i}(x, y),
$$

where u_{i}^{\prime} is considered to be independent of the component x_{i} in x. Then u_{i}^{\prime} is continuous on $R^{l(m+n)} \times P \times R^{l}$. Since $\gamma_{i}(x, y, p)$ is non-empty and compact for every ($x, y, p) \in T \times P$, we can define a real-valued function v_{i} on $T \times P$ by

$$
v_{i}(x, y, p)=\max \left\{u_{i}^{\prime}\left(x, y, p, x_{i}^{\prime}\right): x_{i}^{\prime} \in \gamma_{i}(x, y, p)\right\} .
$$

Then $\xi_{i}(x, y, p)=\left\{x_{i}^{*} \in \gamma_{i}(x, y, p): u_{i}^{\prime}\left(x, y, p, x_{i}^{*}\right)=v_{i}(x, y, p)\right\}$. Hence use can be made of the maximum theorem of Berge to establish the upper semi-continuity of ξ_{i}. The non-emptiness of the image sets of ξ_{i} follows from the non-emptiness and compactness of the image sets of γ_{i}. On the other hand, the convexity of the image sets of ξ_{i} follows from (C.2), (C.5), and (C.6).

Lemma 5. For every $i \in I$ and every $(x, y, p) \in T \times P$, if $x_{i}^{\prime} \in \xi_{i}(x, y, p)$ then $p \cdot x_{i}^{\prime}$ $=p \cdot \omega_{i}+\theta_{i} \pi(x, y, p)$.

Proof. Let $w_{i}=p \cdot \omega_{i}+\theta_{i} \pi(x, y, p)$. Since $x_{i}^{\prime} \in \xi_{i}(x, y, p)$, it follows that $p \cdot x_{i}^{\prime} \leqq w_{i}$. On the other hand, by the definition of $\xi_{i}, x_{i}^{\prime \prime} \in X_{i}^{\prime}(x, y)$ and $p \cdot x_{i}^{\prime \prime} \leqq w_{i}$ imply $\left(\left(x_{i}^{\prime \prime}, x_{1 i}\right)\right.$, $y) \leqq_{i}\left(\left(x_{i}^{\prime}, x_{j i}\right), y\right)$, or equivalently, $x_{i}^{\prime \prime} \in X_{i}^{\prime}(x, y)$ and $\left.\left(\left(x_{i}^{\prime \prime}, x_{i i}\right), y\right)\right\rangle_{i}\left(\left(x_{i}^{\prime}, x_{j i}\right), y\right)$ imply $p \cdot x_{i}^{\prime \prime}>w_{i}$. By (C.5), this implies that if $x_{i}^{\prime \prime} \in X_{i}^{\prime}(x, y)$ then $\left(\left(x_{i}^{\prime \prime}, x_{y i}\right), y\right) \succsim_{i}\left(\left(x_{i}^{\prime}, x_{y i}\right), y\right)$ implies $p \cdot x_{i}^{\prime \prime} \geqq w_{i}$. Trivially, $x_{i}^{\prime} \in X_{i}^{\prime}(x, y)$ and $\left(\left(x_{i}^{\prime}, x_{i i}\right), y\right) \succsim_{i}\left(\left(x_{i}^{\prime}, x_{j i}\right), y\right)$, so that $p \cdot x_{i}^{\prime} \geqq w_{i}$ and therefore $p \cdot x_{i}^{\prime}=w_{i}$. This completes the proof of the lemma.

We are now ready to go into the final step of our proof of the theorem. For each $(x, y) \in T$, let

$$
\mu(x, y)=\left\{p \in P: p \cdot\left(x_{I}-y_{J}-\omega_{I}\right) \geqq q \cdot\left(x_{I}-y_{J}-\omega_{I}\right) \text { for every } q \in P\right\} .
$$

Then the correspondence μ of Tinto P is upper semi-continuous on T and $\mu(x, y)$ is non-empty and convex for every $(x, y) \in T$. Let

$$
F(x, y, p)=\left(\prod_{i \in I} \xi_{i}(x, y, p)\right) \times\left(\prod_{j \in J} \eta_{j}(x, y, p)\right) \times \mu(x, y)
$$

for every $(x, y, p) \in T \times P$. By Lemmas 2 and 4, the correspondence F of $T \times P$ into itself is upper semi-continuous on $T \times P$ (cf. Berge [2, Theorem 4' of VI.2]), and $F(x$, y, p) is non-empty and convex for every ($x, y, p) \in T \times P$. Clearly $T \times P$ is non-empty and compact. Furthermore, by (T.2), $T \times P$ is star-shaped and therefore contractible. It follows from the fixed-point theorem of Eilenberg and Montgomery [4] that there is $\left(x^{*}, y^{*}, p^{*}\right) \in T \times P$ such that $\left(x^{*}, y^{*}, p^{*}\right) \in F\left(x^{*}, y^{*}, p^{*}\right)$.

It remains to show that $\left(x^{*}, y^{*}, p^{*}\right)$ is a competitive equilibrium. Since $x_{i}^{*} \in \xi_{i}\left(x^{*}\right.$, $\left.y^{*}, p^{*}\right)$ for every $i \in I$, it follows from Lemma 5 that $p^{*} \cdot x_{i}^{*}=p^{*} \cdot \omega_{i}+\theta_{i}\left(p^{*} \cdot y^{*}\right)$ for every $i \in I$ and therefore $p^{*} \cdot\left(x_{i}^{*}-y_{i}^{*}-\omega_{I}\right)=0$. Since $p^{*} \in \mu\left(x^{*}, y^{*}\right)$, it follows that $p^{*} \cdot\left(x_{I}^{*}-y_{J}^{*}\right.$ $\left.-\omega_{I}\right) \geqq p \cdot\left(x_{I}^{*}-y_{J}^{*}-\omega_{I}\right)$ for every $p \in P$, so that $p \cdot\left(x_{I}^{*}-y_{J}^{*}-\omega_{I}\right) \leqq 0$ for every $p \in P$ and
therefore $x_{I}^{*} \leqq y_{J}^{*}+\omega_{I}$. On the other hand, since $x_{i}^{*} \in \xi_{i}\left(x^{*}, y^{*}, p^{*}\right)$ for every $i \in I$, it is obvious that $\left(x^{*}, y^{*}\right) \in D$. Hence, condition (i) of competitive equilibrium is satisfied.

To prove that condition (ii) holds, suppose to the contrary. Then, for some $i \in I$, there would be $x_{i}^{\prime} \in X_{i}\left(x_{i i}^{*}, y^{*}\right)$ such that $p^{*} \cdot x_{i}^{\prime} \leqq p^{*} \cdot \omega_{i}+\theta_{i}\left(p^{*} \cdot y^{*}\right)$ and $\left(\left(x_{i}^{\prime}, x_{i,}^{*}\right)\right.$, $\left.y^{*}\right) \succ_{i}\left(x^{*}, y^{*}\right)$. Let $x_{i}(t)=(1-t) x_{i}^{*}+t x_{i}^{\prime}$. Then, for every $\left.t \in\right] 0,1\left[\right.$, clearly $p^{*} \cdot x_{i}(t)$ $\leqq p^{*} \cdot \omega_{i}+\theta_{i} \cdot\left(p^{*} \cdot y^{*}\right)$ and by (C.6), $\left.\left(\left(x_{i}(t), x_{i i}^{*}\right), y^{*}\right)\right\rangle_{i}\left(x^{*}, y^{*}\right)$. But, since $x_{i}^{*} \in \operatorname{int} K$, $x_{i}(t) \in X_{i}^{\prime}\left(x^{*}, y^{*}\right)$ for every $\left.t \in\right] 0,1$ [close enough to 0 . This contradicts the fact that $x_{i}^{*} \in \xi_{i}\left(x^{*}, y^{*}, p^{*}\right)$. Hence condition (ii) is satisfied.

A reasoning similar to the last paragraph will verify condition (iii). Thus (x^{*}, y^{*}, p^{*}) is a competitive equilibrium, and the proof is complete.

IV. REMARK

In Section 2, we noticed that condition (C.3) is unsatisfactory. This section will be devoted to weakening (C.3) slightly. We make the following assumption:
(C. $\left.3^{\prime}\right)$ for every $(x, y) \in G$ there is $x^{0} \in \prod_{i \in I} X_{i}\left(x_{i i}, y\right)$ such that $x_{I}^{0}<\omega_{I}$ and $x_{i}^{0} \leqq \omega_{i}$ for every $i \in I$.
In order to prove the existence of a competitive equilibrium under this assumption, we need the following assumption:
(C.7') for every $\left(x_{)_{i i}}, y\right) \in B_{i}$, every $x_{i}^{\prime} \in X_{i}\left(x_{i i}, y\right)$, and every $h \in H$, there is a positive real number λ such that $x_{i}(\lambda, h) \in X_{i}\left(x_{\left.\lambda_{i i}, y\right)} y\right)$ and $\left.\left(\left(x_{i}(\lambda, h), x_{i i}\right), y\right)\right\rangle_{i}\left(\left(x_{i}^{\prime}, x_{j i}\right\rangle, y\right)$, where $x_{i}(\lambda, h)=\left(x_{i 1}, \ldots, x_{i, h-1}, x_{i h}+\lambda, x_{i, h+1}, \ldots, x_{i l}\right)$.
Condition (C. 3^{\prime}) requires that the total amount of the endowment of each commodity should exceed the amount needed to make all consumers survive, but not that, for each consumer, his endowment of each commodity should exceed the amount needed to make him survive. For each consumer, it suffices to have initially the amount of each commodity at least as much as needed to make him survive and to have some commodity in excess of his subsistence level. This condition is clearly weaker than (C.3).

Condition (C.7'), in conjunction with (C.6), implies the monotonicity of preference relations, and hence is much stronger than (C.7).

With (C.3') and (C.7') substituted for (C.3) and (C.7), we can prove that the private ownership ecnomy has a competitive equilibrium. We follow the technique due to Nikaido [9, Theorem 16.2].

Let

$$
P^{0}=\{p \in P: p>0\}
$$

and

$$
Q_{i}=\left\{(x, y, p) \in T \times P: w_{i}(x, y, p)>\min p \cdot X_{i}^{\prime}(x, y)\right\} \text { for every } i \in I,
$$

where

$$
w_{i}(x, y, p)=p \cdot \omega_{i}+\theta_{i} \cdot \pi(x, y, p) .
$$

As in the proof of Lemma 3, we can show that, by (C. 3^{\prime}), $T \times P^{0} \subset Q_{i}$ for every $i \in I$. By
the proof of Lemma 4, for each $i \in I, \xi_{i}$ is upper semi-continuous on Q_{i} and $\xi_{i}(x, y, p)$ is non-empty and convex for every $(x, y, p) \in Q_{i}$. Since $T \times P^{0}$ is dense in $T \times P$, it follows that Q_{i} is dense in $T \times P$ for every $i \in I$. Hence, for every $i \in I$, the correspondence ξ_{i} of Q_{i} into R^{l} can be extended to an upper semi-continuous correspondence ξ_{i}^{\prime} of $T \times P$ into R^{l} (cf. Nikaido [9, Lemma 4.4 and Theorem 4.7]). For each $i \in I$ and each (x, y, $p) \in T \times P$, let $\xi_{i}^{\prime \prime}(x, y, p)$ be the convex hull of $\xi_{i}^{\prime}(x, y, p)$. Then, for every $i \in I$, the correspondence $\xi_{i}^{\prime \prime}$ of $T \times P$ into R^{l} is upper semi-continuous on $T \times P$ and $\xi_{i}^{\prime \prime}(x, y, p)$ is non-empty and convex for every $(x, y, p) \in T \times P$ (cf. Nikaido [9, Theorem 4.8]). For each $(x, y, p) \in T \times P$, let

$$
F^{\prime}(x, y, p)=\left(\prod_{i \in I} \xi_{i}^{\prime \prime}(x, y, p)\right) \times\left(\prod_{j \in J} \eta_{j}(x, y, p)\right) \times \mu(x, y) .
$$

Then the correspondence F^{\prime} of $T \times P$ into itself is upper semi-continuous on $T \times P$ and $F^{\prime}(x, y, p)$ is non-empty and convex for every $(x, y, p) \in T \times P$. By the fixed-point theorem of Eilenberg and Montgomery, F^{\prime} has a fixed-point (x^{*}, y^{*}, p^{*}).

By (C.3), there is $x^{0} \in \prod_{i \in I} X_{i}\left(x_{i i}^{*}, y^{*}\right)$ such that $\sum_{i \in I} w_{i}\left(x^{*}, y^{*}, p^{*}\right)=p^{*} \cdot \omega_{I}$ $+p^{*} \cdot \sum_{j \in J} \pi_{j}\left(x^{*}, y^{*}, p^{*}\right) \geqq p^{*} \cdot \omega_{I}>p^{*} \cdot x_{I}^{0}$, and therefore $w_{k}\left(x^{*}, y^{*}, p^{*}\right)>p^{*} \cdot x_{k}^{0}$ for some $k \in I$. It follows from the choice of K that $w_{k}\left(x^{*}, y^{*}, p^{*}\right)>\min p^{*} \cdot X_{k}^{\prime}\left(x^{*}, y^{*}\right)$, i.e. $\left(x^{*}\right.$, $\left.y^{*}, p^{*}\right) \in Q_{k}$. Since ξ_{k} coincides with $\xi_{k}^{\prime \prime}$ on Q_{k}, it follows that $x_{k}^{*} \in \xi_{k}\left(x^{*}, y^{*}, p^{*}\right)$.

Suppose $p_{h}^{*}=0$ for some $h \in H$. By (C.7'), there is a positive real number λ such that $x_{k}(\lambda, h) \in X_{k}\left(x_{k k}^{*}, y^{*}\right)$ and $\left.\left(\left(x_{k}(\lambda, h), x_{\jmath_{k}}^{*}\right), y^{*}\right)\right\rangle_{k}\left(x^{*}, y^{*}\right)$. Let $x_{k}(t)=(1-t) x_{k}^{*}+t x_{k}(\lambda, h)$. Then, for every $t \in] 0,1\left[,\left(\left(x_{k}(t), x_{k k}^{*}\right), y^{*}\right)\right\rangle_{k}\left(x^{*}, y^{*}\right)$ by (C.6) and clearly $p^{*} \cdot x_{k}(t)$ $\leqq p^{*} \cdot \omega_{k}+\theta_{k} \cdot\left(p^{*} \cdot y^{*}\right)$. Since $x_{k}^{*} \in$ int K, it follows that $x_{k}(t) \in X_{k}^{\prime}\left(x^{*}, y^{*}\right)$ for every $\left.t \in\right] 0$, 1 [close enough to 0 . This contradicts the fact that $x_{k}^{\prime \prime} \in \xi_{k}\left(x^{*}, y^{*}, p^{*}\right)$. Consequently $p^{*}>0$.

Therefore $\left(x^{*}, y^{*}, p^{*}\right) \in T \times P^{0} \subset Q_{i}$ for every $i \in I$, so that $x^{*} \in \prod_{i \in I} \xi_{i}\left(x^{*}, y^{*}, p^{*}\right)$. The remaining part of the proof is identical with that of Section III. Hence (x^{*}, y^{*}, p^{*}) is a competitive equilibrium.

Keio University

REFERENCES

[1] Arrow, K. J. and Hahn, F. H., General Competitive Analysis (Holden-Day, 1971).
[2] Berge, C., Topological Spaces (Macmillan, 1963).
[3] Debreu, G., Theory of Value (John Wiley and Sons, 1959).
[4] Eilenberg, S. and Montgomery, D., "Fixed Point Theorems for Multi-Valued Transformations," American Journal of Mathematics, 68 (1946), 214-222.
[5] Kuratowski, K., Topology, Vol. 1 (Academic Press, 1966).
[6] Laffont, J. J. and Laroque, G., "Effets externes et theorie de l'equilibre general," Cahiers du Seminaire d'Econometrie (Centre National de la Recherche Scientifique, 1972).
[7] Marshall, A., Principles of Economics (Macmillan, 8th edition, 1920).
[8] McKenzie, L. W., "Competitive Equilibrium with Dependent Consumer Preferences," H. A. Antosiewicz, ed., Proceedings of the Second Symposium in Linear Programming (National Bureau of Standards, 1955), 277-294.
[9] Nikaido, H., Convex Structures and Economic Theory (Academic Press, 1968).
[10] Osana, H., "On the Boundedness of an Economy with Externalities," Review of Economic Studies, 40 (1973), 321-331.
[11] Osana, H., "Optimal Tax-Subsidy System for an Economy with Marshallian Externalities," Econometrica, 45 (1977), 329-340.

[^0]: Given two points a and b of R^{\prime}, we write $a \geqq b$ if and only if $a_{h} \geqq b_{h}$ for every $h \in H ; a \geq b$ if and only if $a \geqq b$ and $a \neq b ; a>b$ if and only if $a_{h}>b_{h}$ for every $h \in H$; moreover, we denote by $a b$ the inner product of a and b : that is, $a b=\sum_{n \in H} a_{h} b_{h}$.
 ${ }^{2}$ Given a subset S of $R^{\prime n}$, we denote by $A(S)$ its asymptotic cone with vertex 0 . For the definition of an asymptotic cone. see Debreu $[3,1.9 \mathrm{n}]$ or Osana [10].

