
Title MULTIVARIATE NORMAL DISTRIBUTIONS AND THEIR APPLICATIONS TO THE DYNAMIC
PROPERTIES OF MACRO-ECONOMETRIC MODELS

Sub Title
Author KOSAKA, HlROYUKI

Publisher Keio Economic Society, Keio University
Publication year 1976

Jtitle Keio economic studies Vol.13, No.1 (1976. ) ,p.69- 78 
JaLC DOI
Abstract
Notes
Genre Journal Article
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=AA00260492-19760001-0

069

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


MULTIVARIATE NORMAL DISTRIBUTIONS AND THEIR 

APPLICATIONS TO THE DYNAMIC PROPERTIES OF 

       MACRO-ECONOMETRIC MODELS

 HIROYUKI KOSAKA

I. INTRODUCTION

 The simulation results by Adelmans [1] in 1959 made a milestone in that they 
recognized the positive role of "random shocks" in econometric models during the 
course of cyclical processes in business cycles. And their conclusions remain 
valid till present in spite of the developments of economic theories and estimation 
techniques. (See Hickman [4]) In the lg6o's, the applications of stationary 
stochastic process to the economic systems have been made theoretically and 
empirically to investigate the dynamic aspects of econometric models in conjunc-
tion with re-recognition of random shocks. In their analysis, instead of excluding 
the role of random shocks in the cyclical phenomena . by removing the random 
parts in econometric models after estimation, they evaluated the contribution of 
random shocks in cyclical processes. The spectral theory looks into the cyclical 

property by the notion of spectral density under the stationarity assumption, and 
this short note also belongs to the same category in the sense that it assumes the 
stationarity. 
 Given a stochastic simultaneous linear difference equations, we can examine 
their dynamic properties of time path in terms of spectral density (spectral analysis) 
or autocovariances (equivalently autocorrelations) drawn from the system. In 
this note we make use of autocorrelations which have the same information 
amounts as the spectral density has, and from them extract useful informations 
about their time path. 

 In section II, we shall pick up some known propositions about multivariate nor-
mal distributions to prove Dodd's [3] formulas and to make some further exten-
sions. In section III, we shall show that if the distrubances are normal in simul-
taneous autoregressive equations with moving average disturbances, then the 
endogenous variables are normal. Under normality and stationarity we shall 

propose a procedure to investigate the dynamic properties of time series. Finally, 
the crossing properties of Klein I-model [8] are studied in section IV.

    II. MULTIVARIATE NORMAL DISTRIBUTIONS AND THEIR APPLICATIONS 

 In order to calculate the probabilities of multivariate normal distributions , 
I posit some propositions without proofs. The first one is simple , but it is lm-

 The author is indebted to Prof. K. Mort of Keio University for helpful discussions and encou -
ragements and is also grateful for the referee's comments .
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portant to prove Dodd's formulas of crossing. 
 PROPOSTION 1 (Anderson [2]). 

 If 

                                                          xyaxoy 

          [Y]~No],[Pxaxaypa2ll )1 
 then 

                              1 sin-l pxy-l  (2
.1)P[x >O,y>O]=4-4–2

,r2 --
IS-l px

2rr

The following two propositions are proved by Kendall [7] and used to prove another 
Dodd's formula. 
PROPOSITION 2. 

 If 

         [ Y ] Ni[  01,[ph xav pX1:207                               Q~o}' 
 then 

 (2.2) P[x >_ hi, Y ? h2]= pxyrr(hl)zr(h2) 
where zr(w) is so-called "tetrachoric function" defined by 

                               1  (—D)re-a2l2 
r,(0)) _ ,v-2-2T  • (r!)112 

(D: differential operator) 
This proposition is a general case of the first one and the next proposition is an 
extension to three-variable case of the above. 
PROPOSITION 3. 

 If 

x 0 — — ax pxaxay pxzaxaz 

                                                    z 

             Y^'No , pxaxay ay pyzayaz , 

_ z 0 _ _Pxzaxaz pyzayaz aza 

 - 

 then 

 (2.3) P[x > hl, y Z h2, z ? h3] _pxiPvPzz,+k(hl)z;+a(ha)rk+a(h3)•                                      ~,k,a=oj•kl. 

 Now let us prove Dodd's formulas using above propositions. Let xi be real 
Gaussian weakly stationary process with E(xi) = 0, rk = E(xtxt_k) and pk = rklro. 
We put yt = xi +1— xi and zt = xi — xi _1, then E(Yt) = E(zt) = 0, ay. = E(Ytzt) = 
2r1—ro-l2, Qy=E(Yr)=2(ro-ri) and az=E(zt)=2(to—TO. 
Since
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{Col,cIPvzJbazJl 

                                                         a 

             zt,Pxv~I/ z Uz 

we can apply the first proposition and get 

 (2.4)  P[xi+1 � xi, xi �- xi-l] = P[xi+i — xi < 0, xi — xi_1 > 0] 

=P[Yt<0,zt>0]=2-P[Yt?0,zt?0] 
          — lcos-lPyz=lcos-,C2rl — to — r2  

2(r° — Ti)J    — 22r2~rJ 

=loos_,2p1— 1 — p21 22rC2(1 — pl) J. 
Similarly Cxt-~lIsolCr° I'll and then we obatin 

                     J,ti r° 

 (2.5)P[xi_1<0,xi>0]=2-P[xi_1>0,xi>0] 
              = .47T. cos-l il =2lrcos-l pl. To 

Therefore, the mean distance between peaks (troughs) and the mean 
between uperosses (downcrosses) are easily obtained. 

 Mean distance between peaks (MDP) 

    l2ir 
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distance

               P[Xi +, 5,-.xi, xi>xi _,] cos-l2pl — 1 — P21 

                                                                                                                                                                                                      • 

                     J 2(1 — pi) 

Mean distance between uperosses (MDU) 

(2.7)= ------------------------l22r P[xi _ 1 < 0, xi > 0] cos-l pl • 

 Another formula by Dodo is the mean distance betweenpeaks without ripples. 
Let 

Y t = X t + 1 - xi, Zt = xi — xi _ 1 and wt = xi — xi _ k, 

then from the assumptions 

E(Yt) = E(zt) = E(wt) = 0, o' , = E(Yr) = 2(r° — il), 01= E(01) = 2(r° — ti), 

at = E(wt) = 2(to — rk), Pbz = E(Ytzt) = 2r1 — To — 12, a'z. = E(ztwt) 
=r°—ti+rk _1—rk and QzW=E(Yt wt) =ti—r°+rk—rk+,• 

Since (yt, zt, wt) distributes as multivariate normal distribution dependent upon 
the above parameters, we calculate the following probability using the first and the 
third propositions.
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 (2.8) P[xi +1 S xi, xi > xi _ 1, xi xi-k] 
=P[xi+1—xtSo,xi—xi _1z0,xi—xi_k>0] 
=P[ytco,; 0,wt>_0]=P[zt>0,wt?0] 

—P[yt>O ,zt,>0,Wt>0] 

       —2L1 — cos-lpzwI —''—op~k~l~w  r~+k(0)z.7+a(0)zk+a(0)• 
So the mean distance between peaks without ripples is expressed by the inverse 
number of the probability (2.8). 

 Above observations show that the relationships among different time points of 
time series are described by its autocorrelations with lags of less and equal order. 
Probabilities associated with multivariate normal distributions can be obtained 
analytically in special cases as pointed out above. Further more, let us consider 
some interesting probabilities as Dodd's extensions that are meaningful in eco-
nomic phenomena. If these probabilities are known, the mean distance or period 
that these events will occur can be obtained easily. 
1) Probability of h-level uperossing. 

   When "h" equals zero, it is Dodd's case. We can calculate the probability 
P(xi_1<h,xi>h]=P[xi>h]—P[xi_1>h,xi>h]. 

2) Probability that the height of peak is over h-level. 
   The probability P[xi _ 1 < xi, xi ? xi-t, xi > h] = P(xi — xi + i > 0, xi — 

   xi _ t — 0, xi > h] is the special case of the third proposition with hl = 0, 
h3=0 and h3=h. 

3) Probability that the changing rate is over h-level. 
P[(xi — x_1)/x_1 z h] = P[xi — (1 + h)xi _ 1 > 0] = Pfyt >_ 0] is a uni-

  variate probability with mean zero and variance (1 + h)2 To + To — 2(1 -I-- h)ti. 
4) Probability of hl-level uperossing with its rising rate over h2-level. 

P[xi hl, xi-l hl, (xi — xi-l)/xi-l z h2] = P[xi ? hl, xi — (1 + h3)xi_1 � 0] 
   — P[xi >_ ht, xi, < hl, xi — (1 + h2)xi_1 z 0] is a special case of (2.2) and 

  (2.3) 
 Taking some examples of interesting probabilities, we can observe that these are 

combined results of finite or infinite number of autocorrelations. Generally, 
according to the aim of analysis we may adopt appropriate probabilities, and then 
compute them in terms of autocorrelations that have the full information about 
various second order properties of time series.

III. APPLICATIONS TO ECONOMETRIC MODELS

 Normality of time series generated by autoregressive model plays an important 

role in the application of the methods in section II. Here we show the normality 

only in the case of simultaneous autoregressive model with moving average dis-

turbances, in a similar way as with white noise disturbances. 

Given the following equation system
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(3.1)
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In matrix notation 

 (3.2) A(L)Xi = [I + Al(L) + A2(L) =}- ... -f- An(L)] Xi = Ut 

The characteristic roots of 

(3.3)A(p) = 0 

are assumed to lie outside the unit circle and Ut is finite moving average of non-
autocorrelated variables et that identically distributes as N(0,1%) 

8: positive definite);

(3.4) Ut = D(L)e, =

 d,(L)

da(L) 0 

0 

dm,(L)

et

where da(L) = di Q' + da 1'L dl 2>L2  (i = 1, 2, ..., m) 

Id;(p)) = 0 (i = 1, 2, ..., m) have the roots of modulus larger than unity. 
the stationary solution is expressed by 

 (3.5) Xi = E H8Ut_,= EH8D(L)et_,= EH8et_8 
       8=ea=08=0 

I, is a positive definite matrix and there exists a orthogonal matrix such that

(3.6) TI ET' =A=

 Al 0

22
. 

0 • Am.

where  A  (i = 1, 2, ..., m) are the characteristic roots of Is. 
and et in the following way: 

 (3.7) He = H$ T'A "2 

it = A "2Tet

and 

Then

We transform H8
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 Al"3 =

where we see

(3.8)

V Z

0
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0  A-  1'2 _

ER' t) = 0 

E(stit) = I

1/ ̂ ~1

The moving average form (3.5) can be transformed as,

1/A/T,

0

0

 (3.9)  Xi = E H8 et _8 = E (H8 T'A-li2)(Ali2Tet_8) E H t-8 
    8=02=ea=0 

Hence each element of Xi is a infinite linear combination of independent normal 
variables and the normality is guaranteed with E(XX) = 0. 

 The autoregressive model with normal moving average residuals generates normal 
variables under certain assumptions as seen above. So if we are interested in the 
dynamic properties of autoregressive model, we must first obtain its sequence of 
autocorrelations. The Yule-Walker equation gives autocorrelations in the 
single-autoregressive case and the methods are suggested in Otsuki [9] in the mul-
tivariate case. Various probabilities of events such as in section II are computed 
exactly or approximately in terms of finite number of autocorrelations. And the 
inverse number of probability is the mean distance or period of the event. 

 It should be noticed that such mean distance methods reveal the time pattern or 
time shape of normal time series rather than cycle itself, some of which would 
be examined in the next section using a simple famous model. 

 The above process of analyzing the dynamic properties of time series is not 
limited to model analysis, but we can directly calculate the autocorrelations from the 
original data and analyze them.

IV. EXAMPLES

 Let us illustrate numerically the crossing interval properties of Klein's six 
equations model (See [8]) as an application of preceeding analysis. The Klein's 
I model is trnsformed to a single autoregressive form for national income as 
follows;

(4.1)

The exogenous

Yt-I-alYt-la2Yt-2 a3Y_3 
=bo -{- bl(t — 1931) + b2W2t + bsW2t-l + b4W2t-2 + bWW2t-s 

     + baTt + biTt_1 b8Tt_2 bgTt_3 bioGt ~' bllGt-l 

T Clult T C2ult_i + Csu2t + C4u2t_i 

      ^Csust Coust-i Cil4st-2 • 

IOUS variables t, Gt, W2t) are approximated by linear trend as,
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 Ti = 6.8048  + 0.2286 (t - 1931) + wit 

 (4.2)Gt = 9.9143 + 0.5477 (t - 1931) + W2t 
W2t = 5.1190 + 0.3091 (t - 1931) + w3t • 

Then the unhomogeneous form (4.1) becomes homogeneous one; 

 (4.3)Yt + aiYt-i + a2yt-2 + aayt-s 
                  = Piwit + Is2wit_i + Pewit-2 + js4wlt-s 

+ /sbw2t + Pew2t-l 

+ Piwst + a8wst_i + Rgwst-2 + /slOwst-s 

                     + riuit + r2ult-l 

                     + rsu2t + r4u2t-l 

                      + rsust + r8ust-l + riust-2 

The coefficients of (4.3), recuced from several estimates (ordinary least squares 
estimator*, two stage least squares estimator*, limited information maximum 
likelihood estimator* and Sawa's [10] combined estimator) are tabulated in Table I 
The residual term wt is computed from the above identity, and its autocovariance 
estimates ?u(k)(k = 0, 1, 2, ... , T - 1) lead to the spectrum through the usual 
formula:

TABLE 1. ESTIMATES OF COEFFICIENTS

OLS 2SLS LIML COMB

al 

a2 

a8 

132 
P3 
/94 
is 
pc 
P7 
P8 
P9 
pie 
7i 
12 
73 
74 
78 
78 
77

- 1 .7121 

1.1037 
--O . 2209 

       --3.4628 

     2.5471 

 0.4081 

 0.2209 

 3.6618 
--3 .2519 

      0.2538 
-1 .0494 

1.1037 
-0 .2209 

 3.6618 
--3 .2519 

     3.6618 
-3 .6618 

 0.4528 
-1 .7541 

1.5118

-1.8377 

1.1732 
-0 .2127 
-1 .3043 

 0.6252 

 0.2766 

 0.2127 

 1.8167 
-1 .5301 

0.6552 
-1 .5472 

 1.1732 
-0.2127 

1.8167 
-1 .5301 

 1.8167 
-1 .8167 

1.1675 
--2 .4521 

     1.4498

-1 .8627 

 1.1765 
-0 .2103 
-0 .7972 

 0.2297 

 0.2135 

 0.2103 

1.3765 
-1.1449 

0.7557 
--1 .6595 

     1.1765 
--0 .2103 

     1.3765 
--1 .1449 

      1.3765 
-1 .3765 

1.3351 
-2 .5748 

 1.3900

-1 .8485 

1.1783 
-0.2115 

-1 .0830 

 0.4301 -

 0.2623 

 0.2115 

 1.6274 
-1 .3534 

0.6963 
-1.5960 

 1.1783 
-0 .2115 

 1.6274 
-1 .3534 

 1.6274 
-1 .6274 

 1.2408 
-2.5193 

 1.4406

OLS 

2SLS

... Ordinary Least Squares 

... Two Stage Least Squares

LIML 

COMB

.. Limited Information Maximum Likelihood 

... Combined estimater

* The exact estimates were provided by Prof . K . Mort.
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 (4.4)  f  u(o) = 2n-[1)(0) + 2llpu(k)2k cos Ak] 
where m is the truncation point (we choose a few points) and Ak(k = 1, 2, ..., 
m - 1) is the covariance averaging kernel (we use Parzen's and Tucky-Hanning's 
method [6]). The spectrum of yt is determined by 

 (4.5) ly(A) =----------------------------------11 + ale' x + a2e2t 2 +. ase8s 213 1,(2)• 
Its autocovariances are calculated from 

 (4.6)?y(k) =  cos kAff(A) dA. 

Mean distance between peaks and mean distance between uperosses are computed 
from the above estimates ? (k) (k = 1, 2, ...) and are presented in Tables II and 
III respectively. As time series moves upward and downward about its mean 
curve, mean distance between uperosses is apt to have longer interval than mean 
distance between peaks in general. 

 Here in this example the former is about twice as long as the latter. Table IV 
shows the quotient (mean distance between peaks)/(mean distance between 
uperosses), which diplicts the time pattern or time shape of this time series as in 
Figure 1. About the truncation point, the smaller is the value we take (i.e. the 
more we neglect the informations that the autocovariances have), the longer are 
the mean intervals. Between kernels, Parzen kernel yields longer intervals. 
Among estimators, we can divide them into two groups (ordinary least squares 
estimator group and two stage least squares-limited information maximum like-
lihood-Sawa's combined estimators group), and the former gives shorter intervals.

TABLE 2. MEAN DISTANCE BETWEEN PEAKS

Kernel m OLS 2SLS LIML COMB

PARZEN

4 

6 

8

6.70 

6.32 

6.03

7.88 

7.28 

6.85

8.24 

7.40 

6.98

8.04 

7.40 

6.96

TUCKY-

 HANNING

4 

6 

8

6.41 

6.01 

5.67

7.42 

6.79 

6.38

7.54 

6.91 

6.54

7.54 

6.91 

6.50

TABLE 3. MEAN DISTANCE BETWEEN UPCROSSES

Kernel m OLS 2SLS LIML COMB

PARZEN

4 

6 

8

11.44 

9.99 

8.97

14.18 

12.64 

11.51

15.52 

13.94 

12.77

14.53 

13.02 

11.91

TUCKY-

 HANNING

4 

6 

8

10.33 

8.72 

7.95

13.03 

11.18 

10.41

14.35 
12.42 

11.67

13.40 
11.58 

10.83
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TABLE 4. MEAN DISTANCE BETWEEN  PEAKS/MEAN DISTANCE BETWEEN UPCROSS

Kernel m OLS 2SLS LIML COMB

PARZEN

TUCKY-

 HANNING

4 

6 

8 

4 

6 

8

0.586 

0.633 

0.672 

0.621 

0.689 

0.713

0.556 

0.576 

0.595 

0.570 

0.607 

0.613

0.518 

0.531 

0.547 

0.525 

0.556 

0.560

0.552 
0.568 

0.584 

0.562 

0.597 

0.600

Figure 1. Time shape of Klein I model.

 Now let us compare the above results with the other investigations by different 
methods. In conventional method from difference equation with ignoring dis-
turbance terms, the period is 14.75 year, and in Howrey and Kalejian work [5] 

(spectral method with accepting disturbance terms) it is 13.33 year. And Otsuki 
[9] derived shorter cycle (7.30) supposing  yt is subject to a stationary stochastic 
process. Therefore, the former two measurements belong to the results of the 
mean distance between uperosses and Otsuki's to those of the mean distance 
between peaks. In comparison with the quotients in Table IV, the ratio of Otsuki-
cycle and Howrey-Kalejian-cycle (0.5476) is suggestive of the fact that both cycles 
have wide difference. 

 In conclusion possibly we can interprete that Howrey and Kalejian have ex-
tracted longer cycle while Otsuki has measured the shorter cycle in Figure 1. 

 Concerning the applications to large scale models, the process of reducing a 
model to so-called "solved from" as in (4.1) will be the most complicated problem. 
Even in Klein's I model obtaining solved from by manual operation is troublesome . 
However the merit of the solved form is that we can see how the policy and exoge-
nous variables influence the determination of the endogenous variable, for instance 
national income, dynamically as seen in (4.1). 

 We established a simple algorithm to obtain the solved form. The solved form 
of concerned endogenous variables is a linear combination of its lag terms, the 
current and the lag terms of both exogenous variables and disturbances. There-
fore, given an econometric model, we continue to add a lagged equation to the 
model unitl we can solve the concerned variables from the system which contains 
more equation than the original model. After all the procedure results in solving 
a large-scale linear simultaneous equations. Finally, there remains the general 
problem of non-linearity. Whenever there are price variables in the macro-model, 
non-linearity of product or quotient appears. Furthermore, when we intend to 
reflect faithfully the theoretical developments in specifying some behavioral equa-
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tions, we are apt to obtain non-linear specifications. Thus, in the general situation 
where non-linearity are popular, the analytical methods including this analysis to 
investigate the dynamic properties must make models linear as a first step, which 
would be a serious restriction. 

                                  Nagoya Institute of Technology
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